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A HEURISTIC FIXED-CHARGE QUADRATIC ALGORITHM

by

Terry Roe, Mathew ShaneO

r,. INTRODUCTION

A heuristic algorithm for bounding the true optimal value of a

fixed-charge quadratic programing problem is developed in this paper.

This problem is an extension of the lj..nearfixed-charge problem whose

treatment was first rigorously presented by Hirsch and Dantzig (8) and

later by Hirsch and Hoffman (9) and others (1,6,17). The fixed-charge

problem arises in economic and management problems where a fixed in-

vestment is required before production can take place. It is this

characteristic which has made linear fixed-charge algorithms particu-

larly useful in determining the optimal spatial location and size of

production facilities (14,11,19,21). However, for many applications

the linear formulation is restrictive.

Fixed-charge quadratic programing is a more general formulation

of the fixed-charge problem which includes

a special case. The quadratic formulation

the linear formulation as

differs from

problem in that marginal returns (costs) change (rather

constant) as output changes. This formulation and some

the linear

than remaining

of its

0 The authors are assistant professors in the department of Agricultural
and Applied Economics, the University of Minnesota. We acknowledge
the assistance of Swatantra Kachhal, William Griffith, Walter Fishel
and Eurel Fuller for their constructive review of the paper.
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inherent difficulties was recognized in a problem of locating feed

manufacturing firms (12).

Potential applications of fixed-charge quadratic programing are

numerous. It could be utilized in spatial equilibrium problems of the

type considered by Takayama and Judge (2o) if explicit account is taken

of fixed investments or demand shifts. It also has potential applica-

tion in problems dealing with risk or stocastic programing where, for

‘instance,the fixed-charge and linear portion of the objective function

denote fixed investments and mean returns (costs) and where the quadra-

tic form is a vari.ante-covariancematrix of returns (costs). Further,

this framework can be applied to the problem of determining the optimal

cost-benefits of urban transportation systems (15).

II. THE PROBLEM

Stated in integer formulation, the problem is to find values of

{Xj, ~j) which optimize the fixed-charge quadratic function

(11.la) z =fS’+aX’+XBX’

(II,lb)
AX’ ~b’,

x~o,

subject to the linear restraints
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and the integer restraints

{

oifxj=o

(11.lc) &j =
1 ifx > 0

where

is a n component row vector of constants,

is a n component column vector of variables,
~/

is a nxn symmetric definite or semi-definite matrix of constants,

is a n component row vector of constants denoting fixed charges
which are assumed to be positive (negative)when (11.a) is ~/
minimized (maximized),

is a n component column vector of integer variables9

i.sa mxn matrix of constants and

is a m component column vector of constants.

This differs from the standard quadratic programing problem

because of the existence of fixed-charges (f) in the objective function,

These charges introduce origin d~scontinuities and lead to a vi.olat~.on

of the concavity assumptions of quadratic programing even though B i.s

a definite or semj.--definitequadratic form (9). This can b~’sh~w~

intuitively for th~ &wo independent variable case of (11.la) when B

is a positive definite form. In this case

fl S1 =OAi.fxpo, f2s2=OBif’x2>o and
3_/

flsl+f2s2=oA+oB ==OCifx~>o-jx270.

If the fixed-charges f were zero, then c becomes the origin and

we have the traditional quadratic function where a constrained global
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Figure I. QUADRATIC OBJECTIVE FUNCTION WITH POSITIVE FIXED-CHARGES

minimum is given by the Kuhn-Tucker conditions. For the case depicted

in Figure I however, a constraint rnaLrix(11.lb) can easily be defined

such that three dj.fferentlocal optimum solutions can be found for each

of which the Kuh.n-TuckerConditions exist. Thf>sesolutions would be

found on B13,AG and the surface CFE$ ignorf.ngthe trivial case where
4_/

the origin i.sa solution. ‘rhus, while any local c)pti.murnis a global

optimum in the or(l~naryquadratic programing problem when B is a

definite or semi-defjnit-e:[orm,any local optimum of (1’1.1)may not be

~~loballyopti.mal(!UPt.othe discontlnuities j.r~duccdby the f~xed-
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charges (f). Therefore, to find an exact optimal solution, all extreme

points and internal points as found by the Kuhn-Tucker conditions must

be enumerated.

