Staff Papers Series

Department of Agricultural and Applied Economics

University of Minnesota
Institute of Agriculture, Forestry and Home Economics
St. Paul. Minnesota 55108

INPUT-OUTPUT METHODS FOR LABOR MARKET
 ANALYSIS AND PROJECTION

Wilbur R. Maki

REIFS Report No. 19

Staff papers are published without formal review within the Department of Agricultural and Applied Economics
Page
Acknowledgements i
Abstract i
Summary and Conclusions ii
INTRODUCTION 1
Input-Output Concept and Its Origins 2
Asseptance of Input-Output Approach 5
Basic Assumptions of Input-Output Approach 7
MODEL BUILDING 14
Problem and Area Delineation 14
Model and Sector Classification 17
Model Specification 22
Data Collection and Preparation 25
Calibration, Documentation, and Verification 27
Validation and Acceptance 29
DATA INTERPRETATION 31
Direct and Indirect Effects 31
Industry Sales and Purchases 33
Final Purchases and Value Added 38
Exports and Imports 43
Employment and Earnings 44
EMPLOYMENT ANALYSIS 47
Industry Employment and Income 47
Employment and Income Relationships 49
REFERENCES CITED 55
APPENDIX: INVERTING INPUT-OUTPUT MATRIX AND DERIVING 58 EMPLOYMENT AND INCOME MULTIPLIERS

Acknowledgements

Minnesota input-output tables were compiled for this report by my . colleagues, Peter Stenberg, Carlo del Ninno, and Mason Chen. Rudy Pinola and his associates in the Minnesota Department of Economic Security organized the seminar on input-output methods for which the report was prepared. It is also part of a related study on economic development and service delivery prospects in Minnesota in the 1980's funded by the Minnesota Agricultural Experiment Station.

Abstract

This report presents a review of input-output methods for labor market analysis in Minnesota. For the computational examples, 1972 U.S. and Minnesota input-output tables were used, including employment and income statistics from U.S. Department of Commerce and U.S. Bureau of Department of Labor. This is the first in a series of reports on Minnesota industry structure and performance in the past decade and its outlook for the 1980's and $1990^{\prime} \mathrm{s}$ in job productivity, skill requirements, and income generation.

Basic procedures of input-output analysis are presented with the use of data from 1972 U.S. and Minnesota input-output tables. Existence of detailed industry statistics on sales, purchases, value added, and employment for both the U.S. and the State of Minnesota has made possible extension of input-output methods to the analysis of Minnesota industry, structure, performance, and prospects which heretofore would not have been feasible because of the lack of detailed Minnesota and corresponding U.S. industry statistics.

Four principal topics are presented, starting with the input-output concept, its origins and acceptance, and its basic assumptions. This introduction is followed by a delineation of steps in building a computable input-output model for labor market analysis. Reasons for highly detailed industry and highly aggregated area data are discussed, along with implications of using less detailed industry groupings and less aggregated area groupings. The theory and practice of input-output analysis in collecting and preparing industry data and calibrating, documenting and validating the interindustry transactions tables is examined, also.

The model-building discussion is followed by an examination of its use, especially the interpretation of the input-output coefficients which are derived from the interindustry transactions tables. Output multipliers, both demand-type and supply-type, are derived, with illustrations of their use in labor market analysis.

Finally, U.S. statistical series on employment and income are related to the input-output data. Steps in deriving various input-output coefficients are illustrated in the Appendix.

