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Behavioural Change through Agri-Environmental Policies ? – 

A Distance Function based Matching Approach 

 

 

Abstract 

This empirical study investigates the effects of different agri-environmental schemes on individual 

producer behaviour. We consider the effects on production intensity, performance and structure for a 

sample of UK cereal farms for the period 2000 to 2009 and use the policy examples of the 

Environmental Stewardship Scheme (ESS) and the Nitrate Vulnerable Zones (NVZ). The econometric 

methodology is based on a directional distance function framework as well as the application of 

propensity score analysis by the use of matching estimators. We find that both schemes are effectively 

influencing production behaviour at individual farm level. However, agri-environmental schemes show 

only very minor effects on the technical and allocative efficiency of farms, hence, we can conclude that 

farms enrolled in agri-environmental schemes are efficiently adjusting their production decisions given 

the constraints by the respective scheme. Farms affected by these schemes indeed tend to become less 

specialised and more diversified with respect to their production structure. A voluntary type agri-

environmental scheme seems to signficantly influence producer behaviour at a far higher scale than a 

non-voluntary agri-environmental scheme. The methodological novelty of this research lies in the use of 

a sound production theory based multi-output multi-input approach to disentangle measures for 

production performance and structure which are then used as indicators for the robust treatment effects’ 

analyses. 

 

Keywords Agri-Environmental Policy, PES, Distance Function, Propensity Score Matching 

JEL  Q15, Q18, Q57, C23 

 

1) Introduction 

Policies to encourage the provision of agri-environmental goods have been introduced and developed 

since the 1980s as a consequence of rising concerns that agricultural support measures have led to a 

threatening level of land use intensity. Following standard economic theory, such agri-environmental 

goods (e.g. water quality or biodiversity) are unlikely to be provided through a market mechanism at 

their socially optimal levels because of externalities as well as the public good nature of the targeted 

goods. However, market based policy instruments are generally considered as a more cost-effective way 

to achieve environmental goals compared with command-and-control based policy instruments. 

There is a considerable policy interest in the performance of agri-environmental measures. This is 

especially true with respect to voluntary agreement based agri-environmental schemes. Despite the 

widespread application of such agri-environmental schemes their cost-effectiveness and economic 

efficiency is only poorly understood. Given policy and fiscal needs (e.g. the current funding program for 
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the UK agri-environment schemes is due to be revised in 2013, see e.g. Natural England 2010) there is an 

increasing debate among academics and policy makers as to whether schemes as currently implemented 

actually deliver the expected outcomes (see Ferraro and Pattanayak 2006, Butler et al. 2009, Hodge and 

Reader 2010, Sauer and Walsh 2010). This study aims to deliver empirical evidence on the impact of 

different agri-environment related regulatory instruments on farmers’ production and investment 

decisions. We investigate the command-and-control based instrument of the Nitrate Vulnerable Zones 

Scheme (NVZ) and the voluntary agreement based instrument of the Environmental Stewardship Scheme 

(ESS). The analysis aims to disentangle the effects of those instruments on individual producer behaviour 

by measures of input intensities, production structure and farm performance. 

In a first step input intensity indicators are calculated for the different farm type samples. In a second 

step partial performance measures and the individual farms’ efficiency is estimated using a multi-output 

multi-input directional distance function approach as the dual to the profit function. A third analytical 

step consists of estimating the average change in these measures due to the effects of the policy schemes. 

This is done by using a matching estimator approach based on statistical propensity score analysis. 

Propensity score analysis is useful for evaluating policy instrument/program related treatment effects 

when using nonexperimental or observational data. As farm enterprises are economic phenomena defined 

by a multitude of different characteristics over space and time such a matching approach is needed to 

accurately determine the effect of agri-environmental policy instruments on these farms in a statistically 

robust way. 

The remaining paper is structured as follows: The next section outlines the policy instrument of agri-

environmental schemes. Section 3 introduces the conceptual model of production behaviour including 

potential effects of agri-environmental schemes. Section 4 covers a brief introduction of the policy 

schemes considered whereas section 5 describes the datasets. Section 6 discusses the estimation results 

and finally section 7 concludes the study. 

2) Agri-Environmental Schemes and Producer Behaviour 

Considering instruments of economic policy at a very general level, economic instruments can be 

distinguished from traditional command-and-control instruments (see Hepburn 2006). In the area of agri-
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environmental policy economic instruments for conservation purposes (as e.g. market-based mechanisms 

such as eco-certification) are usually subsumed under the heading of payments for environmental 

services (PES). Following Wunder (2005) and Pagiola et al. (2007), payment schemes for environmental 

services generally have two common features: (1) they are voluntary agreements, and (2) participation 

involves a management contract (or agreement) between the conservation agent and the landowner. The 

latter agrees to manage an ecosystem according to agreed-upon rules (e.g. reducing fertiliser usage or 

stocking rates, or providing a public good by fencing to exclude stock from remnant bush) and receives a 

payment (in-kind or cash) conditional on compliance with the contract. Such contractual relationships are 

subject to asymmetric information between farmers and conservation agents. 

Information asymmetries in the design of such contracts relate to hidden information and hidden action. 

Hidden information (leading to adverse selection) arises when the service contract is negotiated: Farmers 

hide information about their opportunity cost structure with respect to supplying the environmental 

service and, hence, are able to claim higher costs of provision and finally higher payments. Hidden 

information has been the subject of numerous theoretical analyses in the context of agri-environmental 

payment schemes (see e.g. more recently Ozanne et al 2001, Peterson and Boisvert 2004, Ozanne and 

White 2008, Russell and Sauer 2011). Hidden action (or moral hazard) arises after the contract has been 

negotiated leading to costly monitoring and enforcement in the case of non-compliance on the side of the 

conservation agent. The agent might not be able to perfectly monitor and/or enforce compliance or might 

choose not to monitor and/or enforce compliance. Hence, the farmer has an incentive to avoid the 

fulfillment of the contractual responsibilities and to seek rent through non-compliance (see e.g. more 

recently Ozanne and White 2008, Yano and Blandford 2009, Zabel and Roe 2009, Russell and Sauer 

2011). 

Economists usually model the compliance decision of a firm or farm as a choice under risk with 

monitoring being essentially a random process (see e.g. Heyes 1998). Let us suppose that there exists 

some regulation (e.g. the requirements by a conservation contract) requiring a farm or landowner to 

execute action a (e.g. to reduce the use of chemicals on a particular piece of land). If the cost to comply 

with that regulation for farm i is ci, the probability of non-compliance being detected is η, and the 
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penalty for non-compliance is p, then a profit-maximising and risk neutral farm will comply if and only 

if 

(1)  �� � ��          

or 

(2)  �� � �� � 0        

Those farms that find 

(3)  �� � �� � 	�      

where ti denotes a farm specific treshold, will comply and execute action a. The rest will take the risk of 

being caught and fined with ηp. However, what matters in environmental and hence policy terms is the 

compliance rate across all farms taking part in the agri-environmental scheme j, say γj. Farms differ with 

respect to ci and ti reflecting differences in managerial skills, technology, location but also individual 

attitudes and experiences. If c is distributed according to some cumulative distribution F(ci), then the 

compliance rate across all farms taking part in the scheme, γj, can be expressed as a function of the 

enforcement policy parameters 

(4)  
� � 
����      

By raising η - the probability that non-compliance will be penalized - and/or raising p - the size of the 

penalty - compliance becomes more attractive to the farm and so γj increases. The magnitude of such an 

increase (i.e. the effectiveness of a raise in η and/or p) will depend on the shape of F. Assuming social 

disutility as the sum of the unweighted sum of all AES scheme costs and environmental damage, 

compliance decisions will be firstbest if and only if the product ηp happens to equal the marginal 

expected environmental damage caused by non-compliance. For any given scheme population 

compliance rate γj  the distribution of compliance effort between farms is efficient - as it is always those 

farms with the lowest compliance cost ci that do comply (Heyes 1998). Hence, the conservation agent 

maximizes compliance (i.e. minimizing environmental damage) by setting both η and p as high as 

possible. Full compliance is only ensured if ηp exceeds the upper bound of c. In most cases, however, 

this will not be possible because of budgetary, legislative and other constraints. In a more realistic 
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setting, the compliance decision faced by each farm is continuous in character, i.e. a farmer will typically 

have to choose a level of compliance, i.e. a level of action a (e.g. reducing the use of chemicals ch on a 

particular piece of land) which is an inherently continuous variable. 