Before turning to the quadratic fixed-charge problem, briefly

consider the related linear formulation which is to find values

{Xj, Sj} which c]ptimize

(11.2) w= f6’+aX’

subje.ccto the rest-raints(11.lb) and (11.Ic). This problem is similar

to the ordinary l-irwarpro~raming problem where the optimal solution,

is an extreme point of a closed bounded convex set of feasible solu-

tions. ]lirschand i)antz~.~(8) have shown that with the ex~.stenceof

fjxed-charge.s,the op~imum solution lies at one of these extreme points.

However’>this solution can not necessarily be obtai.neclby using the

simplex method because of the existence of local optimums created by

origin discontinue.ties.That is, the simplex procedure might lead
Kf
&/

to the derivation of a local rather than a global optimal solution.

Exact methods do exist for optimizing (11.2). Among these methods

is the rather computationally inefficient mixed integer and continuous

variable technique described by Hadley (7). Somewhat more computation-

ally efficient and exact methods have been developed by Steinberg (18).

Jones and Soland (10) and Sa’ (16) using a branch and bound approach.

However, the modification of these approaches (if possible) into an

efficient fixed-charge quadratic algorithm must wait further develop-

ments, especially since quadratic programing algorithms are computation-

ally inefficient.
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The literature abounds with various heuristic algorithms for

obtaining approxima?-~!solutions to (11.2) which claim computational

efficiency (2,3,4,5,13). A search of these algorithms does provi.cle

some insight into the development of a computationally efficient

technique for obtaining good approximate solutions to (11.1). In

particular, Balinski (1) developed an approximate solution procedure

for deriving a solution to the fixed cost transportation problem which

provide values that bound the true optimal value of the problem. It

has been shown that this procedure cartbe adapted to obtain a solution

for (IIe2) (13).

In the next sectionthe problem of minimizing and maximizing (11.1)

is considered jointly. Bali-n$ki’sapproach is adapted to (11.1) and

a method for deriving the bounds to the true optimal value of this

problem is described. From these initial bounds, it is shown how

superior bounds are obtained.

111. SOLUTION PROCEDURE

Initial Bounds. Bounds to the true optimal value of the fixed-charge

quadratic programing problem (11.1) can be obtained after deriving one

approximate solution by a standard quadratic programing algorithm.

This i.sach.ieveclby defining a new problem: find (Xj] to minimize the

quadratic function

(111.la)
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subject to the linear restraints (11.1.b)where f* is a n component

row vector of constants whose elements are given by the following

(111.lb) fw .&_+a
i :9

J

where

These

X! i.~an upper bound associated with the j--thcomponent of X.

bounds can be obt-ainedfrom (11.lb).

For the purpose

are assumed positive

of the following theorems, Ehe elements of (f)

for the minimization problem and negative for

t:hemaximization problem. Generality is not lost since the addi.ti.on

or subtraction of an arb~.turaryconstant co the elements of (f) to

meet this condition does not alter the gradient of the function

(11.la), i,e., the surface depicted i.nFigure I is merely shifted

vertically. Also, let Z* be the true optimal value of the objective

function in problem (11.1) having optimal solution (basis) vectors

X*, &*a LeE Z~ (ZU~ denote the optimal value of the objective function

in the minimization (maximizatior$problem (lll.l.)$where XO is the

corresponding optimal solution (basis) vector. Finally, let Z~U (Z~L)

denote the objective function in the minimization (maximization)

problem (11.1) which is obtained as follows: set

[

lif X!j’>0
(111.2a) x = X“ and S; =

OifX~=O

&/
and compute the corresponding objccti.vefunction value Z

-t
lU (zlL) where

..
(T.11.2b) Z;u ~ f-$+’ ~ ~ x“+’.,.~+ ~ ~+’,



8

c1

Figure II. QUADRATIC OBJECTIVE FUNCTION WITH POSITIVE FIXED CHAKGES
AND ITS MODIFIED FUNCTION

We will now show intuitively and then mathematically that the

values Z; and Z+ (Z* and Z~L) bound the true optimal value Z* oflU u

the minimization (maximization)problem (11.1).

The bounding procedure can be shown intuitively by considering

the consequence of modification (111.la) on the previous two variable

examples. This modification creates a nonlinear surface which inter-

sects the origin and lies beneath a portion of the surface CFE

depicted in Figure I. This is shown in Figure 11 where the new

nonlinear surface is OHI and the curves BD and AG of Figure I are
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omitted for clarification. The linear surface x~MLNx~ is the apriori

bounds wh~ch are the maximum feasible values the corresponding xl, X2

variables can obtain. The points K and J are where the hull OH and 01

intersect the curves AG and BD respectively. Within these bounds, the

surface GFE intersects the surface OHI only at L. At this point,

(111.2b) is identical to (III,la) which is identical to (11.la) since

the.apriori values x!, x: equal the solution values of the variables
.L L

xl, X2 in (11.1).