The input-output method starts with the product and income accounts which depict the total income originating from remuneratively productive activities, i.e., value added, as equal to the domestic final product, plus net exports. This identity is expressed by the form,
$D F P+(E X P-I M P)=V A$
which, for the U.S., is expressed quantitatively, in billion dollars, by the equality,

$$
1,186.2+(72.8-76.2)=1,182.8
$$

The Minnesota final product differs slightly compared to the U.S. final product in its distribution among the principal product categories, as shown below:

	Dom. Purchases		Total Purchases	
Final Product Category	$\frac{\mathrm{U} . \mathrm{S} .}{(\mathrm{bil} . \mathrm{S})}$	$\frac{\text { Minn }}{(\mathrm{mil} . \$)}$	$\frac{\mathrm{U} . \mathrm{S} .}{(\mathrm{bil} . \mathrm{S})}$	$\frac{\text { Minn. }}{(m i l . \$)}$
Pers. Cons. Exp.	729.7	10,945	738.1	12,995
State and Local Gov.	68.1	1,179	150.7	2,863
Federal Gov.	49.5	371	102.1	1,105
Gr. Priv. Cap. Form.	184.9	2,836	184.9	3,475
Change in Bus. Inv.	17.9	386	10.4	343
Total Domestic Product	1,050.1	15,617	1,186.2	20,780

Personal consumption expenditures were 62.5 percent of the total in Minnesota and 62.2 percent of the total in the U.S. Both state and local government purchases and business capital outlays also were larger in Minnesota than the U.S. -- 18.4 percent vs. 18.4 percent, and 13.8 percent vs. 12.7 percent, respectively. Only federal government purchases were smaller in Minnesota than the U.S.-- 5.3 percent vs. 8.6 percent.

Differences in external trade also occurred in 1972 between Minnesota and the U.S., as shown below:

Trade Category	$\frac{\mathrm{U.S}}{(\mathrm{bil} . \mathrm{S})}$	$\frac{\text { Minnesota }}{(\mathrm{mil} . \$)}$
Competitive exports from U.S.	57.9	652
Competitive imports to U.S.	-56.8	-411
Minn. net exports to RON		7,183
Minn. net imports from RON and U.S. noncomp. imp.		
Intermediate inputs	-5.1	-4,279
Final inputs	-10.1	-3,281
Total	-14.1	-36

A negative balance of trade was estimated for both Minnesota and the U.S. Minnesota gross state product is readily estimated from the preceding data, as follows (in million dollars):
$20,780+(7,835-7,871)=20,744$
Interindustry and intersectoral transactions of the Minnesota and U.S. economies are summarized in a 10 -industry breakdown of the producing sectors of the two economies. High levels of imports for some industries in the Minnesota economy of course reduce the internal interdependence, and, thus, the input/output multiplier values, which are derived from the Leontief inverses, are reduced, also.

Employment and income data also are summarized for the 10 industry representation of the U.S. economy. They are presented here for the 80industry breakdown reported in the Survey of Current Business. These data show vastly differing conpensation levels and hours worker per week in the U.S. economy. Detailed industry statistics for states and regions are essential, therefore, to avoid compounding changes in industry composition with changes in industry productivity and earnings, especially where these changes depart from national patterns.

Wilbur R. Maki

New approaches to labor market analysis and projection have been formulated, tested and proposed by labor market analysts in the U.S. Bureau of Labor Statistics and the Minnesota Department of Economic Security. ${ }^{1 /}$ This paper for the Seminar on Input-Output Analysis complements these new approaches by extending conventional input-output methods to the study of labor market structure, growth and change.

The purpose of this extension of input-output methods to labor market analysis and projection is two-fold: it serves as a demonstration of the strengths and weakness of input-output methods in small area economic analysis and projection and it serves as a test of each of the several approaches in providing reliable and useful information on future state and substate employment prospects. This purpose is pursued under five topical headings, starting with the problem focus of labor market analysis and projection and followed by individual steps in model building, data interpretation, and economic impact analysis and forecasting. This discussion concludes with examples of case studies on the use of input-output methods in labor market analysis and projection. First, however, the input-output concept, its origins and acceptance, and its basic assumptions are discussed.

[^0]Input-Output Concept and Its Origins
Professor Wassily Leontief of Harvard University, winner of the Nobel Prize in Economics for his work in input-output analysis, is usually thought of as the founder of input-output economics. Input-output economics is a branch of economics, and also of econometrics. It emphasizes the structure of an economic system and the measurement of this structure for purposes of macro-economic analysis, particularly the effects of changes in the final demands for goods and services on a particular industry with references to its sales and purchases.