Farm i is subject to a regulatory standard which forbids it from using input chi beyond some level s. 

Assume that the expected penalty for exceeding the level s is an increasing function p(chi – s) of the size 

of the violation and compliance costs are increasing according to a function c(chi). Then the farm i has to 

choose a level of input to minimize  

(5)  ������ � ����� � ��     

The first-order condition provides the solution chi* 

(6)  �′����∗� � ��′����∗ � ��    

The farm uses the detrimental input up to the point at which the marginal cost (i.e. foregone profit) of 

further decreasing input ch equals the marginal saving in terms of expected penalties. The size of the 

violation depends only on the marginal, not the average properties of the expected penalty function 

which is the essential message of the ‘theory of marginal deterrence’ (e.g. Shavell 1992, Stavins 1996). 

Pullin and Knight (2009) stress that the problems of environmental change and biodiversity loss have 

entered the mainstream political agenda. It seems likely that conservation biologists and environmental 

managers will be asked about the effectiveness of conservation interventions. Hence, managers and 

policy actors require an interim product (an evidence-base) to underpin their current decision-making.  

Green accounting matrices or input-output accounting systems (IOA) have been developed in countries 

with intensive agricultural production to facilitate voluntary improvements in farm environmental 

performance. These systems are to be used for the assessment of farm input use and efficiency in areas 

with intensive agricultural production as a response to an increased interest in the environmental 

performance of different farming systems. Halberg et al (2005) conclude that such systems need further 

development and standardization. Only a few studies so far have attempted to empirically measure the 

actual impact of being subject to agri-environmental schemes on producer behaviour at individual farm 

level using statistical or econometric tools. Brady et al (2009) assess the long-term effects of the 2003 

CAP reform on farm structure, landscape mosaic and biodiversity using a spatial agent-based model for a 
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sample of EU countries. Mosnier et al (2009) employ a bio-economic modelling approach to estimate the 

effect of decoupled payments and cross-compliance measures for typical farms in the Southwest of 

France. Pufahl and Weiss (2009) find that agri-environmental schemes significantly reduced the purchase 

of fertiliser and pesticide of individual farms in Germany. Sauer and Walsh (2010 and 2011) most 

recently attempt to measure the relative cost-effectiveness of agri-environmental schemes using a farm 

level approach based on large panel data sets and taking into account farms’ compliance behaviour. We 

try to contribute to this evolving empirical literature by providing a sound production theory based 

analysis which satisfactorily addresses the problem of identification with respect to behavioural changes 

at farm level (see also Rosenzweig and Wolpin 2000). 

3) Conceptual Model 

We start our empirical investigation by modelling an individual cereal farm i focusing on the production 

decisions at time t. As the typical cereal farm produces more than one output (e.g. arable output, 

livestock output, other output) using more than one input (e.g. land, labor, fertilizer, chemicals) we 

employ the conceptual framework of a multi-output multi-input distance function. 

Directional Technology Distance Function 

The set of all technologically possible input-output combinations for cereal farm i can be described by 

the following production technology: 

(7)  � � ���, ��: �	can	produce	�$ 
where � ∈ &'( is a vector of inputs and � ∈ &') is a vector of outputs. Following Chambers et al (1998) 

we assume that: 

 (t1) T is closed 

 (t2) free disposability: if	��, �� ∈ �, � ′ � �, and	� ′ � �		then	.x′, y′1 ∈ T  

 (t3) no free lunch: if	��, �� ∈ �		and	� � 0		then		� � 0 

 (t4) possibility of inaction: �0,0� ∈ � 

 (t5) T is convex. 
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The directional technology distance function (DTDF) provides a complete functional representation of 

the production technology and a measure for production (in)efficiency (Chambers et al 1996 and 1998, 

Faere and Grosskopf 2000). The DTDF represents a variation of the shortage function (Luenberger 1992) 

and is related to the well known Shephard (1953) input and output distance functions. It measures the 

distance from a particular observation to the efficient boundary of technology and its value depends on a 

mapping rule (or a directional vector) by which the direction is determined in which the inputs are to be 

contracted and the outputs are to be expanded (see also Guarda et al 2011). 

For a given direction 3 � .34 , 351 with  34 ∈ &'( and  35 ∈ &') the DTDF is given by 

(8)  67789.�, �; 34 , 351 � �;�<=: .� � =34 , � � =351 ∈ �> 
and takes values in the interval ?0, �∞A. The directional distance function equals zero for technically 

efficient observations and takes a positive value for inefficient observations. The technology assumptions 

(t1) to (t5) imply the following properties of the DTDF: 

 (d1) translation property:  67789.�B � λ34, �B � λ35; 34, 351 � 67789.�B, �B; 34 , 351 � λ	CDE	FGG	λ ∈ &  

 (d2) g-homogeneity of degree minus one:   67789.�B, �B; H34 , H351 � HIJ67789.�B, �B; 34 , 351, H K 0 

 (d3) input monotonicity:   � ′ � � → 67789.�′B, �B; 34 , 351 � 67789.�B, �B; 34 , 351 

 (d4) output monotonicity:   � ′ � � → 67789.�B , �′B; 34 , 351 � 67789.�B, �B; 34 , 351 

 (d5) concavity:   67789.�B , �B; 34 , 351	is	concave	in	��, �� . 
For every observation k, k = 1, …, K 

(9)  PB � 67789.�, �; 34 , 351 � QB 

where PB~|T�0, UVW�| is a nonnegative error component representing the distance function value and 

QB~T�0, UXW� is a conventional two-sided disturbance term accounting for specification errors. The 

translation property of the DTDF allows for its empirical estimation (Chambers et al 1998, Faere and 

Grosskopf 2000) 

(10)  67789.�B � λ34, �B � λ35; 34 , 351 � 67789.�B, �B; 34 , 351 � λ 
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with λ ∈ & and is the additive analog of the homogeneity property of the Shephard distance function. 

This property implies that the translation of the input-output vector from (x, y)  to .� � λ34, � � λ351 
leads to a decrease in the distance function value by the scalar λ. Hence, by substituting (9) into (10) we 

obtain 

(11)  �λ � 67789.�B � λ34, �B � λ35; 34 , 351 � PB � QB 

Assuming a simultaneous expansion of all outputs and a contraction of all inputs we set 3 � .34 , 351 �
�1,1� which implies that the amount by which a farm could increase outputs and decrease inputs will be 

67789��, �; 1,1� units of x and y. For a farm that is technically efficient, the value of the directional distance 

function would be zero whereas values of 67789.�, �; 34 , 351 K 0 would indicate inefficiency in 

production. If such a mapping rule is used with λ � �J we obtain 

(12)  ��JB � 67789�0, �WB∗ , … , �(B∗ , �JB∗ , … �)B∗ � � PB � QB 

where �WB∗ � �WB � �JB, … , �(B∗ � �(B � �JB, �JB∗ � �JB � �JB, �)B∗ � �)B � �JB. 

Duality and Nerlovian Profit Efficiency 

An essential property of the directional technology distance function is that it is dual to the profit 

function. Profit maximisation requires the simultaneous adjustment of outputs and inputs, which is also a 

characteristic of the DTDF. Denote input prices by  [( ∈ &'(, ouput prices by  �) ∈ &') and technology 

T, we can define the profit function  Π��, [� as: 

(13)  Π��, [� � max��� � [�: ��, �� ∈ �$ 
which is homogeneous of degree 1 in prices, convex and continuous in positive prices. The Luenberger 

inequality can be used to derive the decomposition of profit efficiency giving the following duality 

theorem (Faere and Grosskopf 2000) 

(14)  Π��, [� � max<�� � [� � 67789.�B, �B; �34, 351��35 �[34�> 
67789.�B, �B; �34 , 351 � max ]Π��, [� � ��� � [���35 �[34 ^ 
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Rearranging (14) and adding an allocative inefficiency term (AE) closes the inequality and gives the 

Nerlovian profit efficiency measure (Chambers et al 1998) 

(15)  
Π�_,`�I�_5I`4�_ab'`ac � 67789.�B, �B; �34 , 351 � de 

Hence, in addition to the technical efficiency measures provided by the DTDF, AE measures the residual 

inefficiency due to failure to choose the profit maximizing input-output bundle given relative prices. 