The solution to problem (111.la) given by the

tions yields a solution within the surface OKLJ or

OJ. Since these areas are on or below the surface

Kuhn-Tucker condi-

on the borders OK,

CMLN and the curves

AG, 1311,Z: is equal to or less than Z~. This is stated in Theorem A.

An upper bound to the minimization problem is obtained by modify-

ing the solution to (111.la) according to (111.2a). This yields a

solution (Z~u) on the surface CMLN or the curves AG, BG. Obviously,

this solution can not be better than an optimal solution to (11.1)

which also exists on these surfaces as indicated above. Thus, Z;U

must be equal to or greater than Z*. This is stated in Theorem B.

The following theorems state the initial bound for both the

minimization and maximization problem. Their proofs appear in Appendix

A.

Theorem A: The value Z~ (Z$ is a lower (upper) bound to the

true optimal value of the objective function Z#of problem (11.1), i.e.

Z~ ~ Z*, a min.

Z; ~ Z*, a max.
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Theorem B: The value Z~U (Z~L) is an upper (lower) bound to the

true optimal value of the objective function Z*of problem (11.1), i.e.,

*
Z;u>z, a min.

-t- *

‘IL 62 ‘ a ‘ax”

Thus by a single solution to the ordinary quadratic programing

problem specified in (111.1) bounds can be derived about the true value

of the fixed-charge quadratic programing problem specified in (11.1).

It is shown below that one additional solution~ obtained by an ordinary

quadratic algorithm, will yield
..

bound Z~U (Z~L) obtained above.

an improvement in the upper (lower)

Improved Bounds. An improvement in the upper bound Z~U is obtained

by removing the fixed-charges f from (11.la), and bounding all nonbasis

variables associated with the optimal solution to (111.1) from consider-

ation. Therefore, the solution surface of this new problem is contin-

uous and an optimal solution is given by the Kuhn-Tucker conditions.

The fixed charges corresponding to positive levels of the solution

vector to this new problem are then added to the value of its objec-

tive function.

The intuitive implications of this procedure can be pointed out

by considering the previous example. Suppose a solution to (111.la)

yields non-zero values of Xl and X2. Then, the fixed charges are

removed from (11.la) and C becomes the origin in Figures I and II.
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The new solution is found on this surface CMLN. Finally, the fixed

charges are added to the objective function value of this new solution.

If the solution to (111.la) yields xl zero and x2 positive$ then xl and

fixed charges fl and f2 are removed from (11.1). The new solution is

found on curve AG where A becomes the origin. The fixed charge f2 is

then added to the value of the objective function.

More explicitly, the problem is to find new values for the basis

variables XOof problem (111.1) which optimize the quadratic function

(111.4a) Za =aX’+XB

subject to the linear restraints A X’

x = {X”, %]0

<b’, x“~o, i= 0, and where

Let the optimal solution value of this problem be denoted as Z:

and the value of the solution vector denoted as XOa. Also, let the

corresponding zero-one vector, denoted as Ya, be expressed as

oa
where Y is a unit vector whose components correspond to positive basis

variables{X~a}and? is a null vector corresponding to the null vector

?. Einally lot Z~U and Z~L denote the new bound for the minimization

and maximization problem respectively where

Z*

2U
= f Ya’ + Z:, a min.

.z&

2L
= f Ya’ + Z:, a max.
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+
The relationship of Zfu (Z~L) to Z*, a min. (Z*> a maxo) and Z:U ~zIL)

can now be stated.

Theorem C: The value Z*2U (z~L) ‘s a lesser upper (lower) bound

to the objective function value Z‘of problem (11.1) than Z~u (Z~L).

The proof of this statement appears in Appendix A.

In the next section, this solution procedure is demonstrated

for both the minimization and the maximization cases by applying it

to a sample problem.

Two variations on a

N . APPLICATION

sample problem were selected to demonstrate

the solution procedure developed here for both the minimization and

maximization problem. These variations were obtained by changing the

fixed-charges {fj} and constants {aj} and deriving a solution for each

case for a total of four cases.