Leontief published the first input-output table of the American economy in 1936 (14). John Maynard Keynes had already rekindled interest in aggregative economics. With the Great Depression as an appropriate setting for the ensuing discussion of Keynes' General Theory, the second revolution in economic thought launched by Leontief was initially a quiet one. Significant work in this new area did not occur until the 1940's when Leontief, continuing with his own efforts in input-output analysis, was joined by his colleagues and others in demonstrating new applications of the input-output approach, especially in the study of aggregate economic impacts (3,4,15, $16,17,18)$. Much of the work was supported by the U.S. Bureau of Labor Statistics. In 1944, the first practical application of the input-output approach was demonstrated in estimating the effects of shifting from war to peace on employment (36).

Within the next two decades, national, and even regional, input-output models had become commonplace. Phil Borque, in his survey of state and regional input-output models published in 1970 , all but 38 states were included among those listed as having work completed or in process (2). Minnesota was included in this list twice -- once for the 1966 Itasca County input-output model completed by Jay Hughes and a second time for the 1963

Minnesota input-output model completed by Henry Hwang and Wilbur Maki as part of a Souris-Red-Rainy River Basin Planning Commission study (5,11). Today, more than half of the substate development regions in Minnesota, and even three counties -- Itasca, Mower and Pennington -- are represented by their own input-output tables.

The core of the Leontief input-output system is the input-output table in which individual industry purchases are represented by columns and individual industry sales are represented by rows, as in Table l.l. For this example, an 85 -industry 1972 U.S. input-output table was collapsed into three industry sectors, three primary input-output sectors, three final demand sectors, and a rest-of-world sector (to account for exports from, and imports to, the U.S.).

Summary data from the 1972 U.S. Input-Output Table are used to illustrate the derivation of input-output tables with reference to the underiying assumptions for these procedures. In Table 1.1 , three producing sectors are listed -- a primary sector of agriculture and mining, a secondary sector of construction and manufacturing, and a composite tertiary sector of all noncommodity, services-producing industries. In this illustration the three industry groups produced a gross output of $\$ 1,966$ billion. Interindustry transactions were $\$ 1,046$ billion, or slightly more than 50 percent of industry gross output. By definition, gross output is equal to gross outlay for each industry.

The complete input-output table can be quartered, with the intermediate purchases in Quadrant I, the final purchases and exports in Quadrant II, the primary inputs and imports in Quadrant III, and the interinstitutional transactions in Quadrant IV. The export and import sectors balance the external trade and payments accounts of the economy as represented by the tables. Thus, the individual entries in Table 1.1 are represented algebraically by the form,
Table 1.1. Illustrative Input-Output Table: Intermediate and Final Purchases of Specified Industry Output and Primary Inputs by Industry and Non-Industry Sectors.

$$
\begin{equation*}
\sum_{j}^{\Sigma X_{i j}}=\sum X_{i}, \tag{1.1}
\end{equation*}
$$

for each row and its corresponding column.
While the row total equals the column total for the producing industries, the primary input rows and final purchases columns are not necessarily equal. Equality is achieved by including exports and imports in the balancing equations. For these three rows and columns, the aggregate value of primary inputs is equal to the aggregate value of final purchases, plus net exports, in the form,

$$
\begin{equation*}
\sum_{i=4}^{10} \sum_{j=1}^{3} x_{i j}=\sum_{i=4}^{10} \sum_{j=5}^{7} x_{i j}+\left(\sum_{i=4}^{10} x_{9}-\sum_{i=4}^{10} x_{10}\right) \tag{1.2}
\end{equation*}
$$

or,
Total Value Added $=$ Total Final Product + Net Exports.
Substituting from Table l.l, the balance equation is now represented by the numerical entries as follows:

$$
\begin{aligned}
& 718+111+354=738+253+195+(73-76) \\
& 1,183=1,183 \text { (in billion dollars) }
\end{aligned}
$$

Thus, the total value added of $\$ 1,183$ billion is exactly equal to the gross final purchases of $\$ 1,186$ billion, minus net imports of $\$ 3$ billion.