Profit efficiency is the ratio of the difference between maximal and observed profit normalized by the 

value of the direction vector.
1
 

Second Order Elasticities 

The directional distance function allows for the measurement of substitution or complementarity 

relations between different inputs and outputs via the Morishima shadow price output and input 

elasticities of substitution (MES). The MES measure changes in relative output and input quantities as a 

consequence of changes in relative prices. MES can be interpreted as a measure of the percentage change 

in relative factors/outputs for a percentage change in price (Stern 2011). Following Blackorby and 

Russell (1989) and Färe et al (2005) the ratio of shadow output prices e.g. are derived from the DTDF as 

(16)  
_f′_g′ � � hi7778j.ck,bk;lmc,mb1hbfhi7778j.ck,bk;lmc,mb1hbg

 

and the Morishima elasticity is 

(17)  n5f5g � �J∗ oh
fi7778j.ck,bk;lmc,mb1hbfhbghi7778j.ck,bk;lmc,mb1hbf

� hfi7778j.ck,bk;lmc,mb1hfbghi7778j.ck,bk;lmc,mb1hbg
p 

with �J∗ � �J � q67789.�B , �B; �34, 351. 

Hence, we approximate the production behaviour and performance of a cereal farmer i at time t by using 

the concept of a directional distance function and derivable first and second-order measures. These 

measures indicate in how far farms participating in a voluntary management agreement type agri-

environmental scheme and/or affected by a non-voluntary command-and-control type scheme alter their 

production behaviour as a consequence of these schemes. However, farms differ with respect to their 

                                                 
1 Note that profit efficiency (and the directional distance function) depend on the direction vector chosen. 
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characteristics and compliance behaviour reflecting differences in managerial skills, technology, location 

but also individual attitudes and experiences. The need for a robust empirical identification of the policy 

instruments’ related treatment effects with respect to the farms production behaviour, hence, leads to 

crucial modelling implications. 

4) Schemes and Data 

For the modelling of the production technology we use individual farm data for the period 2000 to 2009 

based on the UK Farm Business Survey (FBS) annually collected and released by Defra. We extract a 

representative subsample of cereal farms (FBS robust type 1) using stratified sampling techniques with a 

total sample size of more than 4,000 observations. The dataset includes information on outputs and 

inputs as well as various farm and farmer characteristics. Table A1 in the appendix gives a descriptive 

overview of the sample used for estimations. 

For the agri-environmental schemes we use the examples of the Environmental Stewardship Scheme 

(ESS) and the Nitrate Vulnerable Zones (NVZ) in the UK. Whereas the first scheme is a typical 

agreement type instrument, the latter scheme is based on a command-and-control structure. 

The Environmental Stewardship Scheme (ESS) 

The UK Environmental Stewardship Scheme (ESS) has been launched in mid 2005 and replaces the 

previous UK agri-environment schemes. It consists of an entry-level (ELS) and a higher-level (HLS) 

scheme, whereas the entry-level scheme has also an organic strand (figure 1). The ESS is an example of 

the ‘wide-and-shallow’ approach replacing the more targeted schemes that were in place since the mid 

eighties (Dobbs and Pretty 2004 and 2008, Defra 2005). As part of the Environmental Stewardship 

Scheme, agricultural producers agree to modify their production activities to benefit the environment and 

are compensated for the costs they so incur. Most modifications imply a reduction in the intensity of 

production and the loss is usually conceived as income foregone by profit-maximizing producers. The 

level of compensation offered must be sufficient to persuade producers to forgo production options and 

to replace the income they lose. 
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Figure 1 - Geographical Variation in ELS Uptake (by JCA) in the UK 

 

(Based on Chaplin 2009 and Farm Business Survey 2008, JCA: Joint Classification Area) 

The Nitrate Vulnerable Zones (NVZ) 

The Nitrate Pollution Prevention Regulations 2008 have been introduced to implement the ECs Nitrates 

Directive and to reduce nitrogen losses from agriculture to water. Areas where nitrate pollution is a 

problem are designated - known as Nitrate Vulnerable Zones (NVZs). Rules are set for certain farming 

practices to be followed in these zones. In 2006 the agricultural area designated as NVZs has been 

increased to about 68% (see figure 2). The owner or occupier of any land or holding within an NVZ is 

responsible for complying with the rules whereas the Environment Agency is responsible for assessing 

farmers’ compliance with these regulations, accomplished by random farm visits. Compliance with these 

rules is a requirement for cross compliance under SPS. Nitrate Vulnerable Zones rules concerning e.g. 

the storage of organic manures, the limiting of livestock manure, the planning of nitrogen use, the 

limiting of N requirements with respect to crop production, the management of spreading periods for 

organic manures and manufactured fertiliser, the nitrogen impact on surface water, and different field 

application techniques. 
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Figure 2 - Nitrate Vulnerable Zones (NVZ) in the UK 

 

(Based on ADAS 2007) 

5) Empirical Identification and Econometric Modelling 

Farm enterprises and their production behaviour are economic phenomena defined by a multitude of 

different characteristics over space and time. Hence, the accurate determination of the behavioural effects 

of agri-environmental policy instruments in a statistically robust way remains a methodological 

challenge (Rosenzweig and Wolpin 2000 or Rubin 1997). A frequent starting point for such analyses is 

the availability of disaggregated panel data which is necessary to address problems of unobserved 

heterogeneity and selectivity in policy programme participation. Different groups of observations are 

compared by applying a simultaneous before/after and with/without perspective mainly by a “difference-

in-difference” estimation method. 

With respect to agricultural policy analysis e.g. Kirwan (2009) used regression analysis to investigate the 

effects of US federal farm programs on land rental values whereas Pufahl and Weiss (2009) applied 

propensity score matching to evaluate the effects of the German agri environmental programme on 

production decisions. Petrick and Zier (2011) most recently estimate the effects of various CAP measures 
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on labor use in German agriculture. Different recent contributions in the area of econometric policy 

program evaluation point to the weak theoretical foundation of these empirical studies highlighting that 

structural models of economic behaviour (i.e. demand or supply structures) are missing (e.g. Heckman 

and Vytlacil 2007 or Heckman 2010). However, linkages to such underlying structural models of 

individual economic behaviour are crucial if agricultural production patterns are to be empirically 

modelled. 

Beside simple partial indicators of production intensity based on the green accounting approach, the 

following empirical analysis is informed by sound production theory as well as takes into account 

methodological issues of behaviour identification and quantitative impact evaluation. We address 

problems of latent heterogeneity and potential endogeneity with respect to the observed farms by a two-

stage estimation strategy to avoid the estimation of spurios policy effects (Imbens and Wooldridge 2009). 

The general research set-up of our study is as follows: In a first step input intensity indicators are 

calculated for the different observations in our cereal farm type sample. In a second step partial 

performance measures and the individual farms’ efficiency is estimated using a multi-output multi-input 

directional distance function approach (see section 3). This distance function is estimated as a frontier 

type function to obtain relative measures of individual farms’ efficiency. A third analytical step consists 

of estimating the average change in these measures due to location in a NVZ scheme relevant area and/or 

participation in the ESS scheme. This is done by using a bias-corrected and robust variance based 

matching estimator as an approach to apply statistical propensity score analysis (see e.g. Guo and Fraser 

2010, Abadie and Imbens 2002 and 2006, Abadie et al 2004). 

Econometric Estimation of Technology 

We parameterize the DTDF in (12) via a flexible transcendental-exponential functional form which we 

linearize as initially suggested in Blackorby et al. 1978 (see Blackorby et al 1978 and Chambers 1998). It 

represents a second-order Taylor series approximation which is linear in parameters and sufficiently 

flexible to adequately approximate the true production technology (Faere et al 2010). This functional 

specification corresponds to a multi-output and multi-input technology. The parameterized DTDF takes 

the form 
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(18)					r��s67789.�, �; 34 , 35, t1u �
∑ ∑ H��r�� w4xWy(�zJ(�zJ r�� w4{W y � ∑ ∑ |B}r�� w� 5kW y)}zJ)BzJ r�� w� 5~W y �
∑ ∑ 
�Br�� w4xWy)BzJ(�zJ r�� w� 5kW y � Q 

with t � �H, |, 
, �� as a vector of parameters to be estimated and Q is a random error assumed to be 

independendly and identically distributed with mean zero and variance UXW. The output vector y consists 

of cereal output and other (non-cereal) output; the input vector x includes labor, land, capital, fertilizer, 

chemicals, intermediate inputs whereas the latter is used as the scalar λ following (11) above. To obtain 

the dtdf specification we use the mapping rule: .� � λ34, � � λ351, i.e. .34 , 351 � �1,1�. All monetary 

values are deflated as is common practice. To measure individual farms’ efficiency we use a parametric 

stochastic frontier approach in a panel data specification applying the Battese and Coelli (1995) random 

effects estimator. The corresponding likelihood function and efficiency derivations are given in Coelli et 

al. (2005). 