The elements of the sample problem which remain unchanged are as

follows:

‘:
1.0

B = ?! -0.2

-0.3

-0.2

2.()

-0.5

-0.3

-0.5

3.0 1

where > equals one for the minimization problem (referred to as problem

A) and a negative one for the maximization problem (referred to as

problem B).
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Problem A and B contains the following constraints

4.0 xl + 1.5 q + 5.0 X3 < 70

10.0 xl -f- X* + 5.0 X3 ~ 100

-2.0 X2 + X3:()

[

lif Xj70

= j = 1,2,3,
$

Oif Xj=Oj

where the following additional constraint is used in problem A,

X1+X2+X3=14”

The coefficients {fj, aj, f$} of the sample problem which change

depending on the case and problem are presented in Table 1.



.4

4
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Theorems A, B and C provide a basj..sfor deriving a solution

procedure

steps are

(1)

(2)

(3)

(4)

(5)

for the quadratic fixed-charge problem. The following five

one such procedure:

Find the least upper bounds for all Xj when

fj # O and compute f~ according to (111.lb).

Remove all fj # O and substitute the corresponding
L)’

f? for aj in (11.la).

Using a standard quadratic algorithm, find the

lower (upper) bound, z: (z;), by solving the mini-

mization (maximization) problem (111.1).

Compute the first upper (lower) bound, Z;u (Z~L),

to the minimization (maximization) problem accord-

ing to (111.2b).

Remove all f. from (11.la) and prevent the nonbasis
J

variables (Xj = O} from appearing in the basis of the

resulting problem (111.4a). This can be accomplished

in the minimization (maximization) problem by setting

the corresponding {aj} to an arbitrarily large (small)

value. However, for large problems, it is computa-

tionally more efficient to remove those column equa-

tions corresponding to {Xj I=U) from (11.lb).

Find the m~.nimum(maximum) of (111.4a) subject to

(11.lb) using a standard quadratic algorithm and

the compute second upper (lower) found, ‘~u (z~L),

according to (111.4c).
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Tables II and 111 present the results of utilizing this procedure

for the solution of two minimization and two maximization problems (re-

ferred to as problem A and B respectively). The percent difference

between the bounds on the maximization problems, case Riand B.ii,

are less than for the minimization problems, case A.i and A.ii. This

b
is due in part to the nature of the variable {Xj} bounding procedure

discussed in the followingsection and suggests that in many applications

tha approximate solutions to the maximization problem will be better

than those of minimization problem. In terms of the sample problems,

the percent difference between the bounds for A.i is 10.6 percent in

the first approximation and 10 percent i-nthe second. This compares

with 7.4 percent and 6.1 percent for B.i. Thus these solutions seem

to be “good” approximations of the true optimal solutions.

In cases A.ii and B.ii, the fixed-charges (fj} were increased

(Table I). The first solution to these cases yielded positive values

of Xl and > (Tables II and III). Thus in both X3 was bounded out of

the basis of the second solution. The percent difference between bounds

for A.ii decreased from ‘3.9percent to 7.7 percent while for B.ii they

decreased from 2.6 percent to 2.3 percent. Therefore, these solutions

also appear to provide “good” estimates of the true optimal solutions

to these problems.



TABLE 11. SOLUTION VALUES .ANIJBOUNDS TO THE TRUE MINIMUM OF PROBLEM
A FOR TWO CASES

Lower First
Case First Solution second solution $ound a/Up er-

(~’) $
‘1 ‘2 ‘3 ‘1

t,
!’! ‘3

(Zlu)
— — — —. —— — —— —

,4.j. 6.51 3,76 3.73 6.43 4.06 3.51 4?’5.97 529.15

A.ii 8.68 5.32 0.0 9.06 4~94 0 ~/
463.”75 511.42

‘eco’nfj
:;VJ

526.LI

500.99

w’ ‘z+- s ~ [f $-t” - (f /x~) X“] + 2:
lU jjj j j .j

k/ Z* ~ 1. f 5+”+ z*, where all f. LO.
2U J~ja J

~./
Variable X3 is not pemnitred to enter the ‘basisin this solution
since i.tis zero in the first solution.

TABLE 111. SOLU’l”lL)NVALUES AND BOUNDS 7.”0THE TRUE PiAX”@,UM OF PRC)BLENB
F(3RTWO CASES

First Second upper“
Case First Solutj.on Second Solution a’ LowerLower- Bound

xl %! ‘3 ‘xl ‘% ‘3 Boy~d Bound
—— — —— (q~) (qL) (z:)

—. -.—r—..