The concept of input-output analysis as an extension of national income and product accounting is suggested by the entries in Table l.l. Because interindustry transactions, i.e., purchases and sales represented in Quadrant I, balance out, they would not be included in the summary product and income accounts. Without the interindustry transactions, howeyer, inputoutput analysis would not be possible.

Acceptance of Input-Output Approach

Wide acceptance of the input-output approach in economic impact analysis and forecasting stems, in part, from the input-output concept itself -- its
inclusiveness, adaptability, and fundamental simplicity. An input-output table depicts the economic transactions of all remuneratively employed economic units. It can be disaggregated from a small number of large industry groups to many, but smaller, industry groups and their transactions with many, but also smaller, final demand sectors and primary input sectors. Yet, despite the apparent complexity of the economic structures represented by input-output tables, the manipulation of data in the analytical framework is the essence of simplicity in preparation and application. A competently prepared input-output table packs a great deal of useful economic information in small space.

Easy access to the input-output approach makes input-output data and methods prime candidates for well-earned skepticism about their acceptability for specific economic impact and policy analysis applications. While multiplier analysis is now widely associated with the input-output approach, much more than the derivation of multipliers, or the uncritical, uninformed use of multipliers, is involved. If input-output multipliers were the essence of this approach, it rightly would deserve widespread rejection rather than acceptance.

Widespread acceptance of the input-output method is based on its competent and judicious use in economic analysis and forecasting. It deals with short-term effects of industry-specific or sector-specific changes in output demand on all industry and sectors in a given place and time. It sorts out these effects, usually in terms of changes in output, but it can show these effects in terms of changes in income, employment, capital stock, and investment (10,30). It can be used to show the effects of changes in input supplies as well as output demands (6,7). It also provides a method for dealing with data omissions and for achieving forecast consistency $(24,33)$. And it can be used in a small area as well as a
national or global geographic setting (17). It still is, however, primarily a method for short-term impact analysis and forecasting, although it is now being extended to long-term development planning (22,24,33).

Basic Assumptions of Input-Output Analysis
Preparation and use of input-output tables is guided by its basic assumptions -- linearity, homogeniety and constancy of input-output relationships. Each industry is represented by a linear and a homogeneous production function with fixed input proportions. Graphically, output is represented as a straight-line function of input, starting from a "zero" origin. In its conventional formulation, the economy is demand-driven. Neither capital nor labor are limiting resources. These assumptions are further illustrated in the preparation and use of the input-output data in Table 1.1.

First, a set of input-output coefficients was derived for each of the four quadrants in Table 1.1. Production coefficients were derived from Quadrant I data while consumption coefficients were derived from Quadrant II. In the conventional input-output table, neither Quadrant III nor Quadrant IV coefficients are needed. The four sets of coefficients, which are sumarized in Table 1.2, thus show the proportion of the total purchases of each industry or sector which is acquired from each "producing" (i.e., row) industry or sector.

The input-output coefficients in Table 1.2 show certain proportions of total outlays of each industry allocated to each producing industry, primaryinput sector and rest-of-world sector. Thus, for the agriculture and mining industry group, the 22.727 cents of each $\$ 1$ of total outlay is allocated to its industry group (primarily for feed, livestock and similar transfers from one enterprise to another). Total agriculture and mining industry purchases from producing industries were 55.455 cents per $\$ 1$ total outlays. Outlays for
Table 1.2. Illustrative Input-Output Table: Intermediate and Final Purchases of Specified Industry Outputs and