To obtain measures of allocative efficiency via the Nerlovian profit efficiency formula (see equation (15) 

above) we estimate the dual profit function which we parameterize also by a flexible transcendental-

exponential functional form corresponding to the functional form chosen for the DTDF. The 

parameterized profit function takes the form 

(19)      r��?Π��, [�A � H� � ∑ ∑ H��r�� w`xW y(�zJ(�zJ r�� w`{W y � ∑ ∑ |B}r�� w_kW y)}zJ)BzJ r�� w_~W y �
			∑ ∑ 
�Br�� w`xW y)BzJ(�zJ r�� w_Wy � Q 

 

with t � �H, |, 
� as a vector of parameters to be estimated and Q is a random error assumed to be 

independendly and identically distributed with mean zero and variance UXW. This function is approximated 

using also a random effects estimator with the output and input price vectors corresponding to the 

quantities chosen for the DTDF specification as outlined above using a common Toernquist price 

formula where aggregated values are needed. 

To measure finally changes in output and input related production decisions at farm level we use the 

second order dual Morishima Elasticities of Substitution (MES) as outlined by equation (17). These 

measures may be computed for each observation and presented as an average over a subset of 

observations (such as for the full sample, a farm, a time period or a particular class), or may be computed 
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for the average values of the data for a subset of observations. The latter approach is called the delta 

method; it evaluates the elasticities at one point that represents the average value of the elasticity for a 

particular set of observations, allowing standard errors to be computed for inference even though the 

elasticity computation involves a combination of econometric estimates and data.
2
 

Unlike in the case of the quadratic function the estimation of the parameters of the transcendental-

exponential function does not require the imposition of additional parameter restrictions. The estimation 

of (18) using maximum-likelihood methods is, however, subject to the endogeneity problem (see Guarda 

et al 2011, Faere et al 2005) as it will result in inconsistent results, since all of its nonzero right-hand side 

variables are endogenous (see also Atkinson et al 2003) and hence, are correlated with the composite 

error term. To ensure consistency in estimation we first regress all right-hand side variables in (18) on 

their lagged values using all other regressors as instruments and then secondly use the so generated fitted 

values in the maximum-likelihood estimation of (18).
3
 

Econometric Estimation of Treatment Effects 

In a second step propensity score analysis is used to accurately identify the treatment effects of the policy 

schemes on farms’ production behaviour. Farm enterprises are economic phenomena defined by a 

multitude of different characteristics over space and time, hence, a sophisticated matching approach is 

needed to accurately determine the effect of agri-environmental policy instruments on these farms in a 

statistically robust way (Guo and Fraser 2010, Pufahl and Weiss 2009). As we use survey based 

nonexperimental data collected through the observation of farming systems as they operate in normal 

practice (see Rubin 1997) this type of method allows to reduce multi-dimensional covariates to a one-

dimensional score called a propensity score.  

The underlying framework of analysis refers to Neyman and Rubin’s counterfactual framework (Guo and 

Fraser 2010) where farms selected into treatment and nontreatment groups have potential outcomes (Y0, 

Y1) in both states (W=0,1): the one in which the outcomes are observed (E[Y1|W=1], E[Y0|W=0]) and the 

                                                 
2 The “delta method” computes standard errors using a generalization of the Central Limit Theorem, derived using Taylor series 

approximations, which is useful when one is interested in some function of a random variable rather than the random variable 

itself (Gallant and Holly, 1980, Oehlert, 1992).  For our application, this method uses the parameter estimates from our model 

and the corresponding variance covariance matrix to evaluate the elasticities at average values of the arguments of the function.     
3 An alternative solution is to estimate the DTDF frontier using the generalized method of moments (GMM) approach (see e.g. 

Atkinson et al 2003). This approach would yield more efficient estimates, however, beside being computational intense GMM 

estimates are often sensitive to the choice of instruments and finally the finite sample properties of the estimator are unknown 

(see O’Donnell 2003). 
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one in which the outcomes are not observed (E[Y1|W=0], E[Y0|W=1]). Unobserved potential outcomes 

under either condition are missing data. A matching estimator directly imputes the missing data at the 

unit level by using a vector norm. Specifically it estimates the values of Yi(0)|Wi = 1, i.e. the potential 

outcome under the condition of control for the treatment participant, and Yi(1)|Wi = 0 as the potential 

outcome under the condition of treatment for the control participant. 

The central challenge is the dimensionality of covariates or matching variables, as their number increases 

the difficulty of finding matches for treated farms increases also. Matching estimators use the vector 

norm to calculate distances on observed covariates between treated case and each of its potential control 

cases (i.e. counterfactuals). However, the following assumptions are crucial (Abadie and Imbens 2011): 

(1) The assignment to a specific treatment is independent of outcomes.
4
 (2) There is sufficient overlap in 

the distribution of observed covariates. 

Let the unit-level treatment effect for farm observation i be 

(20)      �� � ���1� � ���0� 
As one of the outcome is always missing, the matching estimator (ME) imputes this missing value based 

on the average outcome for farms with “similar” values on observed covariates. A simple ME is 

(21)      ����0� � ] �� �C	�� � 0J#�����∑ �}}∈����� �C	�� � 1 ;      ����1� � ] J#�����∑ �}}∈����� �C	�� � 0�� �C	�� � 1 

where JM(i) as the set of indices for the matches for farm observation i and #JM(i) as the number of 

elements of JM(i). In the case of more than one observed covariate the ME uses the vector norm to 

calculate distances between treated case and each of its multiple possible control cases. Consequently, M 

matches are chosen using the vector norm based on the condition of nearest distances applying 

(22)      �)��� � �G � 1,… ,T|�} � 1 ���, ‖�} � ��‖� � �)���$ 
with dM(i) as the distance from the covariates for unit i, Xi, to the Mth nearest match with the opposite 

treatment. Then point estimates for various treatment effects are obtained e.g. by the sample average 

treatment effect (SATE) 

                                                 
4 If (systematic and non-random) adverse or beneficial selection would be the case (see e.g. Russell and Sauer 2011) then this 

modeling assumption might not always hold. 
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(23)      �̂�����a� � J(∑ <����1� � ����0�>(�zJ � J(∑ �2�� � 1��1 � �)���$��(�zJ  

where KM(i) are the number of times farm observation i is used as a match, with M matches per unit i,  

and Wi as the treatment condition for unit i. Abadie et al (2004) recommend using four matches for each 

unit as the drawback of using only one match is that the process uses too little information in matching. 

As we use continuous covariates a bias-corrected matching estimator (Abadie and Imbens 2002) is 

needed which uses a least square regression to adjust for potential bias. Further, the assumption of a 

constant treatment and homoscedasticity may not be valid for certain types of covariates. To also account 

for such potential heteroscedasticity we use a 2
nd

 matching procedure matching treated to treated and 

control to control cases (see Abadie et al 2004). 

