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C. PETER TIMMER 

ON MEASURING TECHNICAL EFFICIENCY* 

CHAPTER 1. INTRODUCTION 

Types of Efficiency 

Economics is devoted to understanding the production and con­
sumption of man's material needs and desires. In order that the understanding 
be more than purely descriptive, economists have postulated that all economic 
decision-makers want more of whatever it is they seek. Firm managers want more 
net revenue. Consumers want more satisfaction. From this encompassing descrip­
tion of human motivation flow a remarkable number of models purporting to 
explain the production and consumption processes. All of these models force the 
economic agent to maximize some function subject to constraints. The example 
of immediate relevance is the firm manager maximizing net revenues subject to 
given factor and product prices and his technical production function. 

There are at least two very important ways in which this maximizing process 
might fail in the real world. The whole core of economic theory is concerned with 
one of these: the marginal revenue products of some or all factors might be un­
equal to their marginal costs. If this is true the allocative decision is said to be 
inefficient. 

The second important source of failure in the maximizing process has received 
far less theoretical treatment in the economic literature but is potentially more 
important quantitatively (in terms of wasted resources). This is the extent to 
which firms actually produce on the technical production function that yields the 
greatest output for any given set of inputs. A failure in this regard means the firm 
is technically inefficient. 

In a sense, technical efficiency is not an economic problem at all, for economics 
has traditionally assumed that the internal maximizing process in the firm is 
always completed (in a static world). Thus all firms achieve the same amount of 
output when they use identical amounts of (traditional and measurable) inputs. 
That this is patently not so in the real world has only recently intruded into eco-

* This is a revised version of my Ph.D. dissertation, "On Measuring Technical Efficiency," Har­
vanl University, November 1969. A number of people provided stimulation, criticism, direction, and 
restraint. I would particularly like to thank Walter P. Falcon, Carl H. Gotsch. and Christopher Sims 
at Harvard, and Ben Massell, Vv. O. Jones, Scott Pearson, Don Keesing, and Bill Comanor at Stanford. 
My research for this study started a fruitful and continuing dialogue with Pan Yotopoulos on the 
meaning and measurement of economic efficiency. His comments have been extremely helpful. I 
woultl also like to thank the Food Research Institute for its generous staff and financial support. 
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nomics. The advent of linear programming opened for the first time the door to 
the firm's management office. Internal allocative decisions became subject to as 
much scrutiny by economists as the assumed external results of those decisions.1 

The result has not just been to show that many firms are not technically efficient 
when judged by best practices of the industry. "Everybody" knew that. A further 
result has been to give some rationale for the inefficiency. Nontraditional and fre­
quently nonmeasurable costs are paid for "correct" decision-making. Competitive 
conditions may dictate that the costs be paid. Alternatively, they may allow suffi­
cient leeway for substantial productive inefficiencies to exist with no efforts made 
to eliminate them.2 

Another major intellectual development in economics also contributed to the 
interest in technical or productive efficiency. In the 1950s steady growth rather 
than the stationary state became the desired equilibrium in economists' models. 
It had long held this position in popular sentiment, but its formal acceptance into 
basic economic theory started a round of searching questions. How does growth 
start? What determines its speed? How much is enough? Do the economists' 
traditional factors of production account for it? These questions are almost en­
tirely empirical. The process of answering them sent economists into the firm to 
study the diffusion of new knowledge and technology, to industry and national 
aggregate data to estimate production functions and shifts in production func­
tions, and back to the firm to see what embodied and disembodied change really 
meant. 

The research is beginning to indicate that technical efficiency is important. 
The reasons a firm uses "best" rather than "average" practices are closely related 
to the rate of acceptance of technical change and growth in output. The impor­
tance of technical efficiency has caused few ripples in the theoretical literature. 
And without solid theoretical support, the measurement of technical efficiency 
has been somewhat ad hoc. With this in mind, this monograph has the following 
goals: (1) to understand the concept of technical efficiency within the context of 
received economic theory; (2) to devise a theoretical measure of technical effi­
ciency consistent with this context; and (3) to use the theoretical measure in an 
empirical test of the quantitative significance of technical efficiency. The test will 
be for u.s. agriculture from 1960 to 1967, with each state's average performance 
in each year assumed to be that of a representative farm firm. 

A road map for what follows would show only a few departures from a straight 
path between "building the model" and "explaining the real world coefficients." 
The remainder of this chapter briefly discusses some of the welfare significance 
of the allocative and technical production decisions. Some reasons why these de­
cisions might not always be "correct" are also listed. The role of management in 

1 "The traditional production function describes only the efficient techniques, i.e., those which pro­
duce the max.imum output of a desired commodity for given inputs. The process by which those tech­
niques are discovered is not examined. For many years these processes were deemed to be management 
problems and so outside the range of economics. But in recent times it has been recognized that the 
problems of resource allocation within the firm arc closely analogous to those between firms and in­
dustries. There is both economy and additional insight to be gained by pushing the domain of study 
back into the firm to examine its internal decisions" (48, p. 2). 

2 One model that allows costs to rise above minimum levels is described in 9. The welfare effects 
of a positive relationship between competitive pressures and degree of technical clliciency are discussed 
in 8, pp. 304-309. 
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particular is discussed, although the aggregate nature of the agricultural data used 
in the empirical part of this monograph precludes any judgments about the func­
tion and efficiency of management in U.S. agriculture. 

Chapter 2 presents a number of techniques for measuring the efficient produc­
tion function. The technique ultimately chosen for estimation-the single-signed 
"least lines" fit to a Cobb-Douglas production function-is justified on the basis 
of its conformity to most of economic theory, its ease of estimation with linear 
programming methods, and the facility with which comparison can be made to 
more conventionally estimated production functions. Chapter 3 briefly sketches 
the usual least squares approach to estimating Cobb-Douglas production func­
tions and concludes that the Hoch-Mundlak technique of pooling time series and 
cross-section data in order to use analysis of covariance provides the most mean­
ingful "average" function with which to compare the "frontier" function of 
Chapter 2. 

A theoretical comparison of "average" and "frontier" functions is carried out 
in Chapter 4, and the two are used to examine in some detail the nature of tech­
nological change and the diffusion of innovations. The theoretical part concludes 
with a suggested approach to evaluating the impact on output of the physical 
environment. 

Chapters 5-7 provide the empirical meat, with the discussion following the 
natural progression from data description to estimation of "average" and "fron­
tier" production functions to an explanation of differences in technical efficiency. 
The quality of the data is such that much of the discussion in these three chap­
ters is devoted to explaining awkward or inconsequential results. 

The one major digression occurs in Chapter 8, where biased and unbiased 
versions of the "average" production functions are used to examine the extent of 
allocative inefficiency (marginal revenue product unequal to marginal cost) and 
economies of scale in U.S. agriculture. 

Chapter 9 supplies the usual conclusions. 

Welfare Effects of Efficiency 

Allocative efficiency is the central issue in microeconomic theory. The model 
of perfect competition developed in the two centuries since Adam Smith deter­
mines the allocation of society's scarce resources to meet insatiable desires in such 
a way that no one can be made better off without someone else becoming worse 
off. In short, society will reach a Pareto optimum if all the assumptions of the 
competitive model are fulfilled. 

But what if all the assumptions are not fulfilled? In particular, what if firms 
have a substantial degree of market power and exercise considerable influence 
over the price received for the goods they produce? Harberger and Schwartzman 
have provided the empirical answer: not much is lost-in fact, less than 1 per 
cent of GNP for the United States economy (19, pp. 79-92; 41, pp. 727-29). 

The losses are so small because the resources that are not used because of 
monopolistic output restriction are used in other (competitive) industries to in­
crease output. Only the marginal distortion, measured by the shaded triangle in 
Harberger's familiar diagram (Chart 1-1), is welfare loss. But another produc-
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CHART 1-1 

p 

Demand 

Q 
tion decision underlies this, with far greater welfare implications. The model 
assumes that each firm "purchases and utilizes all of its inputs 'efficiently.'''3 
A failure of this assumption, for whatever reason, causes total and not marginal 
welfare losses. Comanor and Leibenstein assume that monopoly power may cause 
this assumption to fail (8, p. 305). 

Now let us suppose that a shift from monopoly to competition not only 
lowers price but also lowers costs (i.e., increases X-efficiency). What are 
the welfare losses under these circumstances which are due to monopoly? 
... The important implication of our result is that the actual degree of 
allocative inefficiency may be very much larger than the level as heretofore 
calculated. Furthermore, to this larger sum must be added the volume of 
X-efficiency for the monopolistically used inputs to obtain the total welfare 
loss from monopoly. 

Thus if firm A buys 10 per cent more of society's scarce resources than firm B 
but produces exactly the same output, those extra resources are lost to society. 
If they had been employed in an efficient firm they would have produced a tenth 
more output than was actually achieved. Some of Leibenstein's admittedly diffuse 
and scanty data indicate that some firms do as much as 100 per cent better than 
others, or that gains to simple changes in organization and incentives can increase 
output by 50 per cent without any change in capital and labor (man-hours) inputs. 

Responsibility for Efficiency 

The reasons for such potentially large degrees of inefficiency are still unclear 
unless the physical environment differs markedly and its impact is not removed 
in measuring efficiency. If the environment is the same or differences are allowed 
for, then the responsibility for inefficiency, in corporate fact as well as economic 

3 Lcibenstein's meaning of "X-efficiency" is approximately the same as what is called technical 
efficiency here (28, p. 392). 
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theory, rests with management. "Managers determine not only their own pro­
ductivity but the productivity of all cooperating units in the organization. It is 
therefore possible that the actual loss ... might be large" (28, p. 397). Ulti­
mately then, the goal of this monograph should be to relate technical efficiency to 
management. The aggregate nature of the data washes out most management 
effects in the sense of individual dirTerences in decision-making ability. So the dif­
ferences in technical efficiency measured here cannot be systematically related to 
statewide managerial differences. Even with a suitable data set a number of diffi­
cult questions would first have to be answered: how does management appear in 
a production function, what form of interaction is there between management 
and other factors of production, can a management variable be constructed to 
overcome "management bias" in estimating production functions? Some dis­
cussion of these questions is in order even though few answers emerge. 

Assume that five primary factors of production appear in an agricultural pro­
duction function: bnd, labor, capital, management, and intermediate inputs 
(which might be split further into noncomplementary inputs). Any industry that 
is competitive and not subject to rapid and continuing technological change could 
subtract intermediate inputs from both sides of the output = cf> (inputs) equa­
tion with all arguments remaining the same. This is a poor procedure for agri­
culture because of the continuing disequilibrium with respect to "modern" inputs 
-fertilizer, herbicides, pesticides, etc. Since the marginal revenue productivity of 
these inputs remains well above cost, the results of any estimated production 
[unction would be biased if these inputs were subtracted using farmers' costs as a 
measure of productivity. 

All five factors of production can be treated symmetrically when formulating 
a production function. This supposes that all five factors are "produced" means 
of production and no single factor or group of factors has a claim to being more 
"primary" than the others. The general production function Y = cf> (D, L, K, M, 
I) is then subject to a set of five factor supply functions (as well as the usual profit­
maximizing constraints). The form of these functions depends on a great many 
things, but particularly on the level of aggregation being considered. At the firm 
level in a competitive environment the factor supply functions do not constrain 
physical quantities of the factors available to each firm but serve to identify quality 
and the means of aggregating disparate components into a single index. 

Assume the production function is of the form 

(1.1 ) 

Suppose that each Xi is in fact a weighted linear sum of the individual compo­
nents, i.e., 

(1.2) 
m 

Xi = ~ CUijZij, 
J=l 

where Zlj is the pb type of component comprising the itb factor of production, and 
wij is the weight used in aggregation. 
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Then the production function is of the form 

(1.3) Y = A i~l (J~l WiJZiJ)a f
• 

Once expressed in this fashion, the function leads inevitably to a more general 
(and more meaningful) form. 

n.m 

(1.4) Y = A IT Zi/ f ', 

i, J = 1 

or, suppressing the i and j subscripts and allowing a k subscript to carryover both 
i and j, 

nm 

(1.5) Y = A IT Z"ak • 

I, = 1 

This form allows each component of each factor of production to have its own 
elasticity of production (a,,). Carried to its logical end, Equation (1.5) assumes 
that each worker is a separate factor of production. Stated this way, the difficulty 
of working empirically with Equation (1.5) is obvious. There will always be 
more factors of production than firms in the sample, so Equation (1.5) can never 
be estimated. To be empirically relevant the production function must always 
take, to a greater or lesser degree, the undesirable form of Equation (1.3). 

Not much explicit attention has been given to estimating the different forms 
of Equation (1.2). Frequently it is assumed that the weighting system (set of 0\;) 
is quite simple-all "bodies" are equal, or a dollar spent on one machine is equal 
to that spent on a different machine, or on a building or drainage system. Alter­
natively the weighting system may be very complex and involve a substantial 
amount of estimation itself. The work of Griliches, Denison, Tostlebee, Ken­
drick, and Goldsmith on the proper specification and measurement of different 
factors of production falls somewhere between these two extremes. 

But so far no effort has been made to treat management in this fashion, and 
for obvious reasons-". . . there is no generally accepted cardinal measure of 
entrepreneurship" (48, p. 5). There is not even an a priori physical quantity to 
build around, as there is for man-hours, acres, pounds of fertilizer, or tractor­
hours. The management function must thus be built on rather an ad hoc basis. 
Since it is a nonobservable, non measurable input, management is judged by the 
results of its decisions, i.e., by the degree of efficiency achieved in production. If 
this can be estimated consistently-and the next two chapters will attempt to pre­
sent means by which it can be-then a firm-specific index of efficiency (mana­
gerial performance) will have been generated. The variable Xi will be known, 
and all that remains will be to find any Zij that seem relevant to managerial per­
formance and to estimate the Wij'4 For agriculture in particular the Z1J might in­
clude education and age of the farm operator, exposure to research and extension 
results, etc. 

4 There is no a priori reason why the ro'l weights must be linear, except for ease of estimation. 
Equation (1.2) could just as easily be specified as 
(1.2a) X. = <I>,(Z'I). 
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Hall and Winsten have argued strongly that extreme care must be taken in 
this type of endeavor (18, pp. 71-86). Especially when judgments about the rela­
tive performance of managers are being made they insist that allowance must be 
made for the nature of the physical environment facing each manager. If different 
managers face different constraints on their maximizing behavior, even though 
all face the same general production function, judgments about their relative per­
formance will be useless unless these constraints are understood. Only after cor­
rection for environmental differences is made does the responsibility for technical 
efficiency belong to management. 

The nonmanagerial determinants of technical efficiency are many. A fairly 
lengthy list follows, and although an attempt has been made to be inclusive there 
are certainly factors that have been left out. The factors, as will become obvious, 
are mostly related to agriculture. 

Physical factors.-Soil characteristics and climate are the two factors of most 
importance in this category. They are to a large extent jointly determined because 
the type of soil resulting from breakdown of primal mineral matter is a function 
of long-run precipitation, wind, temperature, and sun, i.e., of climate. These 
factors are fixed in the very short run for both the firm and society and are fixed 
in the long run for the firm. Short-run impacts of precipitation, wind, etc., or 
weather, are also important in determining technical efficiency. The weather fac­
tor is variable in the short run but is assumed to have a zero average impact in the 
long run. The variation is assumed to be random. 

The impact of these physical factors on productivity in agriculture is likely to 
be substantial. In an attempt to correct for this impact, and thus to free the ulti­
mate index of technical efficiency from differences in physical environments, land 
value rather than land area is taken as a factor of production. 

Social and political factors.-Perhaps the most important social factor affect­
ing productivity, especially in agriculture, is population density. Particularly 
when output per acre is taken as an indication of productivity or efficiency in 
production the type of nearby market is crucial. The nearer a farm is to a large 
metropolitan area the greater is the potential for small acreage-high value truck 
cropping. The same land a thousand miles from nowhere might only be profitable 
for low intensity-dry land grain cropping. So demographic factors play an im­
portant role in determining cropping patterns and intensity of land (and other 
factor) use. 

Political intervention in agriculture has a history many centuries long. The 
range of programs that affect farmers' productivity is wide. Government-spon­
sored agricultural research and extension directly affect the farmer's productivity 
-the superabundance of farm goods in the United States is attributable in part 
to the success of research and extension services. Differential availability of these 
services to farmers is very likely to cause corresponding differentials in produc­
tivity.5 

Other government programs also affect productivity in agriculture. Soil bank 
schemes remove marginal land from production and encourage more intensive 

5 Grilichcs has already presented some preliminary but convincing evidence on this score (I5, 
pp.961-74). 
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cultivation on the remaining, higher quality land. Crop subsidies, especially when 
highly favorable to a crop with limited geographic distribution (e.g., cotton and 
tobacco), can affect "normal" cropping patterns and also upset equilibrium 
pricing. Rational values of total output are difficult to construct when some crops 
are heavily subsidized and some are not. A farmer who produces a high value of 
output of tobacco may not be nearly as efficient in a broad social sense as a farmer 
who produces a smaller value of soybeans or chickens. The government artifi­
cially supports the price of the former and not of the latter. Equilibrium prices in 
a social welfare model should be used instead of actual prices received by farmers. 
In the real world, of course, such distortions are almost impossible to remove 
(using world free market prices might help, where these are available). 

Random factors.-Weather is probably the most important random factor af­
fecting agriculture, and its role has already been treated. Some lesser factors are 
loss due to fire and theft,6 accidents in the production process (overdoses of an­
hydrous ammonia or some weed killers are not uncommon), unexpected delays 
in delivery and repair of equipment (a combine in the repair shop instead of the 
field can easily cost half a wheat crop), and random variation in seed and live­
stock quality. Livestock in particular are subject to extraneous factors, the most 
important of which is probably disease. But the "sheep's in the meadow, the cow's 
in the corn" situation can also be damaging. A large herd of mad steers can wreak 
unbelievable destruction on a mature field crop. 

Random factors are impossible to fit into a determinate model of production, 
and their existence is a nuisance if such a model is desired. But they are essential 
if some stochastic model is being built. Since estimation of a stochastic model is 
the desired goal here random factors affecting production create no problems. 

6 Cattle rustling was once important, and episodes are still reported occasionally. But the thought 
of someone stealing 5,000 bushels of soybeans is ludicrous. 



CHAPTER 2. THE FRONTIER APPROACH TO MEASURING EFFICIENCY 

The received body of microeconomic production theory holds 
that a firm's production function specifies the maximum output attainable from 
a set of inputs, given the technology available to the firm (20, p. 44).7 

The production function differs from the technology in that it presupposes 
technical efficiency and states the maximum output obtainable from every 
possible input combination. The best utilization of any particular input 
combination is a technical, not an economic, problem. The selection of the 
best input combination for the production of a particular output level de­
pends upon input and output prices and is the subject of economic analysis. 

It was argued in Chapter 1 that there are actual differences between firms in 
technical efficiency, that is, in the manager's ability to achieve the technical maxi­
mum. Economic theory dictates that these differences should be measured rela­
tive to the technical frontier rather than relative to some "average" firm. This is 
most clearly seen in a two-factor Leontief-type world. 