B.i 7.24 6.81 4.16 7.0 8.05 4.39 277.U? 280.61 29~*~~

B.ii 9.31 6.89 0.0 9.26 7.37 0.0 260.31 261.23 267.26

—.—



For many applications the bounds for the maximization problem may

be more effective than in the minimization case. This can be demor~-

strated by subtracting (111.la) from (111.2b) which yields

Z+, - Z*; = Ij fj 6;-mf. /xb X“
Jjjj

where all (fj) are zero or nega~ive for the maximization problem, zero

or positive.for the minimization problem and where Z+J and Z*’ are the

respective upper and lower bounds in the case of maximization. The effec-

tiveness of these bounds is determined by how closely all [X;] approxi-

()
0

mate the values X. i.e.j the minimization of their difference,
J’

{1The selection of X: for the maximization of (11.la) can be obtained

by searching (11.lb) and by finding the unconstrained maximum of (11.I..la).

Those values for {1Xbil
are then selected which are the smallest. However,

in the mi.nimizati.onof (11.la) only (11.lb) is searched for the selec-

{}tjon of X; since B i.sa positive definite or semi-definite form, i.e.~

the unconstrained minimization is at the origin. Therefore, it is

Ijkely that the selection of the least upper variable bounds in the

maximization problem will lead to values Xb(1 which are closer approxi-
j

mations to the true optimal values X*, than are these values i.nthe

minimization problem.
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v, CONCLUDING REMARKS

A fixed-charge quadratic problem was considered in this paper.

A heuristic algorithm was developed for provi.dj.nggood approximate

solutions which bound the true optimal value of this problem. This

was done by defining two related problems which can be solved with a

standard quadratic programing algorithm. Four sample problems were then

solved utilizing this solution procedure. It was shown that these

small problems, two maximization and two minimization, satisfied the

conditions of the algorithm and demonstrated consistent results. The

solutions to these problems suggested that the algorithm can derive good

approximate solutions with a relatively small error, ten percent or

less. It is also suggested that for many applications the procedure

derives better bounds for the maximization problem than for the mi.ni.mi.-

zat-ionproblem.



FWTNOTES

It is assumed throughout this paper that if the quadratic form is

positive definite or positive semi-definite, the objective function

is convex and that if the form is negative definite or negative

semi-definite, the objective function is concave.

The optimization of (11.la) implies throughout this paper that the

elements of (f) are positive in minimization problems and negative

in maximization problems.

Curves AG and BD can be thought of as long-run processing plant cost

functions where the fixed-charges represent amortized fixed cost of

plant construction. The problem is to determine the optimal size

and number of plants subject the linear restraints (II,lb).

Notice that if the constraint matrix requires both x1, X2 tO be

positive, the solution space is CFE where no discontinuities exist.

This suggests that the Kuhn-Tucker Conditions will derive an optimal

solution to (11.1) in this special case.

It is possible that the application of the simplex procedure to

(11..2)might arrive at an extreme point of a convex set such that no

other point adjacent to it will yield an j.mprovedvalue of W.

However, i.tis possible that another extreme point, which is not an

adjacent extreme point, exists which can yield an improved value of

~,
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Q/ The same procedure for deriving a lower bound to the minimization

problem, yields on upper bound to the maximization problem. There-

for, the values Z:, Z~U refer to the minimization problem and the

+
‘alues ‘;s ‘IL refer to the maximization problem.

~/ A procedure for obtaining the least upper bound is presented in

Appendix B.
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APPENDIX A

Theorem A. proof: For this theorem, it must be Proved that ‘he

opt~mal value of the objective function of minimizing (maximizing)

problem (111.1) is a lower (upper) bound to problem (11.1), For this

purpose, the following modified form of problem (11.1) is defined.
&/

Find {Xj, Yj) to optimize the quadratic function

(111.3a) z= fY’+aX’+XBX’

subject to the linear restraints (11.lb) and

(111.3b) Xj <x! Y.
J3

b
where X.

J
is the least upper bound of the variable X. and Yj are now

J

permitted noninteger, O ~ Yj ~ 1. The optimal value of the objective

function (111.3a) is denoted by E*.

Notice that the true optimal solution X*, J* to problem (11.1)

i.salso a feasible solution to problem (111.3), Thus, the true optimal

value Z* of the objective function (11.la) corresponding

X*, fwmust be equal to or greater (less) than the value

(Z*, a max.) of the objective function (111.3), i.e.

Z* < Z*, a min.

LO this solution

Z*, a min.

g/ That is, minimize (111.3a) if (11.1) is a minimization

maximize (111.3a) i.f(11.1) is a maximization problem.

problem or
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The next step is to show the relationship between problem (111.3)

and problem (111.1) from which it is concluded that ?* = Z~when (11.1)

is a minimization problem and Z* = Z~ when (11.1) is a maximization

problem.