Table 1 summarizes the different matching models estimated. Model 1 aims to measure the treatment 

effects by the different agri-environmental schemes with respect to production intensity using simple 

partial indicators. Model 2 measures the schemes’ gradual treatment effects with respect to both 

production intensity and performance/structure whereas model 3 finally estimates the treatment effects 

with respect to production performance and structure approximated by the directional distance function 

application outlined before.  
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Table 1 - Matching Models 

model Wi Yi Xi N M wm bc rm 

 

1 ‘intensity’ 

WESS - ESS 

treatment 

(1 - ESS 

participation, 

0 - non ESS) 

 

WNVZ - NVZ 

treatment 

(1 - NVZ location, 

0 - outside NVZ) 

 

WEN - ESS and 

NVZ treatment 

(1 - ESS part & 

NVZ location, 

0 - not both) 

fertilizer expenditure 

per ha, 

chemicals exp p ha, 

variable costs p ha 

 

crop output, utilised 

agricultural area, annual 

working units, 

depreciation, livestock 

units, fertiliser or 

chemicals or variable 

costs, assets, agri-

environmental output 

(less ESS related), area 

under NVZ, 

county, altitude, less 

favoured area, age of 

farmer, education of 

farmer, gender of farmer, 

organic production, year 

4174 4 inverse 

variance 

4 10 

 

 

2 ‘dosage’ 

WEG - ESS gradual 

treatment 

(categories: 

 >0<=5,000 GBP ESS 

income, 

>5,000<=10,000 GBP 
ESS income, 

>10,000<=15,000 

GBP ESS income, 

>15,000<=20,000 
GBP ESS income, 

>20,000 GBP ESS 

income) 

 

WNG - NVZ 

gradual treatment 

(categories: 

>0<=25% of area in 
NVZ located, 

>25<=50% of area in 

NVZ located, 

>50<=75% of area in 

NVZ located, 

>75<=100% of area 
in NVZ located) 

fertilizer expenditure 

per ha, 

chemicals exp p ha, 

variable costs p ha 

 

crop output, utilised 

agricultural area, annual 

working units, 

depreciation, livestock 

units, fertiliser or 

chemicals or variable 

costs, assets, agri-

environmental output 

(less ESS related), area 

under NVZ, 

county, altitude, less 

favoured area, age of 

farmer, education of 

farmer, gender of farmer, 

organic production, year 

4174 4 inverse 

variance 

4 10 

 

 

3 ‘performance’ 

WESS - ESS 

treatment 

(1 - ESS 
participation, 

0 - non ESS) 
 

WNVZ - NVZ 

treatment 

(1 - NVZ location, 

0 - outside NVZ) 
 

WEN - ESS and 

NVZ treatment 

(1 - ESS part & 

NVZ location, 

0 - not both) 
 

land productivity 

(output per land), 

labor productivity 

(output per labor), 

capital productivity 

(output per capital), 

technical efficiency, 

allocative efficiency, 

Morishima 

Elasticities of 

Substitution (MES) 

ouputs / inputs 

crop output, utilised 

agricultural area, annual 

working units, 

depreciation, livestock 

units, fertiliser or 

chemicals or variable 

costs, assets, agri-

environmental output 

(less ESS related), area 

under NVZ, 

county, altitude, less 

favoured area, age of 

farmer, education of 

farmer, gender of farmer, 

organic production, year 

4174 4 inverse 

variance 

4 10 

Wi: treatment condition, Yi: indicator variable, N: number of observations, Xi: covariates; M: number of matches, wm: weighting matrix, 

rm: number of robust matches. 
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6) Results and Discussion 

We have estimated more than 100 different distance frontier and matching models for our sample of 

about 4,000 observations on cereal farms in the UK for the period 2000 to 2009. Due to space limitations 

we do not report the individual model parameters here, only those that are necessary for interpretation. 

However, all estimates can be obtained from the authors upon request. 

Production Intensity 

Table 2 gives a descriptive overview of the different intensity measures with respect to cereal producers 

in the period 2000 to 2009. Despite having removed significant outliers based on an exploratory data 

analysis the individual figures considerably vary around their means: 

Table 2 Farming Intensity Indicators at Sample Averages 

measure 

 

fertilizer per ha 

mean [min, max] 

chemicals per ha 

mean [min, max] 

variable cost per ha 

mean [min, max] 

mean 

expenditure
1
 

per ha (GBP/ha) 

122.877 

[0; 1,438.18] 

145.099 

[0; 1,516.37] 

861.151 

[1.081; 11,410.0] 

 1: all monetary figures are deflated with respect to the base year 2000. 

 

The matching estimation of model 1 (see table 1) resulted in the following treatment effects at sample 

average: 

Table 3 Sample Average Treatment Effect (SATE) - Model 1 

measure 

 

treatment effect at sample 

mean in mean expenditure per 

ha (GBP/ha) 

fertilizer per ha 

mean [min, max] 

chemicals per ha 

mean [min, max] 

variable cost per ha 

mean [min, max] 

ESS Scheme 
 
 

-57.914*** 

[-90.094; -25.733] 

-72.683*** 

[-112.694; -32.673] 

-345.589*** 

[-549.071; -142.107] 

NVZ Scheme 
-58.101*** 

[-96.776; -19.425] 

-71.244*** 

[-118.993; -23.495] 

-419.061*** 

[-654.497; -183.624] 

ESS and NVZ Schemes 
-58.777*** 
[-91.424; -26.131] 

-74.561*** 
[-118.989; -38.133] 

-541.569*** 
[-803.236; -279.902] 

*, **, *** - significant at 10, 5, 1%-level. 
 

 

This sample average treatment effect (SATE) allows to judge whether the particular instrument was 

“successful” (in terms of the indicators used). Considering the statistical significance of the individual 
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estimates we are able to judge if the sample average for the particular measure is significantly different 

from zero or not. 

Given the particular modelling assumptions and estimator used, these estimates suggest that the SATE is 

significantly different from zero for all partial intensity indicators and all treatments considered. The 

treatment effect for the usage of fertilizer is about the same magnitude for all three treatments 

investigated (i.e. a reduction in expenditure per ha of about 45-50%). The sample average treatment 

effect for the usage of chemicals shows to be a bit higher for farms that participate in the ESS scheme 

and are located in an NVZ designated area (i.e. a reduction in expenditure per ha of about 49-51%). For 

the total variable costs of production the estimates suggest again the highest reduction in production 

intensity for farms that participate in the ESS scheme and are located in an NVZ designated area (i.e. a 

reduction in variable costs per ha of about 40-63%). In total these results indicate that both schemes – 

management-agreement type as well as command-and-control type – are effective in influencing 

production behaviour at individual cereal farm level with respect to the environmental intensity of 

production. 

Production Intensity - Dosage 

Table 4 reports the results of the matching estimation of model 2 for the ESS scheme. 

Table 4 Sample Average Treatment Effect (SATE) - Model 2 ESS 

measure 
 

ESS treatment effect 

at sample mean in mean 

expenditure per ha (GBP/ha) 

fertilizer per ha 

mean [min, max] 

chemicals per ha 

mean [min, max] 

variable cost per ha 

mean [min, max] 

> 0 <= 5,000 

GBP ESS income p.a. 

(= 3.2% of total income) 

-50.112*** 
[-82.116; -18.109] 

-58.063*** 
[-98.005; -18.121] 

-288.109*** 
[-504.371; -71.848] 

> 5,000 <= 10,000 

GBP ESS income p.a. 
(= 4.1% of total income) 

-52.368*** 
[-84.619; -20.116] 

-71.431*** 
[-111.406; -31.454] 

-344.178*** 
[-542.542; -145.813] 

> 10,000 <= 15,000 

GBP ESS income p.a. 
(= 5.2% of total income) 

-66.082*** 
[-100.554; -31.611] 

-79.803*** 
[-120.929; -38.676] 

-349.175*** 
[-555.026; -143.325] 

> 15,000 <= 20,000 

GBP ESS income p.a. 
(= 8.4% of total income) 

-106.840*** 
[-143.684; -69.997] 

-80.670*** 
[-124.443; -36.897] 

-573.409*** 
[-807.667; -339.153] 

> 20,000 

GBP ESS income p.a. 
(= 13.4% of total income) 

-55.822*** 
[-89.857; -21.769] 

-66.409*** 
[-106.585; -26.233] 

-353.496*** 
[-556.744; -150.247] 

*, **, *** - significant at 10, 5, 1%-level. 
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The estimates for the dosage model suggest with respect to the ESS scheme that the SATE is 

significantly different from zero for all treatment dosages and intensity indicators considered. The 

highest average treatment effects are found for farms that generate about 15 to 20 TGBP per year which 

amounts to about 8.4% of their total annual income. However, it has to be noted that only 39 

observations in our sample fall in this dosage class, whereas the majority of farms (670) generate not 

more than 5 TGBP income by their ESS scheme participation per year. In general it can be concluded 

that a higher dosage of ESS participation (in terms of income points which amount to GBP) results in a 

higher effectiveness of the scheme. 