In Chart 2-1 all four firms are producing only one unit of output. They use 
differing amounts of the factors of production, although in fixed proportions. It is 
natural in this case to say that firm Xl is 100 per cent efficient (relative to the ob­
served performance of these four firms-some engineer with better knowledge 
of potential techniques in this industry might say that none of these firms is 

efficient), or has an efficiency index of ~~l = 1.0. The performance of firms X2 , 

1 
X3 , and X4 can be measured relative to that of Xl; thus 

1» OXI 9_X I OX l < OXl -1 
OX < OX < OX OX - . 
432 1 

These ratios have a straightforward economic interpretation. If g~l = 0.6 then 
2 

CHART 2-1 

K 

L 

Unit 
Output 

7 A production function for the firm can be "so defined that it expresses the maximum product 
obtainable from the (input) combination at the existing state of technical knowledge" (7, pp. 14-15). 
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the inputs of capital and labor could be reduced in the ratio of 1.0 to 0.6 in firm X
2 

with output remaining the same, provided that firm X 2 used precisely the same 
"technique" (in the broadest possible sense) as Xl' This, intuitively, is what effi­
CIency means. 

In 1957 M. J. Farrell generalized this Leontief single-process example to many 
processes and n inputs while retaining the linearity assumptions (11, pp. 253-81). 
The technique yields estimates of technical efficiency and price efficiency. Sum­
maries of the method have appeared in Nerlove and Bressler (37, pp. 86-100; 5, 
pp. 129-36). 

Assume that all firms in an industry use two factors of production, labor and 
capital, have equal access to the most efficient technology, but that some firms 
are more technically proficient at using this technology than others. All firms 
utilize a linearly homogeneous production function (LHPF), thus producing 
with constant returns to scale. The physical environment for all firms is the same. 
It is then possible, in this two-factor case, to represent the results of each firm's 
production decision on a unit isoquant diagram similar to that of Chart 2-2. 

CHART 2-2 

K A 

G 

B 

o L 
Each observation represents the input combination used by a single firm to 

generate one unit of output.a In a smooth, neoclassical world the efficient frontier 
would be represented by AB. In a discrete, linear combination world the frontier 
is CDEFG. In either case, no firm is able to produce a unit of output with a com­
bination of inputs to the southwest of the frontier. This space is infeasible given 
presen t technology. 

Farrell's method measures each firm's technical efficiency relative to this 
achieved efficiency frontier. Thus in Chart 2-3 firms Q and Q' are both 100 per 
cent technically efficient, for both produce on the unit isoquant AB. Firm P is in­
efficient. By Farrell's measure, its degree of technical inefficiency is the ratio OQ 

a It is not necessary to assume LHPF at this stage. But to relate one observation to another we 
must assume that the slope of each firm's proouction function is parallel to any other firm's slope along 
a ray through the origin. Thus the LHPF assumption becomes necessary before comparisons can be 
maoe. 
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CHART 2-3 

K 
A 

OQ 
to OP, or - X 100 on a percentage basis. All firms have a technical efficiency 

OP 
ranking of 100 or less on this basis, with the lower limit being zero if the firm uses 
inputs but produces no output.o 

Chart 2-3 also illustrates how price efficiency can be measured, if factor prices 
facing each firm are known. Assume DD' is the relative price line facing all firms 
in the industry. Then only Q' is both techcnically efficient and price efficient, for 
DD' is tangent to AB at Q'. Firm Q is technically efficient, but not price efficient, 
and the degree of its price inefficiency is measured simply by the ratio of OR to 

OR 
OQ, or - X 100 on a percentage basis. The justification of this measure is 

OQ 
straightforward-DD' is a budget or cost line. Hence it is possible to produce 
the unit amount at a cost of only OR. Since firm Q spent OQ, the ratio of its in­
efficiency is OR to OQ. It is clear then that both measures of efficiency are in 
substance just cost indices, although technical efficiency is measured relative to 
the production frontier rather than relative to a minimum cost budget line. The 
use of a production frontier separates the allocative from the technical decision, 
something that simple cost comparisons cannot do. 

The Farrell technique is generalizable to n inputs using modern linear pro­
gramming techniques. With more than two, or possibly three inputs, however, 
the increased generality is achieved at the cost of visualizing the production func­
tion without constraining it to any algebraic form such as Cobb-Douglas or CES. 

° This is obviously for gross output only. If net output is the measure considerel], then the problem 
of negative numbers arises, for the flrm could use a greater quantity of intermediate inputs (in value) 
than it produced as gross output. A negative output with positive inputs of the primary bctors capital 
and labor would result. Soligo and Stern found that 23 of 48 industries studied in Pakistan had a 
negative value added, due either to inellieiencies in the industries in the use of imported inputs or to 
domestic inputs priced higher than similar inputs abroad (42, pp. 250-70). 
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Then the constraint of a functional form must be balanced against the ease of 
visualizing the production surface. 

A number of theoretical and operational difficulties have been raised with 
Farrell's frontier approach to measuring efficiency. The assumption of constant 
returns to scale has been criticized by Nerlove and others (37, p. 90; 25, pp. 282-90; 
2, pp. 826-39). The problem can be surmounted by segregating the data by size, 
estimating separate frontiers and testing for significant differences.1o An alterna­
tive approach is to consider differences in scale a factor of secondary importance 
and thus contributing to differences in efficiency. Bressler discusses this technique 
with some enthusiasm, but notes a major theoretical problem. If there is a sys­
tematic relationship between scale and factor proportions, then the validity of the 
original frontier is in doubt (5, p. 133). In other words, the question of scale may 
not be separable from estimating the frontier. 

Although the frontier function corresponds closely to the theoretical ideal 
production function, data problems are severe. In particular, the frontier is de­
termined by the extreme observations in the data set, and thus the position of the 
frontier is strongly sensitive to errors of observation. While this could bias the 
frontier in a wildly optimistic fashion, especially if raw firm data were used, there 
is an offsetting pessimistic bias. The frontier depends only on actual observations 
contained in the sample. A larger sample cannot contract the frontier, but it can 
enlarge it. This bias is analogous to that of a sample maximum as an estimator 
of a population maximum (2, p. 827). The two biases will tend to be offsetting, 
but the extent to which either is dominant is unknown and presumably varies 
from situation to situation. 

A final objection, mentioned by Bressler, is common to all envelope approaches 
(5, p. 136). Only marginal data are used. The vast bulk of the observations do 
not enter the estimation procedure at all. Of course, the presence of data does not 
make it relevant. If an efficient envelope is the objective, then the problem is falsely 
raised, for only the marginal observations are relevant. 

It is possible to take account of all observations in fitting a smooth envelope 
according to some functional form, e.g., Cobb-Douglas. By constraining errors 
to one sign and fitting either least lines or least squares with linear or quadratic 
programming techniques, a fitted envelope function is obtained using all obser­
vations in the estimation. This procedure is used by Aigner and Chu for a Cobb­
Douglas function in output-input space, as contrasted with the efficient isoquant 
in input-input space introduced by Farrell (2, pp. 826-39). 

Since efficient frontiers can be estimated in a number of ways, it is necessary 
to examine in more detail the techniques involved before a decision about which 
to use is made. The following will be pursued here: 

(1) the programming approach in input-input space of Farrell; 
(2) the programming approach in output-input space of Aigner and Chu; and 
(3) a "chance constrained" frontier or density function approach. 

The first method utilizes only extreme observations from the data set; the second 
two utilize all or a certain proportion of the data. 

10 Although there are no statistical tests presently available for this purpose. 
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A programming model for calculating a Farrell frontier has best been de­
scribed by Boles (4, pp. 137-42). Consider each of n firms as a separate activity 
producing a unit of output through the input of m factors of production. The r 
activity is completely described by a vector of m + 1 elements, and Iii represents 
the quantity of factor i used in the unit activity j. Call this activity P/1 The ob­
jective is to determine the location of each firm j relative to the origin and an 
envelope of all n firms. 

The essential question to be asked about each activity, then, is the following: 
Given the n activities and the lh list of inputs, what is the maximum amount of 
output that can be produced? By definition, the r activity produces one unit of 
output. If some combination of activities can produce more than one unit while 
using no more resources than the jth activity, then the r activity is inefficient, and 
the efficiency index is defined as the reciprocal of maximum output. Formally, 
then, there are n distinct linear programming problems in which the n productive 
activities form a constant coefficient matrix, A, and each of the activities in turn 
furnishes the coefficients of the "right-hand side," rhs. Let V be an n X 1 vector 
of ones. The r linear programming problem is: 

Maximize Xo = V'X 
X~O 

AXL. Pj' 

Let Xo be the optimum value of the objective function; then the efficiency in­

dex is ~O. The set of convex combinations of the optimum basis defines one 
Xo 

facet of the technically efficient unit isoquant (4, pp. 137-38). 
The envelope approach used by Aigner and Chu does not operate in isoquant 

space like the Farrell frontier, but in total output-input space. The advantage of 
this is that the assumption of constant returns to scale need not be made, and so 
the output hyperplane is not constrained to lie on straight lines emanating from 
the origin. This generality is achieved at the cost of specifying a functional form 
for the hyperplane, in this case Cobb-Douglas.12 The cost may be small if the form 
assumed gives a good fit and behaves according to economic logic, as the Cobb-

1m! 
12 This cost may be needlessly incurred. If linear combinations or points determining the efficient 

production surface are acceptable instead or a smooth surrace, then the efficient racets could be listed 
in the same fashion as the isoquant model. The efficiency index ror each of the n activities would be 
calculated in a similar manner: the maximum potential output as determined by the output or the effi­
cient envelope at a point corresponding to the jth availability or inputs. A diagram may make this 
somewhat clearer. Chart 2-4 shows a production function in isoquant space once again, but this time 
with nonconstant returns to scalc, necessitating that all isoquants be drawn rather than only the unit 
isoquant. These isoquants arc efficient-that is, they arc derived from the envelope production runction 
in output-input space that Aigner and Chu estimate. Firm Q' uses Ko capital and Lo labor, which 
would be sufficient to produce an output of 4 if Q' were efficient. In fact Q' produces only 3. Thus its 
cfliciency inuex is % = 0.75. When no functional form is estimated, such as Cobb-Douglas, then this 
methou assumes constant returns to scale on a facet of the envelope, but not between facets. 
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CHART 2-4 
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Douglas usually does. A benefit of fitting a Cobb-Douglas function to the efficient 
envelope is that it permits direct comparisons with Cobb-Douglas functions esti­
mated by "average" statistical techniques. 

Consider the usual Cobb-Douglas model in general form, 

m 

(2.1) Y' = IT xi/iej, where 
i=O 

Y} = output of firm j 
xi} = use of factor i by firm j 
ai = parameter 
ej = a random error term that contains a systematic efficiency term as well. 

In logs (capital letters), this can be written as 
m 

(2.2) Yj = 2: aiXij + E" 
i=O 

where one column of Xii is a vector of ones to allow for an intercept. 
To make this a frontier function all E j must be constrained to one side of the 

estimated production surface. Thus, (2.2) should be estimated such that 

m A A 

(2.3) 2: aiX;} = Y}:::-:'" Yj. 
i=O 

Only "efficient" firms satisfy the final equality-all others have a smaller actual 
output than would be achieved if they too were efficient by the standards of the 
estimated production function. 

An infinite number of sets of at will satisfy (2.3). To force the estimated pro-
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duction surface to lie as closely as possible to the observed set of points a mini­
mizing constraint must be placed on some function of the sum of the resulting 
error terms. Some flexibility is possible with this constraint. In the context of a 
system of simultaneous equations it is convenient to 

" Min}:: El. 
J=1 

This form is also most convenient for comparing "frontier" estimates of the co­
efficients of a Cobb-Douglas production function with "average" or ordinary least 
squares estimates. In the present context, however, a simultaneous system is not 
necessary to justify use of a Cobb-Douglas function (see Chapter 3), and com­
parison with "average" estimates, while interesting and useful, is not the main 
purpose of this monograph. A constraint that diminishes the impact of extreme 
observations rather than accentuates them is most desirable for fitting a frontier 
with data subject to observation errors, so the form used here is to minimize the 
linear sum of the errors,18 i.e., 

Assuming all Ej ::'" 0, Equation (2.3) can be written as an equality: 

m A 

(2.4) }:: a.J{iJ - EJ = Y J• 
i=o 

The problem then is to 
n 

Minimize}:: EJ subject to 
J=1 

m A " 

}:: a.J{iJ::'" YJ and a.. ::,.. 0 . 
• =0 

This looks like a linear programming problem with the possible exception of the 
objective function, which must be translated into a simple linear function of U. 
and Xw This can be done. The technique is to sum Equation (2.4) over j. Then 

n mAn n 

(25) }:: }:: a..XiJ - }:: EJ = }:: YJ. 
J=1 i=O J=1 J=1 

" Solve for}:: Ej' which is to be minimized: 
J=l 

18 This is the single-sign analogue to a "least lines" linear regression where the sum of the abso­
lute values of the deviations from the fitted line is minimized. Minimizing 

n 
~ EJ2 

;=1 
is the single-sign analogue to a standard least squares regression. 



114 C. PETER TIMMER 

(2.6) 
n n mAn 

~ E, = ~ ~ aJ(1,1 - ~ Y/. 
/=l. /=l. 1,=0 1=l. 

n A 

Consider that for any particular data set -~ Y j is a constant. Any set of a1, that 
/=l. 

n 

minimizes ~ E, for one value of -~Yj will minimize for any other value, in-
1=l. 

eluding zero, so the term can be dropped from Equation (2.6) with no conse­
quence. The remainder is entirely suitable as a linear programming objective func­
tion. But it is somewhat simpler computationally to divide by n, the number of 
observations, so that the objective function becomes 

(2.7) 
m A-

Minimize ~ aJ(1" where 
1,=0 

Xi = mean of Xij and 

Xo= one. 

Written more fully, Equation (2.7) is 

(2.8) 

The problem then is to 

(2.9) 

A A A 

ao + a1X1n + ... + amXmn:::::'" Yn 

A 

a,,:::::'" O. 

This can be solved by any linear programming package. The vector :' is the 
Yj 

index of efficiencies. 
A third approach to frontier estimation builds on either the Farrell or the 

Aigner and Chu approach, but does not allow the frontier to be determined by 
the marginal observations alone. Within the Aigner and Chu context, Equation 
(2.3) would be translated from a deterministic inequality to a probability state­
ment of the form 

pr( IT Xij~l:::::'" Y1):::::'" P, 
i= 0 

with P an externally specified probability, e.g., 95 per cent, with which the equa­
tion is to hold (2, p. 838). 
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Although it is difficult to get a program to do this automatically, it is relatively 
easy to do by hand with standard LP programs. The problem in (2.9) is estimated 
in its entirety and the 100 per cent "efficient" observations noted. There will be as 
many "efficient" firms as there are factors of production with (il > 0, barring ties. 
This is an inevitable consequence of working in a linear world. These "efficient" 
firms may be efficient because of errors of observation or other problems. The tech­
nique then is to discard the first (100 - P) per cent of "efficient" firms until a 
prespecified level of P is reached. Thus 5 per cent of the extreme observations 
might be discarded with 95 per cent of the observations determining the frontier. 
Alternatively, "efficient" firms might be discarded one at a time until the result­
ing estimated coefficients stabilize. Either way, the objections to estimating a 
frontier function because of data problems may be largely overcome in this 
fashion.14 This form of probabilistic frontier function, using the single-signed 
"least lines" fit to a Cobb-Douglas function, is used for much of the empirical 
work in Chapters 5-7. 

A density-type function would seem to be the most logical for a Farrell frontier 
estimated with probabilistic rather than deterministic intent. If the observations 
are scattered about the "average" function with the density of observations great­
est near the center and diminishing in each direction, then a ray from the origin 
toward the observations will meet the deterministic frontier first, and then en­
counter an increasing density of observations. When the density reaches a pre­
determined level, then the frontier is drawn in. By varying the density it would 
presumably be possible to have the frontier coincide with the average, or one 
standard deviation from the average, etc. 

An alternative approach is illustrated in Chart 2-5. A narrow cone (say, 5°) 

CHART 2-5 
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14 It should be noted, however, that the frontier becomes increasingly biased in a pessimistic di­
rection as extreme observations are removed. This bias is of little consequence if the sample is very 
Jarg~ and if the extreme observations are in fact the product of data errors rather than reflecting super­
effiCIent firms that yield strange production function coefficients. 
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is drawn from the origin, e.g., AB. All observations falling in the cone are enu­
merated and the inner, say, 10 per cent are segregated from the rest by a line, e.g., 
A' B'. As the cone is swung from one axis to the other (either in discrete steps or 
continuously) segments such as A'B', B"C', C"D', etc., are generated. By joining 
the midpoints (or either endpoint) of such segments a smoothed probabilistic 
frontier is formed. No programming technique has been developed along these 
lines as yet, but it seems clear that one could be devised. 



CHAPTER 3. "AVERAGE" PRODUCTION FUNCTIONS AND 
TECHNICAL EFFICIENCY 

"Average" production functions, i.e., those estimated by a sta­
tistical technique such as least squares that minimizes errors on both sides of the 
estimated function, have received far more attention than frontier functions. The 
reasons are numerous, but the most important is the dominance of a statistical 
theory attuned almost solely to zero average errors. 

Only two functional forms have received widespread favor from economists 
in search of empirical production functions-the Cobb-Douglas and the constant 
elasticity of substitution, or CES. The CES function can be formulated with an 
efficiency parameter, but the function is very difficult to estimate and interpret 
with more than two factors of production. With the six factors of production15 in 
the data set used for the empirical work in this study, the CES function becomes 
unmanageable. No further consideration will be given to it here. 

The Cobb-Douglas function is the standard for the profession. Although some 
of its secondary characteristics are disturbing, especially unitary elasticity of sub­
stitution and separability of the contribution of each factor of production, its pri­
mary characteristics-ease of handling and generally good fit-continue to recom­
mend it to economists. Of course, a good deal of care must be taken so that the 
model estimated corresponds to the decision-making model of economic theory. 
The Cobb-Douglas function, along with most other production functions, suffers 
from a major difficulty in this respect. Application of ordinary least squares to the 
single equation Cobb-Douglas function, linear in logarithms, yields biased results. 
The bias, in general, is due to misspecification of the estimated function. In par­
ticular, there are two sources of bias-simultaneous equation bias and manage­
ment bias. 

The techniques used to remove simultaneous equation bias are interesting in 
their own right but of little relevance here. It is important that some means be 
used to remove this bias in order that the remainder of the work have value, so 
a method particularly suited to agricultural production functions will be outlined. 
The real interest, however, lies in the technique used to remove management bias, 
for a by-product is an index of efficiency. The interest in estimating an "average" 
production function is, then, not idle. This function and its resulting index, while 
not fitting well with traditional theories of the production function, will be ame­
nable to all the standard statistical tests of significance. It is challenging to set off 
to the frontier, to examine its coefficients, and to construct an index of efficiency 
from its boundary. But with nothing with which to compare the results, and no 
tests of significance to form confidence intervals, the trip would be devoid of real 
meaning. The "average" function, estimated consistently and without bias, will 
thus serve as a foil to the frontier function. 