We consider two cases: (i) suppose that the optimal solution to

(111.3) yields yj equal zero for some j. Since it is required that

x. LXby and Xj ~0,
J-Jj’

Xj must also be zero in which case the above is an equality.

(ii) Suppose that the optimal solution to (111.3) yields yj between

zero and one for some j. If

x,<xbY
J j.j

then yj can be arbitrarily decreased until

b
‘j = ‘j ‘j

while maintaining a feasible solution to (111.3) and thus decreasing

the value of the objective function for the minimization problem and

increasing its value for

solution associated with

the maximization problem. Hence the current

Z* is not optimal, contradiction. Thus, in the

optimal.solution to (111.3).

Xj = Xj y; tij

which implies that thjs expression can be used as a constraint rather

than the weaker inequalityexpression. This new constraint can be

expressed as
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in which case the resulting problem becomes: find {Xj } to minimize

(maximize) the quadratic objective function

z+ = fffXi+XBXt

subject to the linear restraints

Axc<b~ s

x’~o

which is identical to problem (111.1). Hence

Z; ~ Z*, a min.

Zfi~ Z*, a max.

This completes the proof of theorem A.
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Theorem B, Proof: The constraints of problem (111.1) are idenCi.cal

to the constraints of problem (11,1) with the exception of the

integer constraint (11.lc). Hence, with modification (111.2),

x+, J+ is a feasible solution to (11.1). Therefore, the value

‘;U (z~L) ‘s equal to or greater (less) than the true optimal value

Z*when (11.la) is minimized (maximized).

Z~U ~ Z*, a min.

* a max.z;L&z,

This completes the proof of Theorem B.

Theorem C. Proof: In order to show that Z~U & Z~U f-orthe

minimization problem and Z#L ~ Z~L for the maximization problem, i.t

-i-is necessary to show that XOa is a better solution than X .

Since the vector f is

o
vectors X , X“+have the same

x; = x;

Therefore,
+

the zero-one vector & is identical to the Ya vector and

023
null, the vector X and the identical

nonzero components, i.e.,

oa
> 0, then X.

J
7 00

hence

fl+~ =fyaf.

Now, the vector X+ is only a feasible solution to problem (111.4)

since it satisfies all the constraints, while Xoa is an optimal solu-

tion vector to this problem as well. Thus

++ ++ +@t
a (XOa,~)’ + (XOa,~) B (XOa,~)’ <a (X ,X)’ + (X ,X) B (X ,X)
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for the minimization problem and equal to a greater than for the

maximization problem. Therefore,

-t-

‘i$u4 Zlu} a min.

Z;L ~ z+
lL‘

a max.

However, ‘?U (z~L) cannot be less (greater) than the true optimal

value Z*, since X‘a, Ya is only a feasible solution to problem (11.1)

while X*, 6* is an optimal solution to this

Z~U (Z~L) is a l@sser upper (lower) bound

This completes the proof of the theorem C.

problem. Therefore,

to Z* than is Z
+
lU (Z;L)*
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The values x; can be obtained by finding

(i) min. (bi/aij) ~iwhere bi> u and aij> O,

in the minimization case and in the maximization case by finding the

simultaneous solution to the set of first order conditions given by

2z/ax. = ~t~j and finding (i) above. Then, select the smallest xj from
J

among the two sets for all i where (11.lb) does not require a fixed pro-

portion between

in the examples

However, to

any of the Xjo, j. + j. This is the procedure utilized

here.

obtain the least upper bound for all xj where fj * d, the

authors have found that the computationally most efficient procedure

appears to be the traditional simplex algorithm, especially since most

computer facilities

of this technique.

are well equiped and experienced in the mechanics

The procedure is to utilize the “cost ranging” routine of a traditional

LP computer program where the linear objective function CX’ is optimj.zed

subject to (IT.lb\. To find the least upper bound of x~, set cs to a

large value and set all other COj, j + s values to zero. The solution to

this problem gives the least upper bound ~~. The least upper bound of

of Xris obtained by setting crto a large value and

other Cj> s + j * r to zero. The solution to this

b
upper bound %s. This process is continued for all

setting cs and all

problem gives the least

Xj where fj + U.
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This process is not time consuming since the nature of the linear

objective function induces quick convergence to an optimum solution and

the use of the cost ranging routine minimizes “handing” time.