Table 5 reports the results of the matching estimation of model 2 for the NVZ scheme: 

Table 5 Sample Average Treatment Effect (SATE) - Model 2 NVZ 

measure 
 

NVZ treatment effect 

 at sample mean in mean 

expenditure per ha (GBP/ha) 

fertilizer per ha 

mean [min, max] 

chemicals per ha 

mean [min, max] 

variable cost per ha 

mean [min, max] 

> 0 <= 25% of area 

 under NVZ 
-40.684** 
[-73.385; -7.982] 

-90.625*** 
[-128.816; -52.433] 

-204.883* 
[-427.449; 17.685] 

> 25 <= 50% of area 

under NVZ 
-54.387*** 
[-89.634; -19.141] 

-74.681*** 
[-116.333; -33.029] 

-478.094*** 
[-694.668; -261.521] 

> 50 <= 75% of area 

under NVZ 
-36.623** 
[-75.641; 2.395] 

-71.367*** 
[-113.352; -29.381] 

-436.859*** 
[-667.149; -206.568] 

> 75 <= 100% of area 

under NVZ 
-59.278*** 
[-96.211; -22.345] 

-72.381*** 
[-118.004; -26.756] 

-414.034*** 
[-636.746; -191.322] 

*, **, *** - significant at 10, 5, 1%-level. 

 

 

The estimates for the dosage model suggest with respect to the NVZ scheme that the SATE is the highest 

with respect to fertlizer usage for those farms that have more than 75% of their area in an NVZ scheme. 

However, with respect to chemicals the scheme seems to be most effective for farms that have only up to 

25% of their area under the scheme. For the intensity indicator variable cost it seems that farms with an 

NVZ area of between 25-50% show the highest treatment effect. Apparently, the dosages of the NVZ 

scheme significantly vary in their treatment effects. Nevertheless, farms with about 25 to 50% of their 

area affected by the NVZ scheme seem to show the highest treatment effects overall. However, these are 
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only about 37 observations in our sample, whereas the majority of farms has between 75 and 100% of 

their agricultural area located in an NVZ area. 

Production Performance and Structure 

Table 6 gives a descriptive overview of the different partial and total performance measures with respect 

to cereal producers in the period 2000 to 2009 (column 2). These estimates are either simple productivity 

ratios or based on the estimation of the distance frontier outlined above. The matching estimation of 

model 3 (see table 1) resulted in the following treatment effects at sample average for the two schemes 

(columns 3 to 5): 

Table 6 Performance Indicators and Sample Average Treatment Effect (SATE) - Model 3 

 

measure 

performance 

measure at 

sample mean 

ESS Scheme 

treatment effect 

at sample mean 

NVZ Scheme 

treatment effect 

at sample mean 

ESS and NVZ 

Schemes 

treatment effect 

at sample mean  

land productivity 

(output in GBP per land in ha) 

1253.934 

[15.313; 720941.6] 

-392.043*** 
[-657.547; -126.540] 

-538.297*** 
[-848.586; -228.008] 

-498.223*** 
[-34.806; -261.64] 

labor productivity 

(output in GBP per labor in awu) 

110682.4 

[631.764; 1.02e+07] 

30255.73*** 
[8991.682; 51519.78] 

38130.55*** 
[13548.16; 62712.94] 

103304.4*** 
[55219.94; 151388.9] 

capital productivity 

(output in GBP per 

total assets in GBP) 

0.236 

[0.007; 2.712] 

-0.039** 
[-0.073; -0.006] 

-0.024*** 
[-0.039; -0.007] 

-0.071*** 
[-0.122; -0.019] 

technical efficiency (in %) 
94.71*** 
[81.17; 99.49] 

0.012*** 
[0.011; 0.013] 

0.001** 
[-1.115e-04; 0.002] 

0.004*** 
[0.002; 0.006] 

allocative efficiency (in %) 
59.05*** 
[0.08; 0.65] 

8.82e-04 
[-0.001; 0.003] 

-4.85e-04 
[0.002; 9.91e-04] 

-0.009*** 
[-0.013; -0.004] 

*, **, *** - significant at 10, 5, 1%-level; MES: Morishima Elasticity of Substitution. 

 

 

It gets clear from the estimates that both agri-environmental schemes lead to significant effects on 

productivity measured by partial productivity ratios. The sample average treatment effect on land 

productivity as well as capital productivity is for both schemes significantly negative whereas the SATE 

for labor productivity is significantly positive for both schemes. The NVZ scheme has a higher impact 

(i.e. leads to more pronounced changes) on partial productivity for land and labor compared to the ESS 

scheme. Farms that are affected by both agri-environmental schemes show, however, the highest 

treatment effect for labor and capital productivity. 

The estimation results consistently show that the – voluntary and/or mandatory – enrolment in agri-

environmental schemes leads to a significantly lower productivity with respect to the usage of land and 
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capital. On the other hand, both schemes lead to a higher productivity with respect to the input labor. It is 

well known that extensive agronomic practices involve more labor input, probably substituting for 

machinery. A higher labor productivity could simply point to the fact that these farms use their labor 

input now more efficiently especially if their labor supply is constrained. Furthermore, many of the 

management options included in the ESS scheme relate to complementary type services as e.g. the 

maintenance of buffer strips. Labor already working on the field could simply also do some extra scheme 

related labor intensive work at the field boundaries. Chemical input on the NVZ related field is 

substituted by labor leading also to a higher productivity of labor (see also table 7). The much lower 

intensiveness of production on agri-environmental related areas inherently results in a lower land and 

capital productivity which is compensated for by scheme related payments in the ESS scheme. 

The estimated technical efficiency (about 95%) is relatively high for the cereal farms in our sample and 

the estimated Nerlovian allocative efficiency measure (about 59%) indicates a relatively modest price 

related efficiency of production decisions. Whereas the SATE related to both schemes is slightly positive 

for the technical efficiency component, it is not significant for the allocative efficiency component only 

in the case where the farm is affected by both schemes. Overall the treatment effects for technical and 

allocative efficiency are rather small, hence, we can conclude that farms enrolled in agri-environmental 

schemes are efficiently adjusting their production decisions given the requirements under the scheme. 

Even very minor efficiency improvements are possible as a result of entering such a scheme. 
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Table 7 Structural Indicators and Sample Average Treatment Effect (SATE) - Model 3 

 

measure 

performance 

measure at 

sample mean 

ESS Scheme 

treatment effect 

at sample mean 

NVZ Scheme 

treatment effect 

at sample mean 

ESS and NVZ 

Schemes 

treatment effect 

at sample mean  

MES1a (cereal output / 

               other output) 
-0.161*** 
[-0.11e-11; -0.23] 

0.016*** 
[0.014; 0.018] 

0.002** 
[1.49e-04; 0.003] 

0.004* 
[-3.28e-04; 0.007] 

MES1b (other output / 

               cereal output) 
-0.319*** 
[-0.45; -0.22e-11] 

-6.36e-04*** 
[-7.41e-04; -5.31e-04] 

8.76e-05*** 

[-2.34e-05; 1.98e-04] 
-2.61e-05 
[-2.42e-04; 1.91e-04] 

MES2a (labor input / 

               land input) 
0.578*** 
[0.38e-11; 0.78] 

-0.034*** 
[-0.039; -0.029] 

-0.003* 
[-0.007; 7.83e-04] 

-0.011*** 
[-0.021; -8.17e-04] 

MES2b (land input / 

               labor input) 
0.589*** 
[0.39e-11; 0.79] 

0.004*** 
[0.003; 0.005] 

-4.98e-04*** 

[-0.001; 2.93e-04] 
2.54e-04* 

[-0.001; 0.002] 

MES3a (labor input / 

               fertilizer input) 
0.105*** 
[0.69e-12; 0.14] 

-0.006*** 
[-0.007; -0.005] 

-5.49e-04* 
[-0.001; 1.46e-04] 

-0.002*** 
[-0.004; -2.34e-04] 

MES3b (fertilizer input / 

               labor input) 
0.064*** 
[0.42e-12; 0.08] 

-9.21e-04*** 

[-0.001; -7.67e-04] 
1.05e-05*** 

[-5.65e-05; 2.67e-04] 
-3.87e-05 
[-3.59e-04; 2.82e-04] 

MES4a (labor input / 

               capital input) 
0.112*** 
[0.73e-12; 0.15] 

-0.006*** 
[-0.008; -0.005] 

5.81e-04* 
[-0.001; 1.65e-04] 