Removing Simultaneous Equation Bias 

The problem is most easily seen in the context of estimating the simple two­
factor Cobb-Douglas model. Let 

(3.1) y = akctl{3 

15 Chapter 1 talked of five primary factors of production, including management. The empirical 
~ork uses six factors of production, excluding management. The difference is caused by splitting the 
rntermediate input into three separate factors-livestock, fertilizer, and seeds and miscellaneous. 
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be the deterministic production function facing all firms in the industry. It is 
linear in logarithms. 

(3.2) Y=A +aK+~L, 

where, as before, capital letters denote logs. This equation cannot be estimated 
statistically because there is no stochastic term. 

Assume some form of random shock affects production in the real world so 
that the function is instead 

(3.3) 

where ei is lognormally distributed with mean one and contains, among other 
things, differences in "efficiency" between firms. In logs the equation is 

(3.4) Yi = A + aK + ~L + Ei • 

This cannot be estimated directly by ordinary least squares without bias and in­
consistency in the resulting parameters. The reason is that profit maximization, 
the normal economic assumption for competitive (as opposed to regulated) in­
dustries, imposes additional constraints on (3.3) or (3.4). 

Let r = interest rate on capital, w = wage rate, and p = price of output. 
Then: 

bYi a 
p - = p -akal{3ei = rand 

(3.5) 
bk k 
by" ~ 

p-= p-akal{3ei = w. 
bl I 

Rearranging and converting to logs yields 

ap 
K = log- + A + aK + ~L + Ei 

r 
(3.6) 

~p 
L=log-+A +aK + ~L+Ei. 

w 

Thus the level of use of the factors K and L depends not only on exogenous 
prices of the factors, but also on the error term in the original equation to be 
estimated, (3.4). Application of ordinary least squares to (3.4) yields biased and 
inconsistent estimates of a and ~ (23, p. 233; 30, pp.143-205; 48, pp. 1-66; 37, pp. 
86-100). 

Several proposals have been made to overcome the problem of simultaneous 
equation bias, but in the present agricultural context the most relevant is a set of 
assumptions developed by Hoch (21, pp. 34-53). 

The basic question is whether the farm decision-maker looks at (3.3) when 
trying to maximize profits, or at some variant of (3.3). If he differentiates (3.3) 
in order to equate marginal revenue product of each factor to its cost, then ordi­
nary least squares estimates of (3.4) will be biased. But assume that when the 
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farmer makes his factor input decisions he does not know what the resulting 
output will be. Some unknown factor, particularly weather, will intervene be­
tween the input decision and the output result. What does the farmer do then? 
Hoch suggests that anticipated output rather than current output is differentiated 
with respect to inputs in the profit-maximizing calculus. 

Intuitively the model eliminates the simultaneous equation bias because input 
decisions are made on the basis of anticipated output, which assumes that e, 
equals one and hence has no impact. Formally, the solution is as follows. Let 
A (Yu) be anticipated output for firm i in year t, and be defined as ka1f3. Then: 

aA (Yu) a 
(3.7) p--=p-(kalf3 ) =r, 

k 
and it can be seen that ei does not enter this decision equation (a similar equa­
tion naturally results with differentiation by the other factor or factors). This 
model justifies single equation estimation of (3.4).16 

Removing Management Bias 

The second form of bias is due to the known exclusion of a factor of produc­
tion-management-from the estimated production function. As Griliches has 
shown, the bias resulting from this omission depends on the multiple correlation 
between the true management variable and all the included variables (17, pp. 
8-20). The estimated coefficients of those included variables for which there exists 
a positive relationship will be biased upward, and downward bias will exist for 
those variables with a negative relationship. 

In agriculture it is generally argued that better managers use more of most 
inputs/7 resulting in a bias similar to that pictured in Chart 3-1. There are two 
types of managers, good and bad, who use production functions 12 and 11 respec­
tively (f 2 and 11 are linear in logs). The observed data are Band C. In the ab­
sence of any knowledge about which observations pertain to good managers and 
which to bad, the fitted function will be f' rather than either 11 or 12' That is, the 
elasticity of output with respect to the input will be overestimated. The intercept 
will obviously have little meaning as well. 

The solution to the problem requires more data. If management remains 
equally effective over time, then additional observations on each firm at different 
times would yield more than one point on 11 and 12' This use of a time series of 
cross-section observations and analysis of covariance estimation to overcome 
management bias was suggested independently by Hoch and Mundlak (21, pp. 

16 Hoch points out that anticipated output A(YII) does not equal expected output E(y,,) because 
E(YII) = A(YII)E(eu). Only in the probability limit ooes E(e,,) = 1. It is necessary to assume 
that the decision-maker understands the difference between E(YII) and A(y,,) when doing his differ­
entiation. Any decision-maker who differentiates a production function to find his profit-maximizing 
output probably ooes. 

17 Unfortunately, it is possible to prove that better managers use more of all inputs if the mana­
gerial factor can be represented as a multiplicative index attached to a Cobb-Douglas function, e.g., 
y, = a,l(alf3 where a, is larger for better managers. Since a/daa, > 0 and alfaa, > 0 due to the nature 
of the Cobb-Douglas, better managers (in this index sense) must use more of each factor. This is too 
strong a condition on the manager's performance, but it will turn out to be a necessary assumption to 
work with the analysis of covariance model outlined below. 
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CHART 3-1 
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34-53; 32, pp. 44-56). An extension of the technique to a cross section of multi­
product firms for a single time period was developed by Massell (31, pp. 495-508). 

The assumed production function takes the form 

(3.8) 
m " 

Yjt = aOajat IT Xjit iejt , where 
i= 0 

ao = overall intercept, 
aj = firm intercept, and 
at = time intercept. 

The error term, eft' is still presumed to be lognormally distributed with mean 
one, but is now free of any firm specific or time specific factors. Estimation of 
Equation (3.8), in its linear-in-logarithms form, will yield unbiased estimates of 
the ai if the management function can be reasonably approximated by linear 
shifts in the logarithmic production function.18 The vector of af contains the 
firm effects that persist over time. These effects determine the position of each 
firm's production function relative to all other firms. Thus a measure of tech­
nical efficiency can easily be generated. 

Although this specification of the management function is better than none at 
all, it is still very troublesome. Management is assumed to shift the whole pro­
duction function neutrally, with no change in factor elasticities anywhere along 
the function. While it is true that no factor in the normal Cobb-Douglas function 
interacts with any other, i.e., the function is separable, the impact of manage-

1B Several additional papers have confirmed most of the merits of the analysis of covariance model 
for the present application (33, pp. 814-28; 3, pp. 585-612; 47, pp. 55-72). 
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ment almost surely contradicts this. In fact, an a priori specification of how man­
agement might have an impact in a production function would most likely be 
through changes in factor elasticities rather than by neutral shifts in the entire 
function. If this were the case, then the production function should be specified 
as follows: 

a+a (3+(3 

(3.9) Yj = aA it ier 

Each factor's coefficient is composed of an overall elasticity plus a firm specific 
elasticity.19 This formulation is particularly appealing when the cross section of 
firms is wide and includes a number of different types of productive operations. 
Then the assumption of constant elasticities of output for all firms is tenuous.20 

It is not clear how technical efficiency is measured in Equation (3.9). A vector 
of firm effects, aj' can still be estimated and interpreted as neutral shifts in the 
function-i.e., as an index of technical efficiency-but the additional firm effects 
within each factor's elasticity of output confuse the matter considerably. It is quite 
conceivable, for instance, that aj' Bj < 0 for "good" firms; they use far more of 
the inputs, and declining elasticity of output has set in. On the other hand, one 
function of good management might be to devise productive techniques that 
prevent diminishing returns, and then aj' Bj > O. A priori specification fails at 
this point and there is no empirical evidence available yet. 

One final question about management bias arises. Does it occur in frontier 
production functions? Consider the distribution of data in Chart 3-2. If the data 

CHART 3-2 
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19 I am indebted to Christopher Sims for suggesting this formulation of the Cobb-Douglas function. 
20 Management is obviously not the only factor that might interact with other factors in the 

production process. This suggests that it might be useful to add further terms to Equation (3.9), for 
example, 

(3.10) 

Estimation of Equation (3.9) or Equation (3.10) is straightforward if the time series of cross-section 
observations is long enough, and if computer facilities, including programs, are adequate. 
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CHART 3-3 
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cluster completely around f1 and f2' with little dispersion, then the frontier f' 
will be "biased" as well. What this means is that no good managers use small 
amounts of inputs. An alternative possibility is represented in Chart 3-3. Here 
good managers tend to use more inputs and bad managers tend to use fewer 
inputs, thus biasing an "average" function; but a few good managers use small 
amounts of inputs and achieve the neutral shift from f1 to f2 even at this level. 
In this case the estimated frontier f' will not be biased but will be approximately 
parallel to f 1 and f 2' This second alternative seems like a more realistic represen­
tation of the real world, assuming management operates by neutrally shifting the 
production function. Should the frontier turn out to show substantial manage­
ment bias it might cast additional doubt on this assumption. 



CHAPTER 4. COMPARING AVERAGE AND FRONTIER 
PRODUCTION FUNCTIONS 

The use of two different methods to generate estimates of 
parameters with similar economic interpretation invites comparison. The treat­
ment in this chapter is analytical, with the empirical comparison deferred to 
Chapters 6-8. Three major aspects of the relationship of the two techniques are 
discussed here: (1) the statistical relationship; (2) the economic relationship; and 
(3) the relative contribution of each to understanding technical efficiency and 
change. 

Statistical Relationship 

No formal statistical relationship holds between an average production func­
tion fitted to a functional form such as Cobb-Douglas and a frontier production 
function enumerated by point sets. The reason is that the frontier function is 
drawn from a subset of the points that are summarized by the average function. 
An infinite number of frontiers are conceivable for every average function, and 
vice versa.21 Comparison of parameter values (if some functional form is im­
posed on the frontier) and efficiency indexes only can be done empirically, al­
though intuition might suggest a fairly high correlation between the efficiency 
indexes, at least by rank.22 

The relationship between a Cobb-Douglas function fitted by traditional least 
squares and a similar function fitted to a frontier by single-signed "least lines"23 
should be subject to closer analytical treatment. But again, the reliance on ex-

21 But note that for any given set of points there will be a unique frontier and average function. 
The statement implies only that for a given average function freed of its data set an infinity of frontier 
functions is conceivable. 

22 Professor M. G. Kendall, in discussing Farrell's original paper, made the following observa· 
tions (25, pp. 286-87) : 

If we take the figures in the first column "Land" of Table 1, and rank the 48 States 
according to them, we obtain a ranking of the numbers 1 to 48. The same procedure can be 
followed for the other three columns, and the rank numbers summed for the four variables, 
giving 48 rank sums. These numbers may then be used to arrange the 48 States in a descend­
ing order of "productivity" and the results compared with the ranking obtained from the 
final column of Table 2. 

In the rankings obtained from Mr. Farrell's figures there are a number of ties but this 
docs not seriously affect the comparison. I have carried it out, and find that with a few ex­
ceptions the ordering given by the ranking method is very similar to the one given by 
Mr. Farrell's. The Spearman correlation co-efficient between my ranking and Mr. Farrell's 
is about 0.76, and, if we exclude six anomalous values, is 0.92. 

The anomalous values in question concern New Mexico, New Hampshire, Kentucky, 
Michigan, North Dakota, and Idaho, and I have looked at these individually. It seems to me 
that the ranking method gives results which on the face of it are at least as acceptable as 
those derived by Mr. Farrell. For example, in the case of North Dakota, my ranking makes it 
the 37th, whereas Mr. Farrell gives it an efficiency of 100 per cent. 

On the individual variables, North Dakota is 42nd for land, 25th for labour, second for 
materials, and 48th for capital. The discrepancy seems to arise from an extraordinarily low 
figure on materials, and on the whole it seems to me that my ranking is a fairer reflection of 
the position than Mr. Farrell's, since he gives it an efficiency of 100 per cent, notwithstand­
ing that it is the least efficient in the use of capital and nearly the least efficient in the use 
of land. 

The ranking method, of course, purports to arrange the States of the Union in order 
and not to quantify the measurement of efficiency. If it is no more, however, it is an easy 
check on the more elaborate method, and from the examples I have given I think it may 
well prove to be more than that. 
23 That is, by minimizing the sum of error terms with all error terms constrained to one side of 

the function. 
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treme values precludes any meaningful analysis. It is only when the frontier is 
probabilistically determined that the way is opened for formal comparison, and 
still the precise relationship depends entirely on the nature of the probability 
function. Discretion in manipulating statistical models is, if not valorous, at least 
timesaving and efficient when the results depend so precisely on the assumptions. 
It is best to await the empirical results. 

One formal point is worth mentioning here. A comparison of any of the 
frontier-derived efficiency indexes and Bach's efficiency index derived with 
analysis of covariance shows one obvious and striking difference. The frontier 
index is determinate. There is no random error term. The Bach index is esti­
mated along with an error term. All variation from the frontier is due to efficiency 
differences according to the frontier measure. Only variation that persists over 
time is cast into the Boch measure; all remaining variation (other than that 
explained by the time dummy variables) is considered part of the random error 
term. 

The difference is partly one of concept and partly one of data. The Farrell 
frontier, for example, is designed to use a single year's cross-section observations. 
All variation not attributable to differential use of the factors of production be­
comes part of the efficiency index. But what happens if there is a time series of 
cross-section data as is required for the analysis of covariance efficiency model? 
Then the frontier model will have as many efficiency estimates for each firm as 
there are time periods. To be comparable to the analysis of covariance model, 
which yields just one estimate of efficiency for each firm, some adaptations must 
be made. 

If a separate frontier has been estimated for each time period, then presumably 
all time-related effects (such as technological change) have been removed, and 
a simple averaging of the efficiencies would yield a single estimate for each firm 
that could be compared with the index derived from the analysis of covariance 
model. If a single frontier was estimated for the entire (t X n) data set, then any 
time effects must be removed. A somewhat artificial but straightforward tech­
nique would be to fit a simple time trend to each firm's series of efficiency ratings. 
The advantage of this technique would be that each firm could experience its own 
rate of "technological change," whereas it must conform to the rate of shift of the 
frontier if separate frontiers are estimated. Of course, if a firm's efficiency changes 
over time, the analysis of covariance model breaks down because the assumption 
that cov (e jH, ell) = 0 for s =1= t is violated. 

It seems clearer now that when the frontier technique is applied to a t X n 
data set the efficiency estimate is not determinate. It is an average figure derived 
from t observations. The net result is to cast doubt on the value of an efficiency 
estimate based on any of the frontier techniques that use only one year's data. 
It is equivalent to having only one year's data in the analysis of covariance model, 
and still using a dummy variable for each observation. The result, of course, is 
perfect correlation, with each firm's ej as the estimate of its efficiency. This is 
biased because of the management bias problem. To be of more than formal in­
terest, then, the frontier technique should have a data set that would also be suit­
able for analysis of covariance. Less than this yields a biased estimate of efficiency. 
Thus the estimate is reduced in practical value. 
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Economic Relationship 

The economic relationship between the two production functions is far more 
interesting than the statistical relationship. At the heart of the comparison is the 
difference between average practice in an industry and best practice. The fron­
tier production function represents the best techniques in actual application (as 
opposed to best potential techniques that no firms have yet adopted). This, of 
course, is the reason for using the frontier function as a base for judging the effi­
ciency of other firms. 

The average production function has a less clear-cut economic interpretation 
even though it has dominated most empirical work (2, pp. 829-30). 

A group of economists did notice the obvious conflict with theory, how­
ever, and some rationalization of this position was attempted. What they 
did was to assume that the function to be estimated, i.e., the conceptual 
construct, is an "average" production function for the industry. Some firms 
could therefore produce more than the average; some, less. But the meaning 
of such an "average" function is not necessarily clear. Average in the sense 
of what? a conditional median? a mean? or, a mode? More importantly, 
average about what? about output? about some input? about technology? 
or about something else? Some economists refer to it as the function for a 
"firm of average size." This interpretation cannot be correct unless it is 
assumed that the parameters of the function are random variables and have 
their expectations equal to those of the firm of "average size." Others seem 
to refer to the average function as reflecting some sort of "average tech­
nology." But it would be infeasible to assume that a firm which possesses 
"average technology" with respect to capital also has an "average technol­
ogy" with respect to labor. 

This last criticism is not quite sound. Technology generally refers to the whole 
productive structure of the firm rather than only the labor input or only the capi­
tal input. Thus the frontier production function at any point in space relates 
amounts of all inputs to output-in fact, to maximum output attainable from 
that particular combination of inputs. There may be a dozen firms with approxi­
mately the same input combination, but only one or two achieve maximum out­
put from those inputs. The other firms achieve less, and it is meaningful to speak 
of the average attained output for that particular combination of inputs, and for 
that output to be representative of "average technology." The distinction between 
"average" and "best" can be justified if the comparison is between production 
functions and not between differential efficiency in the use of single productive 
factors. 

The relevance of the distinction between "average" and "best" production 
functions is seen most clearly with reference to the literature on diffusion of inno­
vations.21 It is easier in this context to refer to the frontier production function in 
isoquant (input-input) space and to use as an example the simple capital and 
labor model used earlier. The argument extends to more than two factors in the 

21 The most recent, and certainly one of the best, contributions to this literature is Paul A. David, 
"A Contribution to the Theory of Diffusion," Memorandum No. 71, Research Center in Economic 
Growth, Stanford University, June 1969. 
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isoquant model and, more generally, to output-input production functions such 
as Cobb-Douglas fitted as an average and as a frontier. 

Both new products and new processes are part of technological change. Only 
new processes are of interest in the context of estimating "average" and "best" 
production functions. At any moment in time a stream of innovations in produc­
tive technique is existent; some fresh from the inventor's mind and not yet 
adopted by any firm; some so old that all firms that can profitably use the tech­
nique are in fact using it. While traditional economic theory sometimes assumes 
that the time span between these two situations-call it t years-is close to zero,"" 
the theoretical and empirical literature on diffusion indicates that t is positive and 
surprisingly large in some cases. 

One theoretical argument holds that there is a cost to economic knowledge 
and that resolving uncertainty takes time. Thus factors that affect the rate of dif­
fusion include not only the profitability of the innovation, but the degree of un­
certainty about this profitability and the means by which the uncertainty can be 
resolved. Many studies have shown that educational level of the decision-maker 
or number of technically trained people in the work force affects the speed of 
innovation.26 This argument holds that the reason is that these people are best 
suited to appraise the profitability of the technique a priori. Firms without the 
educational or technical resources must await the results from these innovative 
firms before being convinced the new technique is profitable. In addition to the 
uncertainty effect, the normal transition frictions and pressures that work in all 
less than perfect worlds lead to delays. Thus Mansfield, in a study of the diffusion 
of 12 innovations in 4 different industries found that the process was generally 
slow but the rate varied widely (29, p. 744). 

Although it sometimes took decades for firms to install a new technique, 
in other cases they followed the innovator very quickly. For example, it 
took about 15 years for half of the major pig-iron producers to use the by­
product coke oven, but only about 3 years for half of the major coal pro­
ducers to use the continuous mining machine. The number of years 
elapsing before half the firms had introduced an innovation varied from 
0.9 to 15, the average being 7.8. 

The significant diffusion time required for firms to adopt a new technique 
suggests a possible interpretation of the "average" and "best" production func­
tions: the "average" function in year t is simply the "best" function of year 
t - t*, where t* is the time required for half the firms in the industry to acquire 
the innovation. Thus for Mansfield's data, t* averaged 7.8 years. 

This interpretation raises some new questions. Whole production functions 
are now assumed to be involved in the diffusion process rather than single, iden­
tifiable innovations. Does the average function shift slowly inward and super­
impose itself on the frontier of t* years earlier? This would involve an absolutely 
neutral diffusion process with all parts of the function shifting in parallel along 
rays from the origin, as illustrated in Chart 4-1. Thus the frontier, measured in 

25 All profitable innovations are assumed to be adopted immediately. 
26 For example, see 35, especially Chapter 5. For a formal model incorporating this view of edu· 

cation, see 36, pp. 69-75. 



ON MEASURING TECHNICAL EFFICIENCY 127 

CHART 4-1 
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year t, is parallel to the average function, also measured in year t along any of the 
rays OA, OB, OC, etc. In year t + t* the average function is the same as the 
frontier in year t. 

It is possible, of course, that diffusion of the "best" to the "average" proceeds in 
this neutral fashion. But it seems somewhat unlikely, if for no other reason than 
that there must be a fairly sizable random element in the process. This is diffu­
sion of a whole range of productive possibilities, not just a single innovation. 
Different relative factor costs, availabilities of natural resources, even transit times 
for factors and output to reach their respective markets could cause the average 
function to shift in nonneutral fashion. Institutional factors might also affect the 
relative speed of diffusion. An industry with a strong, active union might find 
the labor-intensive side of the function diffusing much more rapidly than the 
capital-intensive side due to featherbedding and make-work demands. Identical 
factor prices in the two periods would then result in a lower KjL ratio over time, 
as seen in exaggerated form in Chart 4-2. If the wage rate rose over time in these 
circumstances, the KjL ratio could remain stationary or even rise. The situation 
in industries without significant institutional constraints on labor practices might 
exhibit opposite tendencies. Particularly in agriculture it might be expected that 
the capital-intensive techniques would diffuse fastest with a consequent rise in 
the KjL ratio. 

Average and best functions have comparative value even if there is no oppor­
tunity to observe the shifts over time. If the average function is a neutral trans­
form of the frontier when both are measured at the same point in time, the im­
plication is that the "average" firms and the "best" firms have similar K/L ratios 
when faced with identical factor prices. If the two functions are not parallel trans­
forms then the K/L ratios should differ. It is generally thought that in agriculture 
the "best" firms have a higher K/L ratio than the "average" firms. This implies 



128 

K 

Av, = Average, year t 
Fr, = Frontier, year t 

C. PETER TiMMER 

CHART 4-2 

Av,+,· = Average,yeart+t" 
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a situation similar to that illustrated in Chart 4-3. Although a = ~ and so the 
average and frontier firms face the same relative factor prices, a' > Wand thus 
the frontier firm has a higher K/L ratio. 

Examining Technological Change 

Technological change can conveniently be broken into two types, neutral and 
nonneutral (6, p. 27) .27 

A neutral change alters the production function but does not affect the 
marginal rate of substitution. A non-neutral change does affect the mar­
ginal rate of substitution. If the marginal product of capital increases rela­
tive to that of labour, for given labour-capital combinations, then a labour­
saving or capital-using change raises the marginal product of labour, rela­
tive to that of capital, cet. par. 

Neutral technological changes include a change in the efficiency of a 
technology and/or a change in technologically determined economies of 
scale. A non-neutral change is associated with variations in capital intensity 
and the elasticity of substitution. 

The two types of technological change are most easily seen in the familiar 
two-factor isoquant diagram, e.g., Chart 4-4. Thus AB is a frontier isoquant at 
time zero and A'B' is the frontier after neutral technological change has taken 
place. That is, A'B' is parallel to AB along any ray from the origin. The neutral 
shift can be attributed to a simple change in efficiency (affecting equally all K/L 
ratios) or to a change in technically determined economies of scale. 

It is clear that A"B" does not represent neutral change from the original AB 

27 It might be noted that Brown defines a production function as "the relation between a maxi­
mum amount of output and the inputs required to produce it" (6, p. 26) [emphasis added]. 
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frontier. The capital-intensive part of the production function has shifted rela­
tively little and the labor-intensive part has shifted a good deal. The result has 
been a capital-saving technological change: at identical factor prices relatively 
(and possibly absolutely) more labor and less capital are used after the change 
than before. 

The estimation of frontier isoquants by either the Farrell technique or any of 
the others is a natural first step in examining the neutrality of technical change. 
As different frontiers are estimated for different time periods and the results 
plotted relative to one another, both the speed and direction of shift are easily 
observed. The elasticity of substitution28 can vary from isoquant to isoquant, and 
along a particular isoquant. There is no artificial constraint requiring a constant 
elasticity of substitution either on a single isoquant or before and after technical 
change.20 Since there is no a priori reason for supposing technical change to be 
neutral, a technique for judging the extent and direction of any nonneutrality is 

28 Defined as 
(K/L) 8 (K/L) 

(/L/fE) 8 (fK/h) 
0, 

where /L is the marginal product of labor (8Q/8L) and IE is the marginal product of capital (8Q/8K). 
"The ratio of the marginal product of capital to the marginal product of labour is the marginal rate of 
substitution of labour for capital .... the elasticity of substitution as defined in the formula relates 
the proportional change in the relative factor inputs to a proportional change in the marginal rate of 
substitution between labour and capital (or the proportional change in the relative factor price ratio). 
Intuitively, it can be thought of as a measure of the ease of substitution of labour for capital; it can 
also be conceived of as a measure of the 'similarity' of factors of production from a technological point 
of view" (6, p. 18). 

20 Brown's entire book is " ... concerned only with technologies that can be characterized by 
constant elasticities 01 substitution" (6, p. 19). This is a price that must be paid for working in a Cobb­
Douglas or CES world. The CES function, of course, permits non-unitary values of 0 but still requires 
that it be constant. 
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CHART 4-4 

L 
welcome indeed. Unfortunately, the value of the Farrell technique in this regard 
holds only in a two-factor world. With more than two factors it becomes almost 
essential to fit the frontier to some functional form, thus placing constraints on 
the elasticity of substitution. 

An additional benefit of the frontier model in understanding technological 
change relates to the manner in which it is estimated. By using only firms that 
are representative of the technical state of the arts to determine the frontier no 
confusion is introduced between a shift in technical achievement as represented 
by what the best firms are doing and the diffusion time required to transmit 
this technical knowledge (and equipment) out to average firms. Traditionally 
measured technical change30 can occur due to both of these factors, i.e., the rate 
of generation and first use of technical knowledge may speed up (due, perhaps, 
to larger investments in research and development efforts) or the speed of dif­
fusion may increase (due to better education of workers and management). 
While both would result in similar Solow-type estimates of technical change, the 
two processes are separate in theory and in social application. Investment to speed 
up Solow-measured technical change might be completely misdirected if spent in 
one direction while the actual change was coming from the other. In conjunction 
with the analysis of covariance model (to estimate "average" technology) the 
frontier model will generate the necessary data to allow society to make such in­
vestments somewhat more rationally. 

This is an exciting potential, and the means by which it might be achieved 
deserves to be spelled out in further detail. A t X n data set is required-that is, 
a time series of cross-section observations. A Farrell-type frontier is estimated 
using the first time period (or first two or three if some averaging in the time 
series is desired and possible) .31 The whole t X n set of data is then plotted 
relative to the period one frontier. Graphically this might look like the represen­
tation in Chart 4-5. 

80 Neither a review of the traditional technique nor of the relevant literature is necessary here. 
The basic article is by Robert M. Solow (43, pp. 312-20). A good bibliography appears in 24, pp. 
280-83. 

81 Alternatively, census data in five-year intervals might be used. 
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Each observation has both a firm and a time identification index. A t X n set 
of efficiencies is calculated relative to efficiency frontier AB-that is, relative to 
the production frontier in the first time period. In this model, however, some 
firms will likely have calculated efficiencies of over 100 per cent (all such firms 
must have a time index greater than period one). A time series of efficiencies is 
generated, with all firms' indexes starting at or below 100 and probably rising 
slowly and somewhat unevenly over time. In Chart 4-6, firm X's efficiency rises 
from 75 at time 1 to 100 at time 2 to 150 at time 3, all relative to the period one 
frontier. At no time does firm X become efficient with reference to current 
frontier technology. 

Now a search proceeds for factors that explain these efficiencies. Instead of 

CHART 4-6 
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looking just for cross-sectional differences in educational factors, economies of 
scale, use of modern inputs, research and development expenditures, etc., to ex­
plain differences between firm efficiency at a single point in time, all of the ex­
planatory factors now also have time subscripts. Thus different firms use these 
efficiency factors in different proportions at any point in time (thus explaining 
their cross-sectional efficiency differences at that time). But they also change these 
proportions over time, both with reference to their own input activities and in 
relation to other firms. A firm may gain in efficiency relative to a firm on the 
frontier by concentrating on a particular combination of "modern" inputs. This 
can happen even if the reference firm stays on the frontier in all time periods (as 
is likely if the unmeasured physical environment makes a major contribution in 
determining efficiency-this environment, of course, remains constant over time). 
Thus firm X may go from 75 per cent efficiency at time 1 to 150 per cent efficiency 
at time 2 while firm Y goes from 100 per cent efficiency to 160 per cent efficiency: 
X's gain is relatively greater although it does not achieve technical parity with Y 
in either time period. 

Society is interested in X's success in catching up as well as in Y's absolute 
superiority. How did X catch up? Why is Y so technically proficient in both 
time periods? The answer probably has very little to do with technological change 
drifting down in neutral, disembodied form over firms X and Y. The answer 
more likely lies in differential use of inputs, especially those modern, nontradi­
tional inputs that Denison and others have indicated have potential for generating 
economic growth (10) .S2 The secondary equation just estimated helps identify 
these inputs and, more importantly, makes a start at assessing their quantitative 
impact. The particular form of the equation mayor may not be critical in this 
context. In a sense the estimate is a "supply function for technical change," and 
the form of this function is anyone's guess. It was only a little more than a decade 
ago when the necessity to think about such a function was even called to the 
attention of economists.s3 The amorphous nature of the form of the function is 
not, then, very surprising. Nelson notes that since the work of Abramovitz and 
Solow many more variables than just capital and labor have been treated ex­
plicitly, with a consequent gain to both theory and policy making. "However, 
our knowledge still would appear to be quite weak with respect to the functional 
form of the relationships, and very weak with respect to the size of certain key 
parameters" (34, p. 481). A frontier model using a time series of cross-section 
data can be used to attack these problems head-on. Without artificially constrain­
ing functional forms, yet within the body and spirit of economic theory, the fron­
tier model seems capable of repaying large dividends on its high data costS.84 

82 A particularly relevant piece of work in this context is an article by Zvi Griliches (16, pp. 331-
46). The Jorgenson and Griliches article mentioned earlier is also useful, but see a rather scathing 
rebuttal by Robert J. Gordon (13). 

33 "This result is surprising in the lopsided importance which it appears to give to productivity 
increase [the 'residual' of technological change), and it should be, in a sense, sobering, if not discour­
aging, to students of economic growth. Since we know little about the causes of productivity increase, 
the indicated importance of this element may be taken to be some sort of measure of our ignorance 
about the causes of economic growth in the United States and some sort of indication of where we need 
to concentrate our attention" (1, p. 11). 

84 This is true only if a two-factor world makes sense. 
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Evaluating the Physical Environment 

Differences in physical environment have been all but ignored so far. A fre­
quent criticism of the application of the frontier model to agriculture is that 
almost all differences in efficiency will be due to soils and climates. The effects 
of these fixed factors may be so large as to swamp the effects from the secondary 
inputs like educational levels or scale economies.a5 

Some attempt, therefore, should be made to introduce the physical environ­
ment directly into the estimation of the frontier. Two different approaches are 
possible. Outside estimates of the effect of physical environment, independent of 
any of the output or input data being used to test the model, might be generated. 
At heart this is an ecological-biological problem somewhat beyond the expertise 
of economists. Work is being done in this area36 but the results are still not suit­
able for use in the present model. A crude approximation is to use land value 
instead of area as a factor of production. This approach is used in the first rounds 
of the empirical work of Chapters 5-7. 

A less satisfactory but more amenable approach is to combine the results of 
the analysis of covariance estimation and the frontier estimation. The procedure, 
which requires observations on individual firms to be meaningful, might work 
as follows: Using the entire t X n data set required for the analysis of covariance 
model, fit the Cobb-Douglas frontier in m-dimensional space and calculate the 
index of efficiencies, y/Y j • This index will contain differences in efficiency due 
to physical environment as well as management techniques. 

Next, the vector of efficiencies should be regressed on all the secondary ex­
planatory variables that might relate to management-education of the operator, 
exposure to research and extension, scale factors, etc. No attempt is made to cor­
rect for the physical environment. Consequently this regression will be biased if 
there is any correlation between a farmer's management skill and the physical 
environment he works in.37 Since this correlation is likely to be positive the esti­
mated coefficients of the "management" variables will thus be biased upward. 
The omission of innate ability would have the opposite effect. The biases will be 
offsetting, but which is dominant will vary from situation to situation. 

The secondary equation permits the calculation of an estimated vector of 
efficiencies Y/ that, except for the bias, is free of impact of the physical environ­
ment, which falls into the error term. Thus Yj* is that part of the efficiency index 
accounted for by "management" factors. 

The analysis of covariance model can now be used to estimate an unbiased 
production function in m + 1 dimensional space, where the extra input is the 
management vector YJ* generated by the secondary equation above. The vector 
aj will still contain a time-free "firm effect," but this "firm effect" should now also 

85 Nerlove, Hall and Wins ten, and Sturrock all make this point in direct or indirect fashion (37, 
p. 90; 18, pp. 71-86; 25, p. 285). The strongest position taken on this subject is by Helen C. Farns­
worth and Holbrook Working in informal communication with the author. The correctness or in­
correctness of this position, especially with respect to the "swamping effect," is an empirical question 
unrelated to the theoretical development of the model, which has relevance outside agriculture. 

86 See, for instance, 38, for a crop-specific study, and 39, for a more general approach. 
37 It might be noted again that this secondary equation is a "production function" for efficiency 

(17). 
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be free of any management effect, which is removed separately as a factor of pro­
duction. The vector aj then is a measure of the physical environment.88 

The vector of physical environment can now be inserted in the estimation of 
the original frontier to eliminate any specification bias. An iterative procedure 
can then be followed if the coefficients of the frontier production function change 
substantially due to introduction of the new physical environment variables. The 
second-round secondary equation should now have a substantially better fit, but 
not a perfect one. The random variation due to weather, etc., remains. Only the 
"explained" variation should be considered part of efficiency; the random element 
has little economic significance. 

The differing physical environments, although mostly unchangeable,89 con­
tain important economic information. By estimating the marginal revenue pro­
ductivity of each firm's physical environment, it is possible to determine if input 
resources are being allocated efficiently with reference to environmental produc­
tivity. It is possible, for instance, that transferring resources out of low produc­
tivity firms into high productivity firms would result in greater output, even 
though the high productivity firms already have substantially higher levels of 
input use. On the other hand, attempts by farmers to be located only on high 
productivity farms may result in underutilization of low productivity areas. 

88 The similarity of the first round of this technique to two-stage least squares is striking. 
89 This is especially true at the micro-decision level. Thus individual farmers can do little to affect 

climate or basic soil type, but collective action may accomplish substantially more. The TVA project, 
for instance, was a form of altering the physical environment. 



CHAPTER 5. DATA 

The Basic Data Set 

To test the models developed in Chapters 1-4 a time series of 
cross-section observations on inputs and outputs of individual firms is required. 
In addition, information on the firm's decision-maker is required if the secondary 
goal of the model, estimating the relationship between technical efficiency and 
management, is to be reached. Thus the data requirements are extraordinarily 
severe. Some compromises were inevitable from the beginning, but the nature 
of the data set ultimately used is distressing nonetheless. 

The basic data set is an 8 X 48 matrix, where each of the 48 contiguous states 
is considered a "farm firm" and the observations are over the eight-year interval 
196{}-67. What will be estimated, then, is an aggregate agricultural production 
function, thus raising all the familiar problems of aggregation of both input and 
output over firms into state data (48, pp. 8-11). 

The production function is a technological relationship confronting a 
firm. It is the entrepreneur who chooses factor proportions and output 
levels. Can we then proceed to construct useful production functions for 
an industry or for the industrial or agricultural sector as a whole? 

After surveying the problems of aggregation one may easily doubt 
whether there is much point in employing such a concept as an aggregate 
production function. The variety of competitive and technological condi­
tions we find in modern economies suggest that we cannot approximate the 
basic requirements of sensible aggregation except, perhaps, over firms in 
the same industry or for narrow sections of the economy. 

An additional problem is that even when aggregation makes sense and an 
additively separable production function, such as the Cobb-Douglas, is to be fit/o 

entrepreneurship remains firm specific and does not seem capable of aggrega­
tion. The implications for the model here are severe: differences in technical 
efficiency due to management will be washed out in the aggregation. It will not 
be possible to carry the empirical work as far as the theoretical model would in­
dicate. A new sample of individual firms is necessary if the relationship between 
technical efficiency and management is to be explored. Such a sample has been 
located and is now being analyzed. 

Some troublesome assumptions must be made. The United States agricultural 
sector is assumed describable by a single aggregate production function. In addi­
tion, the fact that firm data are aggregated linearly and not geometrically is as­
sumed to be of negligible consequence. These assumptions are necessary just to 
use the data set for the first round of production function estimations. While un­
fortunate, these assumptions have mostly been made before by other workers in 
the field and to good effect. It is wise to be aware of the limitations of data, but it 
is also necessary to realize that even the worst data may contain valuable infor­
mation if the proper search techniques are used. 

40 For sensible aggregation, the production function must be additively separable. See, for ex­
ample, 48, p. 9. 
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The main source of data was Farm Income: State Estimates, 1949-1967 (46). 
Since this source reports data back to 1949 it would have been possible to use 19 
years in the time series rather than 8. The shorter, more recent set was used for 
several reasons: 

1) Some of the labor data were not available prior to 1961. Extrapolations were 
made for several observations for 1960 but these are subject to sizable error, and 
further extrapolation was deemed unwise. 

2) Substantial technological change, if non neutral or nonuniform by state, 
would have invalidated the analysis of covariance model. Even neutral, uniform 
technical change would have meant that several estimates of frontier-determined 
efficiency would be needed. By restricting the sample to the 1960-67 period it was 
hoped to keep all forms of disembodied technological change to a minimum. The 
empirical results strongly suggest this was achieved. 

3) The 8 X 48 data matrix yields 384 observations. When separate firm and 
year dummy variables are introduced along with the six normal factors of pro­
duction in the analysis of covariance model, the estimating equation contains 62 
variables. The available computer facilities, both hardware and software, were 
strained at this level. A larger data matrix would have been impossible to handle. 

Gross Output 

The dependent variable, Y1P is gross agricultural output of state j in year t, 
divided by the number of farms in state j in year t. All factors of production are 
also on a per farm basis. Each Y 1t is built up from livestock, crop, and government 
payments components which are deflated separately. The deflators, shown in 
Table 5-1, are year and component specific, but not state specific. Thus, they are 
of the form Diet rather than Dlcjp where k = livestock, crops, and government 
payments. It is possible, of course, to calculate a D lc1t and to divide the k compo­
nents into further subclasses. But the magnitude of the task and the strongly 
diminishing returns to improving anyone variable when all the others remain 
of low quality suggested the effort would be unrewarding. 