-0.001** 
[-0.004; -1.93e-04] 

MES4b (capital input / 

               labor input) 
0.007*** 
[0.42e-13; 0.88e-02]      

-0.005* 

[-0.001; 0.061] 
-0.001* 

[-0.24; 0.04] 
0.005 
[-0.225; 0.326] 

MES5a (labor input / 

               chemicals input) 
0.087*** 
[0.12; 0.61e-12] 

0.005*** 
[0.004; 0.006] 

4.75e-04* 
[-1.02e-04; 0.001] 

0.001** 
[8.21e-04; 0.003] 

MES5b (chemicals input / 

               labor input) 
0.018*** 
[0.02; 0.12e-12] 

-0.007*** 

[-0.009; -0.006] 
9.69e-04* 

[-3.43e-04; 0.002] 
-3.63e-04 
[-2.97e-03; 2.24e-03] 

MES6a (land input / 

               fertilizer input) 
0.105*** 
[0.69e-12; 0.14] 

-0.007*** 
[-0.008; -0.005] 

-5.47e-04* 
[-1.24e-04; 1.49e-04] 

-0.002** 
[-0.003; -2.45e-04] 

MES6b (fertilizer input / 

               land input) 
0.129*** 
[0.85e-12; 0.18] 

0.001*** 

[8.49e-04; 0.001] 
-1.16e-04*** 

[-2.94e04; 6.21e05] 
4.17e05 
[-3.12e04; 3.96] 

MES7a (land input / 

               capital input) 
-0.014*** 
[-0.02; -0.93e-13] 

-7.91e-04*** 
[-9.23e-04; -6.57e-04] 

0.72e-04* 
[-1.64e-04; 2.03e-05] 

-2.68e-04*** 
[-5.13e-04; -2.21e-05] 

MES7b (capital input / 

               land input) 
0.23e-04** 
[0.15e-15; 0.31e-04] 

-1.32e-06** 

[-1.55e-06; -1.09e-06] 
1.57e-07* 

[-8.12e-08; 3.96e-07] 
-7.82e-08* 

[-5.54e-07; 3.97e-07] 

MES8a (land input / 

               chemicals input) 
0.117*** 
[0.79e-12; 0.16] 

-0.006*** 
[-0.008; -0.006] 

-6.39e-04** 
[-0.001; 0.001] 

-0.002** 
[-0.004; -9.04e-05] 

MES8b (chemicals input / 

               land input) 
0.016*** 
[0.11e-12; 0.02] 

-0.004*** 

[-0.004; -0.003] 
4.83e-04* 

[-1.66e-04; 0.001] 
-1.61e-04** 

[-0.002; 0.001]  

MES9a (capital input / 

               fertilizer input) 
0.019*** 
[0.12e-12; 0.03] 

0.001*** 
[8.45e-04; 0.001] 

0.002* 
[-5.14e-04; 0.004] 

3.72e-04** 
[4.23e-05; 7.01e-04] 

MES9b (fertilizer input / 

               capital input) 
0.013*** 
[0.88e-10; 0.19] 

3.79e-04*** 

[4.42e-04; 3.15e-04] 
4.47e-05 
[-2.23e-05; 1.12e-04] 

-1.96e-05** 

[-1.54e-04; 1.45e-04] 

MES10a (capital input / 

               chemicals input) 
0.361*** 
[0.14e-11; 0.49] 

0.019*** 
[0.016; 0.022] 

-5.47-04* 
[-0.001; 1.49e-04] 

0.007** 
[6.07e-04; 0.013] 

MES10b (chemicals input / 

               capital input) 
0.078*** 
[0.51e-12; 0.11] 

0.026*** 

[0.022;,0.029] 
-3.38e-03* 

[-7.33e-03; 5.81e-04] 
-0.003 
[-0.011; 0.005] 

MES11a (fertilizer input / 

               chemicals input) 
0.102*** 
[0.68e-12; 0.14] 

-0.005*** 
[-0.007; -0.004] 

-5.36e-04* 
[-0.001; 1.25e-04] 

-0.001** 
[-0.004; -2.13e-04] 

MES11b (chemicals input / 

               fertlizer input) 
0.011*** 

[0.75e-13; 0.02] 
-0.038*** 

[-0.044; -0.032] 
0.003 

[-0.003; 0.009] 
-0.004** 

[-0.017; 0.008] 

*, **, *** - significant at 10, 5, 1%-level; MES: Morishima Elasticity of Substitution. 
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The estimated dual Morishima elasticities of substitution (MES1a to MES11b in table 7, column 2) 

indicate the magnitude and direction of substitution between the different outputs and inputs used for 

production. The MES measures changes in relative output and input quantities as a consequence of 

changes in relative prices and is asymmetric by definition. The estimates for MES1a and 1b indicate that 

cereal and other outputs (e.g. livestock related, non-agricultural etc.) are substitutes i.e. as the price for 

cereal increases more inputs are devoted to the production of cereal at the expense of the production of 

other outputs and vice versa. However, the values indicate that the shift to the production of more cereals 

(i.e. as the price for cereals increaes by 1%, the production of other output decreases by about 0.32%) is 

twice as pronounced as the shift from the production of cereals (i.e. as the price for other output(s) 

increaes by 1%, the production of cereals decreases by about 0.16%). This indicates the high degree of 

specialisation of the farms in the sample as the marginal cost of producing one more unit cereals are 

much lower than the marginal cost of producing one more unit non-cereal output. 

The estimated sample average treatment effects (SATE) reported in columns 3 to 5 of table 7 summarize 

the treatment effects by the respective agri-environmental schemes. The SATEs for MES1a and 1b 

suggest the following: the voluntary ESS scheme leads to a lower substitutional effect as the price for 

non-cereal output(s) changes and only a very minor increase in the substitutional effect as the price for 

cereal changes. The treatment effect by the non-voluntary NVZ scheme is much lower but positive for 

both measures. In total, we find that farms subject to treatment by agri-environmental schemes respond 

to output price changes by less specialisation / more diversification compared to farms that are not 

subject to such a treatment. 

Table 8 shows the individual input-input relationships and estimated treatment effects: 

Table 8 Estimated Input-Input Relationships and Treatment Effects 

 

Input / Input 

estimated 

production 

relationship 1, 3 

ESS Scheme 

treatment effect 2,3 

NVZ Scheme 

treatment effect 2,3 

ESS and NVZ 

Schemes 

treatment effect 2,3 

Labor / Land s c+ c+ c+ 

Land / Labor s s+ c+ s+ 

Labor / Fertilizer s c+ c+ c+ 

Fertilizer / Labor s c+ s+ c+ 

Labor / Capital s c+ s+ c+ 

Capital / Labor s c+ c+ c+ 
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Labor / Chemicals s s+ s+ s+ 

Chemicals / Labor s c+ s+ c+ 

Land / Fertilizer s c+ c+ c+ 

Fertilizer / Land s s+ c+ s+ 

Land / Capital c c+ s+ c+ 

Capital / Land s c+ s+ c+ 

Land / Chemicals s c+ c+ c+ 

Chemicals / Land s c+ s+ c+ 

Capital / Fertilizer s s+ s+ s+ 

Fertilizer / Capital s s+ s+ c+ 

Capital / Chemicals s s+ c+ s+ 

Chemicals / Capital s s+ c+ c+ 

Fertilizer / Chemicals s c+ c+ c+ 

Chemicals / Fertilizer s c+ s+ c+ 

1 - s: substitutional, c: complementary; 2 - s+: substitution increasing, c+: substitution decreasing; 

3 - bold: statistically significant at 5% level. 

 

Table 8 highlights that nearly all estimated input-input relationships are of substitutional nature, i.e. that 

as the price for one input increases the farmer responds by an increase in the use of the other input to 

substitute for the more expensive input. The highest MES were found for the input pair relationships 

between labor and land (a 0.58 to 0.59% increase for both price increases) followed by the relationship 

between capital and chemicals (a 0.36% increase in capital use to substitute for more expensive capital) 

and the relationship between fertilizer and land (a 0.13% increase in the use of land to substitute for more 

expensive fertilizer). Only the relationship between the inputs land and capital has been found to be a 

complementary one, i.e. a 0.01% decrease in the use of land as a response to a 1% increase in capital 

prices. The latter could be a consequence of the relatively fixed nature of the input land and the fact that 

capital remains a key input to a more productive cereal production. 