Gross output rather than net output is used because intermediate inputs are 
included in the estimated production. If all intermediate inputs were used to the 
point where their marginal revenue product equaled marginal cost, then working 

TABLE 5-1.-DEFLATORS FOR GROSS OUTPUT*' 

Year 

1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 

Livestock and 
products 

100 
99 

101 
97 
93 

103 
115 
109 

All crops 

100 
102 
105 
108 
108 
105 
107 
101 

• Indexes of prices received by farmers, from 44, 1968, p. 470. 
a Index for all farm products. 

Government 
paymentsa 

100 
100 
102 
102 
99 

104 
112 
106 



ON MEASURING TECHNICAL EFFICIENCY 137 

TABLE 5-2.-AvERAGE DAYS WORKED AT FARM WAGE WORK, U.S.· 

Year Days Year Days 

1960 139 1964 129 
1961 134 1965 137 
1962 134 1966 138 
1963 138 1967 142 

• Data arc from 44. 

with net output would be equally correct. But there is widespread feeling, based 
on a good deal of empirical work, that for a number of inputs marginal revenue 
product is not equal to marginal cost.41 To discover their real contribution to pro­
duction these inputs must be included in the estimated function. 

Labor 

The labor input variable is an unsophisticated measure of total man-days 
worked in agriculture. The basic data, reported in Agricultural Statistics, are for 
total farm employment for both family and hired workers. Family workers in­
clude farm operators doing one or more hours of farm work and members of 
their families working 15 hours or more during the survey week without cash 
wages. The number of hired workers includes all persons doing farm work for 
pay during one survey week each month. Survey weeks were selected to be the 
latest calendar week that excluded the last day of the month. 

In order to convert the number of bodies of workers into a slightly more 
representative indicator of time worked, the numbers employed on farms for 
each state in any year were weighted by the average number of days worked at 
farm work in each year. This index is shown in Table 5-2. 

No attempt is made to correct the labor input for quality differences, e.g., age, 
sex, or educational level. The data necessary to do this are not available on a year­
by-year basis. Any cross-sectional differences that persist over time will be cast 
into the residual of technical efficiency. 

Capital 

The capital variable almost always presents the greatest difficulty in produc­
tion function estimation. The problem is both theoretical and empirical. Even a 
theoretical measure of the infinite variety of capital items is not to be had, and a 
simplified measure assuming all capital equipment is alike can usually not be 
constructed due to lack of data. 

Traditionally the answer has been to construct some measure of capital stock 
and assume that this stock was proportional to the flow contribution of the stock 
into the productive process. Y otopoulos has shown that this approach is generally 
not satisfactory and that it is much better to work with the flows themselves (49, 
pp. 476-91). 

The capital input variable used here is such a flow construct, or at least a proxy 
to it. It is a USDA-reported current farm-operating expense that includes repairs 

41 Sec especially 15, pp. 961-74. 
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TABLE 5-3.-DEFLATORS FOR CURRENT EXPENSES ON CAPITAL lTEMS* 

Year Index Year Index 

1960 100 1964 102 
1961 101 1965 104 
1962 101 1966 106 
1963 102 1967 109 

• Constructed from data in 44. 

and maintenance of buildings, repairs and operation of motor vehicles and other 
machinery, and petroleum fuel and oil used in the farm business. This repairs­
and-operation-of-capital-items variable is assumed proportional to the total capital 
flow variable. This assumption would be very bad if individual farm data were 
used, because the repairs component is so lumpy. But the lumpiness should 
smooth out when farm data are aggregated to state data and then converted to 
an "average farm" basis. For once, aggregation is a benefit rather than a problem. 

The repairs-and-operation-of-capital-items variable is deflated by an index of 
prices paid by farmers for such things as gas and oil, building materials, and 
garage services. This is shown in Table 5-3. 

Land and Buildings 

Unless land area used in agricultural production is weighted by some measure 
of its productivity, the results tend to be meaningless. An acre of rich Iowa soil 
is simply not the same factor of production as a rocky, barren acre of grazing land 
in New Mexico. The solution taken here is the usual one-to assume that the 
real estate market does its job well, and so quality differences in land are reflected 
by differences in the sales value. A further assumption that must be made is that 
marginal revenue product (equal to sales value) is proportional to average reve­
nue product for sales value to be a good proxy for productivity. No evidence one 
way or the other is available to test this assumption. Although some site value is 
going to be included in the sales value measure as well as productivity differences, 
the bias seems to be less this way than just using unweighted acres.42 

The flow input of land in state j for year t is thus defined as: 

Djt = .05 LVi [I}04 + IIi64 + lIIit ] + .02 BVj04' 

where 

L Vj = Value per acre of farmland in state j. Averages of the 1959 and 1964 
Censuses of Agriculture data for value per acre are used. No time subscript 
is attached. 

BVjG4 = Total value of buildings in state j in 1964; taken from Farm Real 
Estate Market Developments. 

42 A very serious objection to this procedure arises when the data set contains time series as well 
as cross-section observations. The partially local nature of agricultural demand and the immobility of 
land combine to make changes in land value a good predictor of output variations. Christopher Sims 
has emphasized, in a personal communication, that this explanatory power has nothing to do with 
technology or land productivity. The criticism loses much of its force, however, if changes in land 
value are not permitted. Thus in the land specification used here a single unit land value is used as a 
proxy weight for natural productivity differences, and the same weight is used for all eight years in 
the data set. 
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Ij04 = Total cropland used for crops in 1964 plus cropland used for soil im­
provement or idle in 1964 minus USDA-reported harvested acreage of 59 
crops in 1964. 

HjM = Cropland used for pasture in 1964 plus open permanent pasture in 
1964 plus pastured woodland and forest in 1964. 

III}t = Harvested acreage of 59 crops in year t. 

Coefficients of 5 per cent of land value and 2 per cent of building value are used 
to translate the stocks into flow variables. The building coefficient is purposefully 
low for two reasons: (1) building repairs have been counted in the capital input, 
so this component should cover only the depreciation factor-2 per cent of the 
value of buildings seems reasonable-and (2) farm buildings tend to be as much 
a consumption good as a factor of production. My experience growing up in rural 
Ohio was that farmers put up expensive buildings to prove to the community 
that they were successful, and not that expensive buildings led to success. 

Only one part of the land variable has a time subscript: the harvested acreage 
of 59 crops. There are no annual data for the other components, so the 1964 Cen­
sus data must be used for all 8 years. 

Fertilizer 

Relative to the previous factors of production, the fertilizer variable is simple 
conceptually and empirically. Actual physical quantities of each nutrient, N, 
PP5' and K 20, applied in each crop year (July 1 [t - 1] to June 30 [t]) in each 
state are available. The only difficulty is how to weight the different nutrients 
according to their relative productivities. One means is to use relative prices as an 
indicator. Griliches reported a set for 1955 as follows, in dollars per 20 pounds of 
nutrient (15, p. 967) : 

Nutrient Price 

N 1.62 
P20 5 0.93 
KP 0.45 

Since 1955 a major change has taken place in the pattern of fertilizer consump­
tion in the United States. Nitrogen application has risen substantially while the 
other two nutrients have not kept pace. Marginal productivity of nitrogen has 
probably declined substantially since 1955, so a new set of weights is desirable. 
To obtain them, the following equation was estimated: 

Total price perton= A + (PN) (%N) + (PP205) (%PPG) + (PK) (%K20). 

The data used in this regression were prices paid by farmers for different analysis 
fertilizers, e.g., 10-10-10, 10-15-10, etc., for the years 1960-67. No attempt was 
made to weight each type of fertilizer by the amounts used, but only popular types 
were included. The results are reported in Table 5-4. 

Comparison with the Griliches weights is interesting. The implicit produc­
tivity of nitrogen is still the highest, but relatively much less so than in 1955. The 
reasons are twofold: (1) the increased use of high nitrogen fertilizer has indeed 
reduced its marginal productivity, and (2) technology has reduced the price of 
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TABLE 5-4.-IMPLICIT FERTILIZER PRICES· 

Nutrient Coefficient (t-value) 

N 1.779 (7.2) 
P20 G 1.355 (14.2) 
K 20 0.984 (6.6) 

Constant 17.439 (6.7) R2 = .89 

• Original data from 44. 

high nitrogen fertilizer. This latter reason is "bad" for getting productivity 
weights if farmers do not react immediately to the lower prices, and it is virtually 
certain that they do not. However, the weights seem reasonable compared to the 
1955 Griliches weights, and are clearly better than no weighting at all. 

Livestock 

The definition of the livestock variable is: 

Vjt = (Feed)t) (Weo1
) + (CLXjt ) (W602

) + 0.08 (Cattlejt) (P601
) + 

(Hogsjt) (Peo
2

) + (Sheep}t) (P60
8

) + (Chickensjt ) (P604
) 

+ (Turkeysjt) (P60
6
), 

where 

Feedjt = Current feed expenses for state j in year t. 
CLXjt = Current livestock expenses (purchases) for j, t. 
W60i = Price deflators for feed and livestock expenses. 

Cattlejt ) 

: = Numbers of such animals on farms January 1 of year t in state j. 

Turkeys)t 
P60

i = Average value per animal in 1960. This value is the average for the 
whole country and thus is not state specific. 

The 8 per cent discount rate to convert livestock capital values into flows is the 
same as that used by Griliches (15, p. 967). So far three different rates of return 
have been used to convert stock values to flows: 8 per cent for livestock, 5 per cent 
for land, and 2 per cent for buildings. Neglecting the building case as a special 
situation, the two different rates for livestock and land presume that farmers are 
not equating marginal returns from the last dollar invested in land and livestock. 
But some account must be taken of the trade-off between average return and 
variance. The rates used here assume the variance is higher for returns to live­
stock and lower for land, an assumption that seems perfectly realistic. Thus farm­
ers must earn a higher average rate of return from livestock to be indifferent be­
tween investing in livestock and investing in land. 

Seed and Miscellaneous 

This variable is the sum of two current expense items reported in the Farm 
Income: State Estimates publication. The seed component also includes minor 
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amounts for bulbs, plants, and trees. It is deflated by the seed section of the index 
of prices paid by farmers. The miscellaneous component includes a large variety 
of items and is deflated by the index for all commodities bought. Of special rele­
vance in the miscellaneous index are charges for pesticides, electricity, irrigation, 
and veterinary services and medicines. These modern inputs are probably used 
most heavily by "efficient" farmers. The coefficient of this variable may thus turn 
out to be quite important. 



CHAPTER 6. EMPIRICAL PRODUCTION FUNCTIONS AND 
TECHNICAL EFFICIENCY 

The Production Functions 

Given the quality of the data revealed in Chapter 5 it is perhaps 
surprising that there is any empirical production function at all. But Table 6-1 
shows that there is. The coefficients are those estimated for a Cobb-Douglas func­
tion linear in logs using the entire 8 X 48 data matrix. 

Average functions.-Equation 1 reports the simplest possible production func­
tion estimated by ordinary least squares (OLS), using all six factors of produc­
tion.48 The fit is amazingly good. The six factors of production explain 97 per 
cent of the variation in output. Prior warnings that aggregation would subsume 
most differences in technical efficiency were entirely justified. 

Equation 1 is not subject to simultaneous equation bias if farmers maximize 
anticipated output, as assumed, but it is subject to management bias. No manage­
ment variable is introduced explicitly and no analysis of covariance is performed. 
The size and significance of all the coefficients, then, must be interpreted in that 
context.44 

Equation 2 still makes no attempt to remove management bias, but instead 
tests the possibility that no single aggregate production function holds for all of 
u.s. agriculture. Due to the large number of variables involved and the good fit 
of the simplest form of the Cobb-Douglas function it is impossible to estimate a 
production function of the form 

a+a (3+{3 

(6.1) Yj = ak 'I Jei" 

Equation (6.1) would not remove management bias in the sense of neutral shifts 
in the production function for better and worse firms, but it would permit, per­
haps more importantly, the elasticity of output for each input to be different for 
each firm (or group of firms, if j represents, say, geographic or "production" 
regions). Although it is not possible to fit Equation (6.1), it is possible to fit a 
proxy for it. The most drastic differences in input elasticities of output are likely 
to occur between largely arable farms and largely livestock operations. Thus 
Equation 2 in Table 6-1 introduces Pi' the proportion of livestock in total output, 
as a continuous variable within four of the six input coefficients. The production 
function is of the form 

(6.2) 
{3 + {31P J 'Y + 'Y lP J {j + 0lP J € + €lP J 

Yi = alak d f v mfeJ• 

No differences were apparent for the labor or seed and miscellaneous variables. 
In general, the introduction of PJ modifies the elasticities of output in plausible 

directions. The land and fertilizer coefficients, for example, drop significantly as 
livestock form a larger proportion of output. The livestock variable tends to be 
slightly higher as Pi increases. The capital variable loses all significance by itself, 

48 The reader is reminded that intermediate inputs have been split into three categories, and no 
management input is included. 

44 A t-value greater than 1.65 indicates significance at the 95 per cent confidence level, and greater 
than 2.34, at the 99 per cent level, for one-tail tests. A two-tail test should be used to test the signifi­
cance of the p coefficients. 



TABLE 6-1.-PRODUCTION FUNCTIONS 

Coefficients (t-values) 

Equation Technique C L K D F V M E R2 

1 OLS 1.7350 0.1919 0.3726 0.0458 0.1484 0.2510 0.1579 0.970 
(53.8) (6.7) ( 11.7) ( 4.2) (16.0) (19.5) (5.4) 

2 OLS 1.7804 0.0764 0.0844 0.1840 0.3243 0.297l 0.0849 0.978 
(60.0) (2.8) (1.1) (4.2) (12.0) (7.7) (3.3) 

+0.6795 P -0.3284 P -0.3738 P +0.0938 P 
(4.6) ( -4.4) ( -8.0) (1.6) 

3 OLS at 0.2206 0.3832 0.0487 0.1444 0.2567 0.1336 0.971 
(6.4) (11.9) ( 4.3) (14.1 ) (19.6) ( 4.1) 

4 OLS a~j 0.1231 0.3443 0.0481 0.3103 0.1222 0.994 
(2.7) ( 4.2) (2.2) (8.3) (2.8) 

5a LP100 1.6693 0.6015 0.4887 0.1334 0.2347 0.1043 
5b LP9s 1.8578 0.3287 0.3689 0.0298 0.1428 0.2045 0.2243 
5c LPn 1.8828 0.2679 0.4842 0.0099 0.1693 0.1885 0.1712 
6a LP100 0.7089 0.3366 0.2556 0.1402 0.1022 0.2928 0.0977 0.6200 
6b LP9s 0.3826 0.0532 0.2640 0.0574 0.2341 0.3270 0.9613 
6c LP96 0.4000 0.1115 0.0189 0.2861 0.0710 0.2617 0.2405 0.8723 

C = constant D=land M = seed and miscellaneous 
L = labor F = fertil izer E = "entrepreneurship" 
K = capital V = livestock 
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and its total contribution to output is through the Pi modifier, which is large and 
positive. This result is somewhat surprising, but is due, perhaps, to the different 
nature of arable and livestock farming. Two other changes are also of interest­
both the labor and the seed and miscellaneous coefficients drop substantially in 
size (and somewhat in significance, although both remain significant above the 
99 per cent confidence level). This reduction in the relative role of the labor 
input, especially when allowances for differences in output mix are made, is the 
same phenomenon as reported by Griliches for a totally different data set for U.S. 
agriculture (14, pp. 419-28). 

Equation 3 introduces a set of year effect variables to remove any neutral 
weather effects, deflation problems, etc. These time coefficients are significant at 
only the 90 per cent confidence level and show no trend at all, as can be seen in 
Chart 6-1. They are included in the full analysis of covariance model (Equa­
tion 4), even though their significance is small, to ensure that no time-related bias 
affects the other coefficients. 

With Equation 4 the heart of the matter is reached. This equation introduces 
48 firm effect variables, one for each state, to remove management bias (to the 
extent that this bias can be removed by neutral shifts of the intercept of the log­
linear form of the production function). It would have been desirable to retain 
some of the features of Equation 2, where Pi was introduced into various input 
coefficients to allow for different production functions as the crop-livestock mix 
changed. But the high R 2 of .994 for Equation 4 prevented this-obviously the 
major part of the significance of Pi was picked up by the firm dummy variables. 

What happens to the elasticities of output when management bias is removed? 
There are three very striking changes: 

(1) The output elasticity of capital becomes completely insignificant, and capi­
tal is dropped from the production function altogether. The movement of change 
is certainly as expected although the magnitude is surprising indeed. Many people 

CHART 6-1 

5.70 

5.65 

5.60 

5.55 
at 5.50 

5.45 

5.40 

5.35 
1960 1962 1964 1966 

t 



ON MEASURING TECHNICAL EFFICIENCY 145 

have argued that the best farmers use a great deal of capital-the argument is 
advanced, in fact, that many are "overcapitalized." Thus it is to be expected that 
management and use of capital would be collinear and the capital coefficient 
should drop when the effect of management is introduced separately. The fact 
that it drops to zero is presumably more a function of the data quality than of 
the true productivity of capital. 

(2) The output elasticity of fertilizer drops sharply as well, but not to com­
plete insignificance. The use of fertilizer is also thought to be heaviest by good 
farmers. This result tends to confirm that judgment. It is worth noting, in addi­
tion, that since the elasticity of output for fertilizer in the unbiased regression is 

i only about one-third that in the biased equation (Equation 1) the marginal reve­
nue product is reduced correspondingly. Griliches found a ratio of marginal 
revenue product to marginal cost of between 3 and 5 for fertilizer (15, pp. 968-
69). Elimination of management bias reduces this range to between 1 and 2. This 
ratio is still high enough to indicate some disequilibrium in the use of fertilizer, 
and thus to explain its growth in consumption, but is not so high as to strain one's 
belief in the rationality of American farmers. 

(3) The coefficient of land in the unbiased production function becomes very 
large relative to other inputs and relative to its previous size in the biased equa­
tion. Thus the use of land seems inversely related to management. Exclusion of 
management from the production function negatively biases the estimated returns 
to land. In fact, it seems to playa very small part in producing agricultural out­
put. But when the management effect is removed land assumes a more under­
standable role in the production function. The implications of this seem to be 
that good farmers do not spread their talents too widely over large farms (large 
in a value sense). This finding gives some impetus to the feeling that the "family 
farm" is still the most efficient in agriculture, although this conclusion obviously 
needs much more study before being accepted. 

All of the differences reported between biased and unbiased functions should 
be viewed as qualitative rather than as concretely quantitative. Analysis of co­
variance has some tendency to bias the estimated elasticities of output downward 
if there are any errors of measurement in the variables.45 There certainly are in 
the variables used here. The separate intercepts remove the firm specific means 
as information, leaving only the variance about the mean to estimate the coeffi­
cients. Any errors are thus magnified. A large sample would seem to dampen 
this effect. 

Frontier functions.-The next stage is to examine frontier estimates of the 
same production functions discussed above. The "average" functions were pre­
sented first in order to have some familiar concepts and statistical tests of signifi­
cance in hand when looking at the frontier estimates. This way there is some con­
fidence that, at least in the traditional sense, a production surface exists for u.s. 
agriculture and that the real problem is to find the most meaningful way to 
estimate it. 

Equations 5abc-6abc report the results of fitting the linear form of the Cobb-

4~ This problem was pointed out to me by Zvi Griliches. No published reference seems to be avail­
able, and in fact the direction of the bias is part hunch. 
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Douglas production function using the linear programming model outlined in 
Chapter 2. They are frontier production functions. Equation 5a, labeled LPlOO ' 

is the result of fitting a deterministic frontier function to the same data set as used 
in Equation 1. The results seem strange-especially the very large labor coefficient. 
Before reading much significance into these results it is wise to be sure that a few 
errors of observation are not the cause rather than earthshaking economic dis­
coveries. Thus Equations 5b and 5c (LP98 and LP97 ) report what happens as the 
first 2 per cent of the "efficient" firms from Equation 5a, and then the next 1 per 
cent, are removed from the data deck. 

A rather remarkable transformation takes place. With just 2 per cent of the 
observations removed the estimated equation looks remarkably like Equation 1, 
which is an average function estimated with ordinary least squares. The similarity 
remains when another 1 per cent of the data is discarded, i.e., the coefficients seem 
to have stabilized. And these coefficients are, with minor exception, very similar 
to those of the analogous average function. The most obvious difference is that 
the intercept of the frontier function is about 14 per cent higher (when the anti­
logs are compared) than for the average function. This is certainly not surprising. 
Except for the labor coefficient, the factor elasticities are so nearly identical as to 
be safely considered insignificantly different.46 

The 40-70 per cent rise in the labor coefficient is puzzling. The only reason­
able explanation that comes to mind suggests that efficient farmers achieve their 
output with relatively less labor input than less efficient farmers, and that conse­
quently the marginal productivity of labor is higher. The other factors have simi­
lar output elasticities because the amounts used increase proportionately, or ap­
proximately so, with output. If this is true, and it is at best a very tentative hy­
pothesis, then earlier attempts to measure "efficiency" by looking only at output 
per worker were not as far from the mark as theory would have suggested. 

In summary to this point, the frontier production function seems to have 
shifted almost neutrally outward from an average function, with the possible ex­
ception that the labor elasticity of output may have increased on the order of a half. 

Management Bias 

Equations 6abc report the results of an ad hoc experiment to remove manage­
ment bias from the frontier function of Equation 5b or 5c. Consider that Equa­
tion 1 was shown to suffer a rather bad case of management bias-the capital and 
fertilizer coefficients were biased strongly upward and the land coefficient was 
biased downward. If the frontier coefficients of a similar function are nearly 
identical except for the intercept (and possibly the labor variable) then the fron­
tier function must also suffer from management bias. That means the fears ex­
pressed at the end of Chapter 3 were well founded. The data set, if it could be 
represented in two dimensions, might look something like Chart 6-2. 

No "good" farmers use a small amount of inputs, and so there are no observa­
tions on the actual frontier it' below an input level of A. The estimated frontier, 
10', is thus biased in a fashion similar to the estimated average function 10' Fitting 
separate intercepts for each firm eliminated the bias in i 0' with the resulting 

46 There are no formal tests of significance with which this assertion can be checked, however. 
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average functions being t1 for good farmers and t2 for bad. What procedure might 
be used to eliminate management bias in the frontier? 

The technique used here is at best a stab in the dark and is not to be taken 
very seriously. But the results are interesting enough to report. In Equations 6abc 
a new factor of production, labeled E (for entrepreneurship), is added to the data 
set.47 The values of this variable are the separate intercept coefficients of Equa­
tion 4, the analysis of covariance model, which are assumed to serve as a proxy for 
management. There is only one value for each state, so each is repeated eight 
times so that there is an observation for each time period. 

Once again the deterministic frontier, Equation 6a or LP 100' is somewhat 
strange and difficult to interpret. And once again the probabilistic form, with 
2 per cent or 4 per cent of the observations removed, makes more sense.48 Thus 
Equation 6b or 6c bears a noticeable resemblance to Equation 4, i.e., the pro­
duction function free of management bias, it the E variable is considered as a 
separate intercept term tor each state. The coefficient of E is very close to 1.0. Thus 
the separate intercepts of the analysis of covariance function are also the separate 
intercepts in this frontier function. It shifts up and down neutrally for good and 
bad farmers. 

If this is accepted, then the rest of the coefficients of Equation 6b or 6c fall 

47 M, for management, was already taken by the seed and miscellaneous variable. 
48 The careful reader may note that 3 per cent of the observations were removed from Equation 5c 

and 4 per cent from Equation 6c. The difference is due to the number of factors of production with 
positive coefficients in the "b" runs and the fact that all "efficient" firms in the "b" runs were removed 
in the "c" runs. The results are very insensitive to changes in the number of observations removed, so 
no significance is attached to the difference. 



148 C. PETER TIMMER 

neatly in place. The capital and fertilizer coefficients drop dramatically and the 
land coefficient increases. Even the magnitudes of the estimated coefficients are 
the same as in Equation 4. Removing management bias from the frontier has 
precisely the same efJect as removing it from the average function. 

The implications of this are rather disturbing. It makes little sense to estimate 
f 1 and f 2 (in Chart 6-2) as separate linear (in logs) production functions. It is 
quite meaningless to extrapolate fl beyond A because it seems to be impossible to 
get "efficient" levels of output with fewer than A inputs. There is either some 
interaction or scale effect not captured by the Cobb-Douglas function, or the 
actual production function is non-linear in logs, perhaps like fJ in Chart 6-2. 
Either way the usual method of eliminating management bias by analysis of co­
variance techniques, while perhaps a practical approximation, is not very satis­
factory for present purposes. A production function that allows firm effects and 
possibly even other factor effects within each factor's coefficient would be far 
more desirable.49 It is a major disappointment that the nature of the data pre­
sented here does not permit estimation of such a function. 

Technical Efficiency 

The production function estimates are very interesting in their own right, but 
they are only a means to an end. Technical efficiency is the Holy Grail in this 
quest. The reason for estimating the production functions is to find the "right" 
way to correct for differential use of the factors of production-otherwise there is 
no way to judge one state's performance relative to that of another when different 
factor amounts and proportions are used. 

Four different vectors of technical efficiency can be generated from the pro­
duction function results of Table 6-1. They are reported in Table 6-2, along with 
rankings for each vector. 

The most important vector, because it measures technical efficiency relative 
to a probabilistic frontier production function, is headed "Biased 98% LP." It is 
calculated from Equation 5b of Table 6-1 according to the following formula: 

1 ~ Ylt 
Efficiency of state j = -8 £.. -y' .50 

t=l It 

The high degree of technical efficiency at the state level and relative to six factors 
of production is readily apparent from Table 6-2. Three-quarters of the states 
have measured efficiencies within 10 per cent of the frontier function. The least 
efficient state (West Virginia) is less than 20 per cent away from the frontier. 
And if differences in cropping patterns, crop-livestock ratios, and more accurate 
soil-climate productivity differentials could be allowed for, the measured ineffi­
ciencies would be smaller. Even so, most of the measured differences are not 
related to either the physical or management factors outlined in Chapter 1. As 
Chapter 7 will show in some detail, at least half the variation in observed tech-

49 An example would be the function of Equation (3.1 0). 
50 For those states that contain one of the extreme observations which is dropped, the averaging 

is only over seven observations rather than eight. 
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TABLE 6-2.-TECHNICAL EFFICIENCY RATINGS 

Biased Unbiased Analysis of 
98%LP 98%LP covariance Residuals 

Efficiency Efficiency Efficiency Efficiency 
State rating Rank rating Rank rating Rank rating Rank 

South Dakota 0.991 1 0.9663 11 1.736 17 0.1423 4 
Iowa 0.986 2 0.9830 1 1.657 25 0.0936 7 
North Dakota 0.984 3 0.9343 40 1.967 4 0.1560 2 
Florida 0.978 4 0.9584 20 1.825 14 0.2117 1 
North Carolina 0.976 5 0.9734 7 1.967 3 0.1536 3 
Delaware 0.970 6 0.9593 19 1.861 11 0.0752 9 
Montana 0.965 7 0.9579 22 1.651 26 0.0826 8 
Illinois 0.963 8 0.9725 8 1.658 24 0.0362 15 
Colorado 0.960 9 0.9736 6 1.607 35 0.0263 18 
New Mexico 0.956 10 0.9723 9 1.453 44 0.0545 13 
Alabama 0.955 11 0.9538 24 1.694 22 0.0446 14 
Kentucky 0.951 12 0.9507 28 1.701 20 0.1000 6 
Connecticut 0.948 13 0.9655 13 1.902 5 0.0654 11 
California 0.945 14 0.9636 14 1.613 33 0.0707 10 
Nebraska 0.945 14 0.9778 3 1.633 27 -0.0270 30 
Maine 0.945 14 0.9172 46 2.223 1 0.1110 5 
Kansas 0.941 17 0.9783 2 1.605 36 0.0168 22 
Wyoming 0.939 18 0.9663 11 1.491 43 -0.0048 25 
Georgia 0.939 18 0.9615 16 1.812 15 0.0030 24 
Vermont 0.934 20 0.9537 25 1.834 13 0.0216 21 
Mississippi 0.932 21 0.9422 35 1.688 23 0.0581 12 
Arkansas 0.928 22 0.9535 26 1.631 28 0.0264 17 
New Hampshire 0.928 22 0.9409 36 1.893 7 0.0244 20 
Massachusetts 0.923 24 0.9394 37 1.976 2 0.0340 16 
Minnesota 0.922 25 0.9513 27 1.760 16 -0.0314 33 
Texas 0.921 26 0.9583 21 1.444 45 -0.0296 32 
New Jersey 0.920 27 0.9463 31 1.870 10 -0.0128 26 
Wisconsin 0.920 27 0.9347 39 1.876 9 0.0168 22 
Oklahoma 0.920 27 0.9753 4 1.365 48 -0.0403 35 
Missouri 0.917 30 0.9614 17 1.579 37 -0.0326 34 
Indiana 0.916 31 0.9666 10 1.618 31 -0.0681 38 
Idaho 0.913 32 0.9341 41 1.702 19 -0.0237 28 
New York 0.909 33 0.9163 47 1.845 12 -0.0258 29 
Arizona 0.906 34 0.9619 15 1.625 29 -0.0956 39 
Washington 0.903 35 0.9451 33 1.616 32 -0.0472 36 
Nevada 0.902 36 0.9564 23 1.360 47 -0.1182 43 
South Carolina 0.898 37 0.9298 44 1.895 6 0.0256 19 
Oregon 0.896 38 0.9492 30 1.548 40 -0.0568 37 
Louisiana 0.890 39 0.9366 38 1.576 38 -0.0282 31 
Utah 0.889 40 0.9594 18 1.432 46 -0.1136 41 
Rhode Island 0.887 41 0.9210 45 1.891 8 -0.1149 42 
Pennsylvania 0.884 42 0.9433 34 1.700 21 -0.1129 40 
Maryland 0.883 43 0.9739 5 1.522 42 -0.1632 48 
Ohio 0.880 44 0.9494 29 1.570 39 -0.1250 47 
Tennessee 0.880 44 0.9304 43 1.608 34 -0.0181 27 
Michigan 0.854 46 0.9126 48 1.707 18 -0.1183 44 
Virginia 0.848 47 0.9458 32 1.625 30 -0.1232 46 
West Virginia 0.810 48 0.9310 42 1.531 41 -0.1187 45 
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nical efficiency is due to errors of measurement in the variables used for the pro­
duction function analysis. 

This vector of efficiencies, while the best available, is subject to management 
bias-thus its name. The collinearity of the management factor with several of 
the "real" factors allows the estimated elasticity of these factors to capture some 
of management's contribution. The efficiency ratings are thus biased upward to 
some extent. 

Three other measures of technical efficiency are also reported in Table 6-2. 
The "Unbiased 98% LP" efficiency rating uses Equation 6b as the base. This 
index is perhaps not very meaningful as a measure of efficiency because another 
measure of efficiency is introduced as a factor of production. The "Unbiased 98% 
LP" index is thus a second order measure of efficiency, i.e., it measures how effi­
cient firms are at being efficient. Alternatively, and more likely, it is just a random 
senes. 

The "Analysis of Covariance" efficiency vector is simply the firm intercepts of 
Equation 4. These ratings are not the antilogs-since the rankings are more in­
teresting than the actual values, it seemed unnecessary to make the conversion. 
Just for comparative purposes, however, antilogs have been taken of the intercepts 
for the most "efficient" state (Maine) and the least "efficient" state (Oklahoma). 
The Oklahoma intercept converts to 3.92 and the Maine intercept converts to 9.24, 
or 236 times higher. Griliches' suspicion that analysis of covariance biases the 
production function coefficients downward seems entirely justified, for it is en­
tirely unreasonable that such large neutral shifts occur in the production func­
tions of different states. What has happened is that the separate state intercepts 
have captured a substantial proportion of the impact of differential use of inputs, 
leaving very little for the factor elasticities to explain. As a measure of technical 
efficiency then, the analysis of covariance estimates is biased strongly down­
ward. The obvious temptation is to average the rankings from the "Biased 98% 
LP" model and the analysis of covariance model to achieve an unbiased set of 
rankings. That temptation will be firmly resisted because the relative degrees of 
bias are not known, and the resulting ranking would have no economic meaning 
whatsoever. 

The "Residuals" efficiency vector uses Equation 1, the simplest production 
function, as a basis for calculations. The process is in two steps: first, the produc­
tion function is estimated, with the results as shown; and second, the set of 48 
dummy variables is regressed on the residuals from the first stage. The ratings 
shown in Table 6-2 are the coefficients of these dummy variables. The regression 
on the residuals is highly significant-75 per cent of the variation in the residuals 
is explained. But what does it mean? To have unbiased estimates of all coefficients 
in both the first and second regressions requires that the variables in the first be 
orthogonal to those in the second (12, pp. 194-96). The presence of management 
bias suggests that they are not. The "Residual" efficiency ratings are thus biased 
estimates of efficiency in the same fashion as the "Biased 98% LP" estimates, be­
cause some proportion of the "real" contribution of efficiency has been captured 
by the factors of production in the first step regression. The extent of this bias can 
be indicated by comparing the "Analysis of Covariance" index of efficiency with 
that of the "Residual" index. Casual comparison reveals little relationship, and 
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TABLE 6-3.-CORRELATION MATRIX OF EFFICIENCY INDEXES 

Biased Unbiased Analysis of 
98%LP 98%LP covariance Residual 

Biased 98% LP 1.00 
Unbiased 98% LP 0.50 1.00 
Analysis of covariance 0.31 -0.45 1.00 
Residual 0.89 0.15 0.45 1.00 

in fact the simple correlation coefficient (r) is only 0.45. Management bias is a 
powerful force. 

Table 6-3 shows the simple correlation matrix for all four indexes of efficiency. 
The correlation between the "Residual" index and the "Biased 98% LP" index is 
one further manifestation of the similar nature of frontier and average production 
functions and the relative neutrality of the shift from average to frontier. But 
none of the other correlations is significant. At least at the state level of aggre­
gation the relative degree of technical efficiency achieved is highly sensitive to 
how efficiency is defined and how the production function is specified and esti­
mated. 



CHAPTER 7. EXPLAINING TECHNICAL EFFICIENCY 

This chapter has about it some of the aura of a snipe hunt. The 
ratings of technical efficiency generated by different types of production functions 
turned out to be extremely sensitive to small changes in specification and concep­
tual approach. A low degree of confidence should be placed on all the ratings 
then, and the search for "explanations" of a firm's relative position in the ratings 
is necessarily elusive. It seems justifiable to argue that the shortcomings are not 
so much in the methodology as in the data. Presumably because of the large size 
of the sample, the data set withstood a searching round of production function 
estimations with remarkable success. But because the data are state aggregates, 
the estimates of technical efficiency contain little or no impact of differences in 
age, educational level of farm operators, or other potential managerial factors. 
Estimation of an ad hoc "supply function" for management is thus ruled out. 

It is still important to ask what has happened. This implicitly asks what effi­
ciency in agriculture means when measured relative to six factors of production, 
among which are fertilizer, capital, and a variable (seed and miscellaneous) that 
may serve as a proxy for other modern inputs. "Good" farmers use these inputs 
in great quantities and achieve large outputs with them-but the production 
function makes this distinction. No neutral shifts are necessary to account for 
"good" farmers' performance when these factors of production are included. 

What has happened, then, is that differences in static technical efficiency 
largely disappear when measured at the state level. The result should not be too 
surprising. The residual of dynamic technical change also disappears under simi­
lar circumstances-when inputs are measured "properly" and all relevant factors, 
including intermediate ones, are included in the production function (16, pp. 
331-46). It is disappointing that the residual of technical efficiency disappears 
before rather than after the introduction of the research and educational differ­
ences that Griliches finds important, but this may be a data problem. 

The sets of technical efficiency generated in Chapter 6 may be sensitive to 
slight changes in specification and subject to a wide range of uncertainty, but 
they are not totally without useful information. The information turns out to be 
less relevant to understanding the management function in agriculture than to 
casting some light on the misspecification of several input variables and possibly 
the output variable as well. 

Table 7-1 lists the factors that were thought might have some power to explain 
variations in the technical efficiency ratings among states. All are state specific. 

Only the "Analysis of Covariance" (X2) and "Biased 98% LP" (X3) indexes 
of efficiency were investigated thoroughly. The "Unbiased 98% LP" index is of 
dubious meaning and the "Residual" index is of relatively little economic signifi­
cance. 

The original intent was to be able to estimate a function of the form X2 or 
X3 = 1> (X6, ... , X39). It was hoped, especially, that all the age of operators 
variables (X6-Xll) and education of operators variables (X12-X18) could be 
introduced explicitly rather than by a single weighted "age" or "education" 
variable. Griliches (and all subsequent workers in the field) used just such a 
weighted education variable, with the weights 1950 mean income of U.S. males, 



TABLE 7-1.-ExPLANATORY FACTORS 

Identifying Identifying 
number Variable number Variable 

Age of operators (proportions) X22 Number of non-white farm operators 
X6 Less than 25 X23 Gross farm income 
X7 25-34 X24 Proportion of livestock in output 
X8 35-44 
X9 45-54 X25 Soil Bank payments, 1964 

XlO 55-64 X26 Proportion of land irrigated 
Xll 65 and over X27 Population density of state 

Education of operators (proportions) Agricultural research e..'{pendituresG 

Elementary X28 1935 
X12 0-4 years X29 1940 
X13 5-7 years X30 1945 
X14 8 years X31 1950 

High school X32 1955 
XIS 1-3 years X33 1960 
XI6 4 years Agricultural extension expendituresG 

College X34 1935 
XI7 1-3 years X35 1940 
XI8 4 or more X36 1945 
XI9 Number of tenants of all types X37 1950 
X20 Number of days worked off the farm X38 1955 

X21 Number of Negro farm operators 
X39 1960 

a Data taken from 27. 
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TABLE 7-2.-AGE PRODUCTIVITY WEIGHTS 

Proportion of farm operators 
in age group 

Less than 25 
25-34 
35-44 
45-54 
55-64 
65 and over 

Simple correlation coefficients 
with X3 (biased 98% LP) 

0.40 
0.44 
0.33 
0.19 

-0.27 
-0.46 

25 years old and over, by school years completed (16, pp. 331-46). These weights 
were reported by Houthakker (22, p. 342). 