With regard to the various treatment effects by the different agri-environmental schemes the following 

findings have to be noted: (i) The voluntary type ESS scheme seems to signficantly influence producer 

behaviour at a far higher scale than the non-voluntary type NVZ scheme (for 19 out of 20 versus 4 out of 

20 input-input relationships, see table 8, column 3). The ESS related treatment effect has been found to 

weaken substitutional relationships between inputs for 11 cases (see “c+”), to enforce substitutional 

relationships between inputs for 7 cases (see “s+“) and to enforce complementary relationships between 

inputs for 1 case (relationship land/capital). (ii) The non-voluntary type NVZ scheme seems to influence 

producer behaviour at a much lower scale than the voluntary based agri-environmental scheme (see table 

8, column 4). The related treatment effect has been found to work significantly enforcing for only one 
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case (fertilizer/labor relationship) but significantly weakening for 3 cases (land/labor, fertilizer/land, 

land/chemicals). (iii) For farms that are subject to both schemes’ treatment effects the findings are 

following those for the ESS scheme for 11 input-input relationships (see table 8, column 5). Only for one 

case the findings for the NVZ scheme were also found for the joint treatment perspective. Hence, it 

might be the case that the effects on producer behaviour by voluntary agri-environmental schemes are 

much more significant than those by non-voluntary agri-environmental schemes. 

The empirical analysis suggests that the voluntary type agri-environmental scheme indeed significantly 

influences individual producer behaviour with respect to crucial structural decisions. Most importantly 

the ESS treatment for the farms in our sample leads to a lower use of fertilizer and chemicals (i.e. less 

substitution of labor by fertilizer and/or chemicals, less substitution of land by chemicals, and less 

substitution of chemicals by fertilizer and vice versa). It further seems to result in higher labor use (as per 

substituting more labor for chemicals) and mixed effects with respect to capital intensity (substituting 

less of it for more expensive land but more of it for fertilizer and/or chemicals). On the other hand, the 

finding of substituting less land for fertilizer and/or chemicals may reflect the compensation payments 

received for agreeing to certain management options under the ESS scheme. 

The empirical analysis suggests further that the non-voluntary type NVZ scheme influences individual 

producer behaviour far less significantly with respect to structural production decisions. Most 

importantly the NVZ treatment for the farms in our sample leads to a lower substitution of land for labor 

and of fertilizer for land. These effects are contrary to those observed for the ESS treatment and the joint 

effects for farms enrolled in both schemes are insignificant. For the substitutional relationship between 

fertilizer and capital we even find that a substitution enforcing ESS treatment effect turns into a 

substitution weakening effect for the joint ESS and NVZ treatments. Hence, these findings might suggest 

that the joint treatment by both agri-environmental schemes could lead to counterproductive production 

effects at individual farm level. On the other hand, we also observe mutually enforcing treatment effects: 

both schemes show a lowering substitution effect of land for chemicals which is significantly higher for 

the joint case. 

The estimation results for the production structure measures are in line with the findings for the treated 

farms’ productivity: A lower capital productivity for those farms affected by agri-environmental schemes 
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corresponds to a lower substitutional relationship of capital for labor and for land. A lower land 

productivity for those farms corresponds to a lower substitutional relationship of land for fertilizer and of 

land for chemicals. Finally, a higher labor productivity corresponds to a higher substitutional relationship 

of labor for chemicals. 

7) Conclusions 

This empirical analysis aims to estimate the effects of different agri-environmental schemes on 

individual producer behaviour. We consider a voluntary versus a non-voluntary scheme operated in the 

UK and the effects on production intensity, performance and structure for a sample of cereal farms in the 

period 2000 to 2009. Based on a directional distance frontier framework linked to a statistically robust 

matching estimation we are able to draw the following major conclusions: 

Both schemes are effectively influencing production behaviour at individual farm level with respect to 

intensity, productivity and the structure of production. However, agri-environmental schemes show only 

very minor effects on the technical and allocative efficiency of farms, hence, we can conclude that farms 

enrolled in agri-environmental schemes are efficiently adjusting their production decisions given the 

constraints by the respective scheme. Farms affected by these schemes indeed tend to become less 

specialised and more diversified with respect to their production structure. A voluntary type agri-

environmental scheme seems to signficantly influence producer behaviour at a far higher scale than a 

non-voluntary agri-environmental scheme. The joint effect of both agri-environmental schemes on 

structural production decisions at individual farm level is, however, not clear: the analysis suggests 

mutually enforcing but also conflicting effects. 

The major contribution of this research project, however, is its methodological approach: We employ a 

propensity score analytical approach in the form of a robust matching estimation technique to identify the 

marginal effects of agri-environmental schemes on individual producer behaviour. The novelty lies in the 

use of a theoretically developed multi-output multi-input approach based on sound production theory to 

disentangle measures for production performance and structure which are then used as indicators for the 

analyses of policy treatment effects. Hence, the suggested framework of empirical analysis can be readily 

applied on other types of farms and/or policy schemes to generate useful policy measures as it is based 

on sound economic and statistical tools.  
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Appendix 

Table A1 Descriptive Summary Statistics 

Variable Mean Standard Deviation Minimum Maximum 

total output (GBP) 1639119 189698.8 0 2073248 

cereal related output (GBP) 107174.8 141351.6 0 1854797 

other non-cereal related output (GBP) 61993.5 79836.5 0 200682 

land (ha) 236.9 240.6 1 2674.9 

labor (average working units) 2.337 2.256 0.015 52.205 

capital (GBP) 21412.9 25518.4 0 259727 

fertilizer (GBP) 14428.9 15944.0 0.155 202714 

crop protection (GBP) 16361.2 20592.5 0.122 283225 

total variable cost (GBP) 98606.8 110268 200.939 2499320 

area under NVZ scheme (ha) 42.708 48.928 0 100 

payments received from ESS scheme (GBP) 2043.1 7149.7 0 186826 

total agri-environmental payments (less ESS) 2791.96 8545.1 0 153742.3 

age (years) 54.39 10.77 22 91 

gender (1-male, 0-female) 0.781 0.439 0 1 

livestock units (n) 38.08 63.19 0 712.95 

assets (GBP) 1225030 1458130 9012.81 16163900 

county 37.99 33.92 1 220 
(county indicators: please see DEFRA FBS information) 

education 2.354 1.837 0 7 
(0 - school only, 1 - GCSE, 2 - A-level, 3 - College/Diploma, 4 - Degree, 5 - PG, 6 - Apprenticeship, 7 - other) 

organic production (1-yes, 0-no) 0.027 0.163 0 1 

altitude 

altitude ‘below 300m’ (0 or 1) 0.995 0.069 0 1 

altitude ‘between 300m and 600m’ (0 or 1) 0.005 0.069 0 1 

LFA - less favoured area 1.151 0.858 1 7 
(1 - LFA: ‘all land outside lfa’ (0 or 1), 2 - LFA: ‘all land inside SDA’ (0 or 1), 3 - LFA: ‘all land inside DA’ (0 or 1), 4 - LFA: 

‘50%+ in lfa of which 50%+ in SDA’ (0 or 1), 5 - LFA: ‘50%+ in lfa of which 50%+ in DA’ (0 or 1), 6 - LFA: ‘<50% in lfa of 
which 50%+ in SDA’ (0 or 1), 7 - LFA: ‘<50% in lfa of which 50%+ in DA’ (0 or 1)) 

year 

year 2000 (0 or 1) 0.114 0.318 0 1 

year 2001 (0 or 1) 0.116 0.319 0 1 

year 2002 (0 or 1) 0.119 0.323 0 1 

year 2003 (0 or 1) 0.115 0.319 0 1 

year 2004 (0 or 1) 0.093 0.290 0 1 

year 2005 (0 or 1) 0.088 0.284 0 1 

year 2006 (0 or 1) 0.088 0.283 0 1 

year 2007 (0 or 1) 0.087 0.282 0 1 

year 2008 (0 or 1) 0.091 0.288 0 1 

year 2009 (0 or 1) 0.090 0.286 0 1 

(4174 observations; financial variables deflated to base year 2000; FBS – farm business survey, NVZ – nitrate vulnerable scheme, 

HFA – hill farm allowance, LFA – less favoured area, SDA – severely disadvanteged area, DA – disadvantaged area). 

 