There is no strong a priori reason why these income weights for the entire 
U.S. male labor force are the proper productivity weights for agricultural work­
ers. Griliches has provided an empirical justification, of course, but a more accu­
rate set of weights might give even better results. If aggregation had not washed 
out the influence of age or education on agricultural output the large sample (48 
observations) could be used to estimate productivity weights directly. Thus the 
proportion of farm operators in each age or educational class could be introduced 
as a separate variable and the resulting coefficients used to form a more meaning­
ful single age or education variable, if that were needed. A similar procedure 
might be used for research and extension expenditures over time. 

The nature of the estimates of technical efficiency has, of course, largely 
thwarted that approach. A slight hint of the potential results, however, is shown 
in Table 7-2. 

The distribution of productivity weights, with the younger farmers having 
relatively high productivity and the older farmers exhibiting declining produc­
tivity, is at least plausible. No further claims are made, but at least the method 
seems worth pursuing with a better data set. 

The overall intent of explaining the variation in efficiency need not be entirely 
abandoned either. Equation (7.1) reports the most successful attempt (t-values 
in parentheses). 

(7.1) X3 = 0.8377 + 0.4386 X9 + 0.1329 X19 - 0.6764 X20 
(9.2) (1.3) (2.4) (-4.1) 

R2 = 0.48 

- 0.0468 X21 + 83.2992 X25 
( -0.9) (1.7) 

t-value 

0.68 
1.68 
2.02 
2.42 
2.70 

Significance 
(PCI' cent) 

50 
90 
95 
98 
99 
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Almost half the variation in the "Biased 98% LP" efficiency index can be 
"explained." The explanatory factors are not those normally associated with dif­
ferences in efficiency, but the possible reasons for their significance are interesting 
nonetheless. 

The easiest coefficient to make sense of, and the most significant, is X20, the 
number of days worked off the farm by the farm operator. More days worked off 
the farm mean lower efficiency. A straightforward interpretation of this would 
suggest that a farmer lacks the time to look after the important details of farm 
management as he spends more time at work off the farm. This is perfectly 
plausible and possibly accounts for some of the significance of this variable. But 
of greater significance is the likelihood that this variable is correcting some bias 
introduced by the labor variable. The labor input was a crude measure of man­
days worked in agriculture, but correction for time worked by the number of 
actual laborers present was only on an annual basis for the entire country. There 
was no state specific weighting for proportion of time spent in farm work. 
Variable X20 makes this correction at the efficiency stage rather than where it 
should more properly be made-i.e., at the stage of input variable construction. 

Next in significance is the relative number of tenants of all types who are farm 
operators (XI9). The original motivation for including this variable was to test 
whether lack of ownership has an adverse effect on efficiency, as is frequently 
argued, especially for underdeveloped agricultures.51 Thus the estimated coeffi­
cient was expected to be negative. The fact that it is significantly positive might 
be taken as just another example of the capriciousness of the efficiency index. But 
the nature of the data suggests another explanation. 

The original expectation of a negative response was especially conditioned by 
the nature of the sharecropping tenure pattern in the South. This form of tenancy, 
however, does not dominate tenant farming for the United States as a whole. The 
proportion of farm operators who are tenants of one form or another averages 0.21 
for nine Southern states (Virginia, North Carolina, Tennessee, South Carolina, 
Georgia, Alabama, Mississippi, Arkansas, and Louisiana) and 0.25 for six Corn 
Belt states (Indiana, Illinois, Iowa, South Dakota, Nebraska, and Kansas). While 
the Southern states might be suspected of low efficiency, the Corn Belt states gen­
erally are not. Some other factor must be at work. 

The most likely expectation seems to be that, at least in the non-Southern 
states, tenants tend to be young farmers who have not saved enough to buy their 
own farms. They tend to work exceptionally long, hard hours in these early years, 
a factor not accounted for in the labor variable. Thus X19 might be correcting for 
this extra motivation. 

Variable X25, 1964 Soil Bank payments, is significant at only the 90 per cent 
confidence level, but the potential reasons are quite interesting. Two somewhat 
different forces seem to be at work. 

First, the output variable used in all the production function estimations in­
cluded a component for government payments. In general, these payments are 
on an output basis, i.e., the more cotton produced the higher the payments. It 
makes sense to include them under such circumstances. But some payments, pri-

51 For a review of the arguments, see 40, pp. 267-314. 
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TABLE 7-3.-S0IL BANK PAYMENTS AND TECHNICAL EFFICIENCY· 

Soil Bank payments as 
State % of gross output 

North Dakota 2.8 
New Mexico 2.4 
South Carolina 1.8 
South Dakota 1.7 
Oklahoma 1.5 
Colorado 1.1 
Georgia 1.1 

• Data are from 45. 

Biased 98% LP 
efficiency rank 

3 
10 
37 

1 
27 
9 

18 

marily those under the Soil Bank Program, are made for not producing.52 Those 
states where the Soil Bank payments form a significant proportion of measured 
output should then show a high degree of technical efficiency. They are able to 
"produce" output without inputs. 

Seven states received Soil Bank payments that were 1 per cent or more of their 
gross output in 1964. Table 7-3 shows these seven states, their Soil Bank payments 
as a percentage of gross output, and their efficiency ranking according to the 
"Biased 98% LP" index (X3). 

Four of the seven states are ranked in the top 10 in efficiency. If nothing else, 
part of the mystery of North and South Dakota's high efficiency ratings seems 
to be resolved. 

The second aspect of the significance of the Soil Bank variable in explaining 
the efficiency ratings has to do, perhaps, with the tendency of participating farm­
ers to take out of production their worst yielding land and to farm the remainder 
more intensively. The production function should have no difficulty picking up 
the intensity of farming so long as it involves extra fertilizer, etc., that is part of 
the function. But the change to higher quality land will not be picked up by the 
land variable used in the production functions. Once again the form of a variable 
seems responsible for variation in "efficiency" rather than real differences in farm 
managers' performances. 

Variable X9, the proportion of farm operators 45 to 54 years old, undoubtedly 
serves as a proxy for something else. It is significant at only the 80 per cent confi­
dence level, which for the type of data being examined here is only high enough 
to be suggestive. A number of plausible interpretations of the positive coefficient 
for X9 come to mind. The most direct is simply that the productivity of "age" 
reaches its peak in this age group. There is a trade-off between the physical effort 
a young man can exert (and the better education he tends to have) and the ex­
perience that an older farmer draws upon in his decision-making. Farming is not 
yet a regimented science; it retains a craftlike aspect that gives scope to the wis­
dom of years of working the soil. The significance of X9 may reflect that the age 
class of 45 to 54 years is the optimum point in this trade-off. 

Another possibility is that a farm operator in this age class is very likely to have 

62 Most payments require some restrictions on output to qualify for subsequent payments on the 
basis of amount produced, but the Soil Bank Program pays for not producing at all. 
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TABLE 7-4.-CORRELATION OF PROPORTION OF NEGRO FARM OPERATORS 

WITH OTHER VARIABLES 

X7 
X8 
XIO 
Xll 
X12 
X13 
X16 
X17 
X18 
X19 

Variable name Sim pie correlation 

Age class 25-34 
Age class 35-44 
Age class 55-64 
Age class 65 and over 
0-4 years' elementary education 
5-7 years' elementary education 
4 years of high school 
1-3 years of college 
4 or more years of college 
Number of tenants 

-0.37 
-0.49 

0.50 
0.31 
0.75 
0.69 

-0.61 
-0.34 
-0.18 

0.47 
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one or more mature sons who may also be working on the farm. There will be 
two (or more) managers then, one with the wisdom of experience and one with 
the vigor and modern education of youth. It should not be surprising that such 
an operation might be more efficient than those run single-handedly.53 

The last variable that yields even a suggestion of meaning is X21, the propor­
tion of farm operators who are Negro. Its significance is only between 60 per cent 
and 70 per cent. The estimated coefficient is negative, i.e., the higher the propor­
tion of Negro farm operators, the lower the efficiency. Before a judgment of 
"ability" is read into the negative coefficient for X21 it would be well to consider 
with what other factors X21 might be correlated. Table 7-4 shows several simple 
correlation coefficients. 

The population of Negro farm operators is not evenly distributed with respect 
to age and education. There tend to be few young Negro farm operators and 
many over age 55, when productivity seems to be rapidly diminishing. They tend 
to have less than seven years of schooling, with a decided lack of completed high 
school and college experience. And Negro farm operators tend to be tenants. 
There seems to be a fairly strong case for identifying the observed lower efficiency 
of Negro farm operators (of questionable significance at that), not with "ability," 
but with "opportunity." 

Equation (7.1) is not exactly a "management" production function. It is not 
suitable for removing the effect of the physical environment by the iterative pro­
cedure outlined at the end of Chapter 4. That procedure cannot be tested here. 
And yet the attempt to explain the technical efficiency indexes presented in Chap­
ter 6 has been revealing. Even what little variation that was left for differences in 
"efficiency" to explain now seems to be due largely to biases introduced by defi­
nitional problems in the data rather than by any meaningful determinants of 
managerial performance. The conclusion stated at the beginning of this chapter, 
that static cross-sectional differences in technical efficiency disappear if the pro­
duction function is properly specified, seems all the stronger for these results. The 

58 It is obviously "efficient" only so long as the management input is excluded from the produc­
tion function. It seems unlikely that two managers on one farm is an efficient use of managerial re­
sources. 
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argument that Griliches made for dynamic technical change at the state level is 
thus extended to static differences as well. 

Measured Technical Efficiency and Economic Welfare 

Judging from the small degree of technical inefficiency observed at the state 
level, the welfare losses from this particular failure of the decision-making process 
seem to be quite small. The average state is only 7.6 per cent from the frontier in 
the "Biased 98% LP" model, and at least half of that distance must be attributed 
to measurement errors rather than productive inefficiencies. An average loss of 
about 3 to 4 per cent seems to be the most that is likely-an amount easily sub­
sumed in a year's growth, if such growth were desired in U.S. agriculture. 

Are all states, then, equally good producers of agricultural output? Are there 
really no welfare losses due to poor decision-making in U.S. agriculture? The 
answer to both questions is no. First, by measuring technical efficiency at the state 
level all differences among farmers within the states were aggregated away. It is 
entirely possible for substantial productive inefficiencies to exist within states with 
few observed differences between states. The empirical results reported here can 
make no judgment at all on that score. 

Second, the significance of allocative inefficiencies should not be ignored. To 
discover the exact extent of such inefficiencies would require a state-by-state analy­
sis, but some rough indications can be drawn short of that. It is fairly safe to as­
sume that all states face similar factor costs and prices for output because to a 
large extent the U.S. agricultural market is national in scope. Land is fixed and 
family labor seems to be relatively immobile, so the assumption does not neces­
sarily hold true for these two factors. But with the other inputs costing all farmers 
about the same, and all farmers receiving about the same prices for their output, 
output levels per unit of the relatively fixed inputs should be approximately the 
same. Some differentials will exist due to land fertility, labor skill differences, and 
differing composition of output, but differentials of over 100 per cent in output 
per acre or perhaps 50 per cent in output per man-day would seem to indicate 
substantial allocative inefficiencies. 

Table 7-5 shows a small cross section of states and compares their land and 
labor productivities. West Virginia's gross output per acre is only 30 per cent of 
California's; its gross output per man-day is just one-fifth as large. The suspicion 
is very strong that West Virginia does not use a profit-maximizing quantity of 
purchased inputs and is severely inefficient in its allocative decision-making. 

TABLE 7-5.-ILLUSTRATIVE LAND AND LABOR PRODUCTIVITIES, 1964* 
(Dollars) 

Gross output Gross output 
State per acre per man-day 

California 1025 89.9 
Iowa 97.2 89.1 
Georgia 87.6 48.2 
West Virginia 30.7 18.4 

* Drawn from original data used for production function estimation. 
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So what? The Harberger diagram (Chart 1-1 in Chapter 1) demonstrates 
the inconsequential nature of allocative inefficiencies, even if they are fairly severe. 
Why draw special attention to the allocative inefficiencies suspected in U.S. agri­
culture? The answer is that the Harberger diagram assumes full employment of 
resources throughout the economy to make its point. This is a bad assumption 
for many of the resources used in agriculture. Land and most buildings are im­
mobile. They cannot move if they are not being utilized to full potential. Farm 
labor can move, but for a variety of economic and social reasons the self-employed 
and family component of it tends not to, even in the face of substantial under­
employment. Most intermediate inputs probably find alternative uses, either else­
where in agriculture or in the industrial sector, so poor allocation of these re­
sources probably does lead to marginal losses only. But the losses to the more fixed 
factors are total and not just marginal because they are not employed elsewhere 
in the economy. The welfare costs of this type of allocative inefficiency are very 
great, particularly because the human resource is one that tends to be wasted. 



CHAPTER 8. SOME EXTENSIONS 

The production functions estimated in Chapter 6 were meant 
as a means to an end, the calculation of technical efficiency, and the discussion so 
far has concentrated on that aspect. A number of other interesting issues can also 
be examined within the production function framework. Two of them, marginal 
returns to factors of production and economies of scale, reveal significant insights 
into the structure and performance of U.S. agriculture. 

Marginal Returns 

The normal model of firm behavior in a competitive environment requires 
that each firm equate the marginal revenue product of each factor of production 
(MRP) to its marginal cost (Me), so that the ratio of MRP to Me equals one. 
The Cobb-Douglas production function is very convenient for calculating this 
ratio, especially when the variables are measured in value flows. In such a situation 

MRPiJ 1\ TRJ 
(8.1) --= C1.t-= 1 

MeiJ XiJ 

if the lh firm is profit maximizing in a competitive world (TRJ = total revenue 
of the lh firm, XiJ = value of the flow input of variable Xi by the r firm, and 
1\ 

C1.t = estimated coefficient of factor i in the Cobb-Douglas function). Equation 
(8.1) shows that the calculation can be done for each firm separately,54 but the 
normal procedure is to examine the marginal returns for the "average" firm, so 

that TRJ becomes TR and XiJ becomes X~. Table 8-1 shows the results of calcu-
1\ TR 

lating Ut -=- for both the "biased" and "unbiased" average production functions 
Xi 

reported in Chapter 6 (Equations 1 and 4 in Table 6-1). 

TABLE 8-1.-RATIO OF MARGINAL REVENUE PRODUCT TO MARGINAL COST 

"Biased" equation "Unbiased" equation 

99% 99% 
Point confidence Point confidence 

Factor of production estimate interval estimate interval 

Labor 1.17 1.10-1.24 0.75 0.63-0.87 
Capital 3.76 3.68-3.84 
Land 0.29 0.26-0.32 2.14 1.93-2.35 
Fertilizer 4.86 4.84-1.08 1.57 1.51-1.63 
Livestock 1.05 1.02-1.08 1.30 1.20-1.40 
Miscellaneous 1.62 1.54-1.70 1.25 1.14-1.36 

54 This is the calculation that would have to be performed for each state if the welfare discussion 
of Chapter 7 were to be pursued in greater detail. The presence of either management bias or analysis 
of covariance bias in the estimated production functions suggests that the results would still be mostly 
qualitative rather than concretely quantitative. The general conclusions in Chapter 7 as to the size and 
nature of the welfare losses due to allocative inefficiency might be firmed up somewhat, but would not 
be substantially changed. 
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The capital, land, livestock, and miscellaneous variables are all measured in 
value flows per year, so the calculations are perfectly straightforward. The labor 
variable is measured in man-days of work, so a daily wage rate is needed to con­
vert this to a value flow. The average wage rate for agricultural workers for the 
1960-67 period for the entire United States was used. The fertilizer variable is 
almost a value flow variable because the weights used to form a total fertilizer 
input from the N, P20r;, and K 20 quantity inputs were price weights. However, 
the constant term of the price weight equation was left out, so it is necessary to 
add this back in to calculate the value of fertilizer use. 

The results are not very surprising in view of the continuing transformation 
taking place in U.S. agriculture. The labor return is slightly greater than one if 
the biased coefficient is used, but significantly less than one if the unbiased coeffi­
cient is used. The unbiased production function is supposed to have more desir­
able statistical and economic properties than the biased function. Thus the mar­
ginal returns estimated from the unbiased function should also be more meaning­
ful. The implications are that farmers are using too much labor at the going wage 
rate, and the exodus of farm labor to the cities confirms that a disequilibrium 
exists. It is also possible to turn this argument on its head and argue that the 
exodus of farm labor suggests returns to labor are low. Thus the unbiased coeffi­
cients make more sense than the biased ones, confirming empirically what was 
argued theoretically in Chapter 3. 

The returns to capital are very high in the biased model, but are zero (because 
capital drops out of the production function) in the unbiased model. The zero 
return is presumably an artifice-the data were not good enough to sort out the 
multicollinearity between the separate firm intercepts and the capital variable. 
The downward bias introduced by analysis of covariance is probably also at fault 
here. An unbiased estimate of capital return is thus impossible to calculate, al­
though it probably lies between zero and 3.76. 

The land coefficient changes radically when management bias is removed 
from the production function. The ratio of MRP to Me is 0.29 in the biased case 
-so low that it is not believable. And in the unbiased model the ratio is 2.14, 
which seems very high for a factor of production whose magnitude of use is 
declining. Government restrictions have caused most of the decrease in land use, 
however, and the effect has apparently been to raise land's marginal revenue 
product well above its marginal cost. 

The disequilibrium in the use of fertilizer has been mentioned already with 
reference to Griliches' findings. The marginal returns calculated from the biased 
production function are nearly identical to those reported by Griliches, and the 
reduction of the ratio from about 5 to about 1.5 when the unbiased function is 
used is reassuring. Farmers may be slow to adjust, but they are not that slow. 

The livestock variable comes closest to a unitary ratio although the value of 
1.30 for the unbiased estimate is significantly greater than one. The extent of any 
disequilibrium seems to be small, however. This also is true of the seed and mis­
cellaneous variable. A fairly substantial disequilibrium seems to exist in the biased 
model, but most of this disappears when the bias is removed. 

In summary, the only major disequilibria in which there is any confidence is 
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TABLE 8-2.-EcONOMIES OF SCALE 

Equation number and form 

Biased OLS 
Unbiased OLS 
Biased 98% LP 
Unbiased 98% LP 

}Average 

IF . 5 rontler 

Value ofe 

1.168 
0.948 
1.299 
0.936 

that the average farmer uses too much labor, not enough fertilizer and land, and 
possibly not enough livestock and the components of the seed and miscellaneous 
variable.55 The fact that the MRP-to-MC ratio is uniformly greater than one, 
except for one or two factors, might reflect constraints on decision-making not 
normally considered in the usual free competition model. Hoch found that the 
ratio should exceed one if a farmer faced an output restriction due, perhaps, to 
government intervention, capital rationing, or risk aversion (21, p. 36). Under 
one or more of these circumstances (all of which were probably important factors 
in the 1960--67 period) the ratios of MRP to MC for livestock and seed and mis­
cellaneous are likely to be about "right." 

Economies of Scale 

As George Judge has pointed out, "when productivity coefficients are esti­
mated, the urge to add them is a strong one" (26, p. 432). The rationale seems 
strong, too: the sum of the individual factor elasticities in a Cobb-Douglas pro­
duction function is the elasticity of output, frequently labeled "e." If e < 1 then 
a 10 per cent increase in all inputs increases output by less than 10 per cent; if 
e> 1 a 10 per cent increase in inputs yields more than 10 per cent more output. 
If there is no pause to consider what aspect of the productive process might cause 
e to be less than or greater than one, then the temptation to look for economies 
of scale in the production functions of Chapter 6 is irresistible. At least it will not 
be resisted here. 

Table 8-2 shows the value of e for the four most important equations in 
Table 6--1. 

The sum of the biased OLS coefficients is nearly identical to the value reported 
by Griliches for a similar equation (15, p. 966). It is significantly greater than one, 
and seems to imply substantial economies of scale. The biased frontier function 
indicates even greater scale economies-the value of e is 1.299 (but there are no 
tests of significance for this). 

The results change drastically, however, when management bias is removed. 
The sum of the coefficients should be biased upward if each of the factors of pro­
duction is used more intensively by "good" farmers. If some factors are used less 
intensively then the bias can be in either direction, although there are good reasons 
for suspecting that the upward bias will tend to outweigh the downward bias. 
This has happened here. The elimination of management bias reduces the value 
of e to slightly less than one in both the average and the frontier functions. This 

55 Farmers usc too litde land only if government constraints on land allocation arc ignored. 
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conclusion is conditioned by the presence of analysis of covariance bias. If the net 
effect of this bias is negative, as suspected, then the analysis of covariance estimate 
of e is biased downward. 

Good farmers use more of most inputs, so the overall impact of the collinearity 
between management and input use is positive. In the management biased pro­
duction function doubling the measured inputs also raises the management input 
as well, although not by twice as much. Thus the management factor is not held 
constant in the biased function, and the finding of substantial economies of scale 
is subject to the proviso that the management factor be allowed to increase as the 
scale of operations increases. The implications for the average farmer are that he 
will have to perform more managerial functions if he expands his farm to benefit 
from the scale economies. If his managerial abilities are underemployed on his 
present farm, this may be possible with little cost; but if the farmer is already 
managing to capacity, other managerial talent will be required in order to cap­
ture the scale economies. If the managerial input is held constant the unbiased 
equations suggest that expanding the scale of operations is subject to slightly de­
creasing or constant returns. 

Nearly constant returns to scale holding one factor of production fixed is a 
most surprising finding. It suggests that the factor is of minor importance in the 
productive process, at least over the observed range of the sample. But this is true 
only if constant returns to scale are expected when all factors are increased pro­
portionately, and this seems not to be true, judging from the elasticities of output 
reported in Table 8-2. Thus the management factor is important because it is 
needed to make the substantial economies of scale possible. 

A major criticism of estimating a Cobb-Douglas production function and 
summing the coefficients to determine the elasticity of output is that this elasticity 
of output is constant for the entire range of the function. Thus the smallest firms 
have the same value of e as the largest. This contradicts the implications of U- or 
L-shaped cost curves, which are well established in the theoretical and empirical 
literature. The L-shaped cost curve implies increasing returns to scale for small 
firms up to a point, and then constant returns thereafter. The U-shaped curve 
implies increasing returns, possibly a range of constant returns, and then decreas­
ing returns as scale increases. The empirical finding of increasing returns over the 
entire scale of operations means the average cost curve must be forever decreasing, 
a situation that violates conditions necessary for reaching a stable equilibrium in 
a competitive economy. The finding should thus be viewed with some skepticism. 

The constant elasticity of output over the entire range of the Cobb-Douglas 
function can be circumvented by breaking the data into a number of sets and 
estimating separate functions. Thus it is possible to calculate e for small and large 
firms separately. A difficulty with this procedure is that biased estimates of the 
coefficients result if the sample is split according to a criterion which depends on 
the dependent variable. The criterion used here for splitting the sample is USDA­
reported gross output (undeflated) per farm for each state in 1964. This is ob­
viously related to the dependent variable in the production function analysis­
deflated gross output per farm from 1960 to 1967. There is some variation between 
the dependent variable and the splitting criterion, so the bias is not as strong as 



TABLE 8-3.-COBB-DOUGLAS PRODUCTION FUNCTIONS WITH SPLIT SAMPLE 

Coefficients (t-values) 

Equation Technique C L K D F V M R2 

SMALL FARMS (Observations 1-192) 

l' OLS 1.7692 0.1726 0.4319 0.0143 0.1541 0.1982 0.1575 0.943 0.956 
(32.0) (3.5) (10.1) (0.8) (11.3) (10.0) (3.4) 

4' OLS atllj 0.1313 -0.1887 0.2027 0.0061 0.2611 0.4283 0.993 1.030 
(2.0) (-1.5) (1.8) (0.2) ( 4.5) (5.6) (0.841 ) 

5a' LPlOO 1.9753 0.2023 0.4791 0.1201 0.1208 0.1551 1.077 
5e' LP97 1.9753 0.1891 0.4778 0.1252 0.1127 0.1611 1.066 

LARGE FARMS (Observations 193-384) 

1" OLS 1.8430 0.1412 0.1581 0.0835 0.1344 0.2614 0.2118 0.943 0.990 
( 42.7) (3.5) (2.8) (5.7) ( 10.6) (13.6) (5.5) 

4" OLS ataj 0.1632 0.0165 0.4780 0.1059 03275 -0.0188 0.985 1.091 
(23) (0.1) (3.6) (2.9) (5.6) ( -0.3) (1.072) 

5a" LPlOO 1.9743 0.3558 0.1866 0.0175 0.1252 0.2282 0.1482 1.061 
5e" LP97 2.0586 0.2078 0.2770 0.1438 0.1750 0.2567 1.060 

C = constant D=land M = seed and rniscdlaneous 
L = labor F = fertilizer 
K=capital V = livestock 
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it might be. Still, the following results should be cautiously interpreted. Table 8-3 
reports the estimated coefficients of the production functions for small and large 
farms separately. 

There is no evidence of economies of scale when the sample is split into large 
and small firms, even for "biased" functions. The value of e is not significantly 
different from one for any of the eight functions reported in Table 8-3. (The 
value of e for Equation 4' is less than one, but only if the negative capital coeffi­
cient is added in, which makes little sense. Ideally, capital should be dropped from 
the function and the regression estimated again.) Both the biased and unbiased 
values of e, for both the large and small firm size samples, are almost identically 
one.GO 

Where did the economies of scale go? Despite the insignificance of several of 
the coefficients in Table 8-3 and the bias resulting from splitting the sample, the 
answer seems relatively clear. There are two separate production functions for 
U.S. agriculture-one for small farms and one for large. This confirms the find­
ing about the structure of management bias reported in Chapter 6. There the con­
clusion was that no "good" managers were to be found operating small farms, 
and the data set was effectively partitioned into large and small farms with a 
separate function for each. Comparing Equations l' and 1" from Table 8-3 ef­
fectively proves the point. The elasticity of output is unity for both. The factor 
elasticities are nearly identical, except for capital. The intercept is higher for the 
large farms than for the small. Large farms are basically neutral multiplications 
of small farms, except that they use relatively more capital. The result is a higher 
overall intercept but a lower elasticity of output for capital.57 Thus "small" farms 
can presumably become "large" farms-with their resulting higher productivity 
-only by a massive injection of capital. 

The significant economies of scale reported in Table 8-2, then, were due to 
fitting a single production surface to two discrete surfaces.58 The larger sized 
farms, although producing with constant returns to scale, are more "productive" 
than the smaller farms, which also have constant returns to scale. The overall 
function thus reports the higher productivity of the large farms relative to the 
small farms as economies of scale, when in fact the difference is due to a different 
production function being used by large farms. The overall effect is the same, but 
the implications for an individual farmer are not. As long as a farmer remains 
small he experiences constant returns, and once he has become large he experi­
ences constant returns. The only increasing returns occur in the transfer from 
one production function to the other. 

Breaking the sample into large and small farms yields some other interesting 
results. Once again the frontier seems to be a neutrally shifted average function. 
This is true of even the LP 100 estimate for the small farm sample, suggesting that 
the errors of observation are concentrated in the large farm sample. 

. 66 It is worth noting that "analysis of covariance bias" does not show up when the sample is split 
In two. That is, the value of e is not lower for analysis of covariance estimates than for ordinary least 
squares estimates. The impact of any bias due to the technique of analysis of covariance in the whole 
sample seems, therefore, not to be of substantial magnitude. 

57 This is due, presumably, to the setting in of diminishing returns. 
58 It should be noted that more than two surfaces may possibly exist. The analysis so far has shown 

that at least two exist. 
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The removal of management bias by analysis of covariance once again changes 
the estimated coefficients significantly. In the small farm sample the results are 
nearly identical to what happened for the overall sample. The capital and ferti­
lizer coefficients drop drastically (to insignificance in this case) and the land co­
efficient increases. These are familiar results. But, in addition, the seed and mis­
cellaneous coefficient increases almost threefold and increases in significance. Evi­
dently in the small farm sample use of seed and other miscellaneous factors is nega­
tively correlated with management. The most likely reason is that this variable, 
at low levels, is mostly a catchall for nonproductive expenditures. These are rela­
tively important for poor managers on small farms, but become less important, 
relatively, for better managers on larger farms (although still in the small farm 
classification) . 

Management bias in the large farm sample has somewhat different effects. 
The capital coefficient drops as before, but the fertilizer coefficient drops only 
slightly. On large farms the use of capital continues to be collinear with manage­
ment, but fertilizer no longer is. By the time a farmer has reached "large" scale 
he uses the correct amount of fertilizer no matter what the level of management. 
But now the seed and miscellaneous variable becomes highly collinear with man­
agement-the coefficient drops to (less than) zero when management bias is re­
moved. This variable thus seems to play an entirely different role in the large and 
small farm samples. It was a catchall for nonproductive expenses on small farms, 
but on large farms the "modern" aspects of the variable, such as herbicides and 
pesticides, seem to take over. Then it becomes strongly collinear with manage­
ment. 



CHAPTER 9. SUMMARY AND CONCLUSIONS 

Economics is in many ways a science of efficiency. The decision­
making rules postulated in most economic models require some sort of opti­
mizing on the part of the participants, be they consumers or producers. And 
optimum means efficient. Thus a Pareto optimum is the highest degree of allo­
cative efficiency. Underlying allocative efficiency are several other types of effi­
ciency that, because they are building blocks for the rest of the economic struc­
ture, are as important or more so than allocative efficiency in determining how 
much society gets for its scarce resources. Chief among these is technical or pro­
ductive efficiency, roughly defined as the extent to which the greatest possible out­
put is achieved from any given combination of inputs. It is a problem almost com­
pletely internal to the firm, and for this reason technical efficiency has only re­
cently entered the realm of economics. Previously it was considered solely an 
engineering or management problem not subject to economic analysis. 

Two factors are primarily responsible for the new interest of economists in 
technical efficiency. First, linear programming techniques revealed a great deal 
of similarity between allocation of resources among firms and allocation within 
the firm. Second, in the 1950s economic growth became a major field of study 
for economists. The determinants of growth are closely related to those factors 
that cause a firm to use the "best" practices in an industry rather than "average" 
practices. The distinction between best and average is partly a matter of technical 
efficiency. 

The integration of technical efficiency into economics has been largely ad hoc, 
with little attempt to place the concept in the context of economic theory. Follow­
ing the lead of a handful of workers, primarily Farrell, Nerlove, Bressler, and 
Aigner and Chu, this study makes that attempt. A measure of technical efficiency 
is constructed that is consistent with accepted microeconomic theory of the firm, 
and the measure is used in an empirical application to U.S. agriculture. 

The innovation introduced by Farrell, that technical efficiency be measured 
relative to a frontier production function, is the basis for the model used here. The 
Farrell technique of constructing a frontier unit isoquant has a great many virtues 
in a two- or three-factor world because no artificially constraining functional 
forms need to be imposed on the data. But in a more-than-three-factor world the 
technique, while still yielding satisfactory estimates of technical efficiency, is very 
cumbersome as a means of examining what the production surface looks like. The 
empirical example used here has six factors of production, so the fitting of a func­
tional form to the frontier was more convenient and revealing. A side benefit was 
the ease with which the frontier function could be compared to the average func­
tion. Thus the measure of technical efficiency ultimately used here relates the 
actual output of a firm to the output achievable with that firm's inputs if the 
frontier production function were used. 

The data set used in the empirical part of this monograph is an 8 X 48 
matrix, where each of the 48 contiguous states is considered a "farm firm" and 
the observations are over the eight-year interval 1960-67. The suspected presence 
of management bias in any sample of firm input and output data meant a time 
series of cross-section observations was necessary to construct an unbiased measure 
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of technical efficiency. There are few such data sets available, and the one used 
here is not suitable for testing the full implications of the theoretical model de­
veloped earlier. The sample size (384 observations) was large enough to yield 
good estimates of the production functions, but a secondary goal, relating the re­
sulting technical efficiency ratings to characteristics of the firm and firm operator, 
was largely thwarted. The reasons turned out to be twofold: (1) the six-factor pro­
duction function was capable of explaining most of the variation in output so that 
little remained for technical inefficiencies to explain, and (2) the level of aggrega­
tion of the data washed out most firm-level differences in managerial effectiveness. 

The removal of management bias from the production functions through the 
use of analysis of covariance turned out to have important consequences. The 
strong positive collinearity of management with several factors of production, 
especially capital and fertilizer, caused the estimated coefficients of these factors 
to drop sharply when management bias was removed, although analysis of co­
variance bias may also have been partly responsible. Capital dropped completely 
out of the production function, probably because of the quality of the data. The 
elasticity of output for fertilizer dropped to a much more reasonable value when 
compared with the cost of fertilizer. The ratio of marginal revenue product to 
marginal cost dropped from about 5 to about 1.5. The latter value is still high 
enough to indicate substantial disequilibrium with respect to fertilizer use and 
thus to account for the continuing rapid growth in consumption, but a value of 
1.5 is not so high as to throw suspicion on the rationality of American farmers. 

The frontier production functions bore little relationship to the average func­
tions when determined by the entire data set. But when 2 per cent of the "ex­
treme" observations were removed, the frontier production functions turned out 
to be almost neutral transformations of the average production functions, i.e., the 
factor coefficients were almost identical, but the overall intercept was higher for 
the frontier. When a simpleminded attempt was made to remove management 
bias from the frontier function a similar result occurred. 

The presence of management bias in the frontier function was disturbing, for 
the implications were that two separate production functions existed rather than 
one. This was confirmed when the sample was divided into large and small farms 
and the functions reestimated. The small farm production function was similar 
to the large farm function except for a higher elasticity of output for capital and 
a lower overall intercept. More importantly, both the small and large farm func­
tions exhibited constant returns to scale, in marked contrast to the significant in­
creasing returns found when the function was estimated for all farms together. 
The source of the scale economies was clearly the shift between the small and 
large functions (which seem only to be brought about with a large capital invest­
ment) and not continuous scale economies over the length of the function. The 
bias introduced by splitting the sample and reestimating the functions is not 
likely to be strong enough to invalidate completely these findings. 

The empirical findings about the importance of technical inefficiencies at the 
state level were interesting although mostly negative. A simple six-factor average 
production function explained 97 per cent of the observed variation in output. 
The average state was only 7.6 per cent away from the technical frontier, and at 
least half of this distance was accounted for by measurement errors and defini-
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tional problems. This was taken as evidence that static, cross-sectional differences 
in technical efficiency at the state level disappear when the production function 
contains all relevant input factors, particularly such "modern" factors as fertilizer, 
hybrid seeds, and pesticides. 

Thus Griliches' finding that the residual of technological change in U.S. agri­
culture disappeared when the production function and inputs were properly speci­
fied is extended to static cross-section differences in technical efficiency as well. 
This is, perhaps, not a surprising result for a competitive sector of the economy 
that faces a national market. Whether a similar situation existed 30, 50, or 100 
years ago is a question worthy of further research. The answer would reveal a 
great deal about the regional nature of agricultural development and the evolu­
tion of the present structure of U.s. agriculture. 
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THE FOOD RESEARCH INSTITUTE DEDICATES A NEW BUILDING 

On April 6, J970, the Food Research Institute and Stanford University celebrated 
the dedication of a newly reconstructed building on the Stanford campus for use by 
scholars of the Institute. The occasion was marked by three formal addresses and a 
short dedication ceremony conducted on the building terrace by Stanford Board of 
Trustees Chairman W. Parmer Fuller III and University President Kenneth S. Pitzer. 
Invited guests were entertained at the Institute for luncheon and the Stanford Faculty 
Club at dinner. 

Speakers at the dedication emphasized the history, traditions, and significance of 
the Institute and the cause of applied economic research. Dr. Joseph S. Davis, one of 
the three founding Directors, traced the development of the Institute from its con­
ception in 1921 through its formative years. His description of the activities and events 
surrounding the original scholars is a delightful recounting of the excitement involved 
in launching a new enterprise. His talk was followed by that of Dr. Robert D. Calkins, 
Vice-Chancellor, Division of Social Science, at the University of California at Santa 
Cruz, former long-time President of the Brookings Institution at Washington, D.C., 
and product of the Food Research Institute during Davis' tenure as co-Director. 
Calkins spoke of the high purposes and early accomplishments of applied economic 
research, particularly in reaction to and as a product of the great challenges posed by 
twentieth century problems. Whitney MacMillan, Vice President of Cargill, concluded 
the addresses with a summary of the events leading to the federal farm policy of 1963, 
and the role of the Institute's scholarship in clarifying the issues involved in that 
controversy. A pamphlet containing these addresses and including a statement by 
Institute Director, Dr. William O. Jones, is available on request to the Institute. 

The Food Research Building is a reconstruction of the west wing of Encina Hall. 
Built in 1893, Encina was the home of generations of Stanford freshman men until 
the early 1950S when they were displaced by University administrative offices. The 
original sandstone walls, left intact by the renovation, retain Encina's traditional Cali­
fornia flavor while the elegantly carved initials still etched on the window ledges are 
a reminder of the building's colorful history. Recent excavations on the site uncovered 
long forgotten steam tunnels rumored by the early occupants to lead across campus 
to a freshman women's residence. 

Inside, the four floors, basement, and attic provide modern working space for the 
Institute's research staff, students, and Library. The Food Research Library, located 
on the ground floor and basement levels, particularly benefited from the move. Its re­
search holdings, well known for strength in statistical compendia, commodity reports, 
and sub-Saharan African publications, had been scattered in three locations, two of 
which were unavailable for browsing. The new location provides housing, research, 
and study space adequate to current needs as well as provision for the Institute Li­
brarian and his staff. Four seminar rooms and a classroom facilitate the teaching mis­
sion of the Institute. Faculty studies, student workrooms, a large faculty reading room, 
and other supporting facilities complete the accommodations. 

The $1,750,000 remodelling project began in January 1968 when the Office of 
Education provided a matching grant to supplement gifts from more than a dozen 
foundations and corporations. A plaque commemorating these generous offers is lo­
cated in the entrance lobby. 
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