Sector	Intermediate			Final Demand			Rest-of-World		
	Goods		ServicesProd.	Personal Cons. Exp.	Government	Business Invest.	Comp. Exports	Comp. Imports	
	Agr. \& Mining	$\begin{gathered} \text { Constr. \& } \\ \text { Mfg. } \\ \hline \end{gathered}$							
					11ars)				
Producing Industry:									
Agr., Mining	0.22727	0.02189	0.00974	0.00949	-0.00395	0.01538	0.08219	-0.07895	
Constr., Mfg.	0.16364	0.37661	0.01073	0.29404	0.31621	0.92308	0.52055	-0.60526	
Services	0.16364	0.15129	0.20779	0.68564	0.15415	0.10256	0.19178	-0.06579	
Total	0.55455	0.59979	0.31926	0.98916	0.46640	1.04103	0.79452	-0.75000	
Primary Inputs:									
Emp. Comp.	0.10000	0.28326	0.33009	0.00678	0.52174	0	0	0	
Ind. Bus. Tax.	0.02727	0.01931	0.09740	0	0	0	0	0	
Prop.-Type Inc.	0.31818	0.09549	0.25000	0	0	-0.04103	0	0	
Total	0.44545	$0.398 \cap 7$	0.67749	0.00678	0.52174	-0.04103	0	0	
Rest-of-World:									
Noncomp. Imp.	0	0.00215	0.00325	0.00949	0.01581	0	0.01379	-0.21053	∞
Dummy Ind.	0	0	0	-0.00542	0	0	0.19178	-0.05263	
Gross Outlay	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	-1.00000	

primary inputs accounted for the remaining 44.545 cents of outlays.
The construction and manufacturing industry group differed from agriculture and mining in its much lesser backward linkage with agriculture, its much higher internal linkage, its much larger outlays for employee compensation, and its much smaller allocation of total outlays to propertytype income, i.e., corporate profits and propriprietorial income. The ser-vices-producing industry group also differed from agriculture and mining in its lower overall interindustry transactions per $\$ 1$ gross outlay and its much higher allocation of value added to employee compensation, even with a nearly as high an allocation to property-type income.

The distribution of final product purchases also differed sharply among the three final product sectors. Personal consumption expenditures were largely for services, government expenditures were largely for employee compensation, while business investment expenditures were largely for manufactured (durable) goods, and construction materials and services. Competitive exports and competitive imports (i.e., commodities produced domestically which contrasts with noncomparable imports) were largely manufactured goods.

The Leontief inverse, the matrix of industry-specific demand multipliers, is derived from a set of input-output coefficients like those in Table 1.2. The demand multipliers are represented by the (I-A) inverse in the form,

$$
\begin{equation*}
X=[I-A]^{-1} Y \tag{1.3}
\end{equation*}
$$

where the [I-A] matrix is obtained from the technical coefficients in Table 1.2. The technical coefficient, $a_{i j}$, is represented by the ratio, $a_{i j}=\frac{x_{i j}}{X_{j}}$
where, $X_{i j}=$ total value, in dollars, of i-th industry output purchased by j-th industry.

A system of equations can be specified which describe the input-output relationships of economy, as in the form,

$$
\begin{align*}
& a_{11} X_{1}+a_{12} X_{2}+a_{13} X_{3}+Y_{1}=X_{1} \tag{1.4}\\
& a_{21} X_{1}+a_{22} X_{2}+a_{23} X_{3}+Y_{2}=X_{2} \\
& a_{31} X_{3}+a_{32} X_{2}+a_{33} X_{3}+Y_{3}=X_{3},
\end{align*}
$$

where the $a_{i j} X_{j}$'s and Y_{i} 's now represent the intermediate and final demand, respectively, for the i-th industry output, X_{i}. The three-equation system can be represented also in the algebraic form,

$$
\begin{align*}
& \left(1-a_{11}\right) X_{1} \quad a_{12} \cdot X_{2} a_{13} \cdot X_{3}=Y_{1} \tag{1.5}\\
& a_{21} \cdot X_{1}\left(1-a_{22}\right) X_{2} \quad a_{23} \cdot X_{3}=Y_{2} \\
& a_{31} \cdot X_{1} a_{32} \cdot X_{2}\left(1-a_{33}\right) X_{3}=Y_{3}
\end{align*}
$$

The set of technical coefficients in Table 1.2 can be represented as an [I-A] matrix to correspond with the coefficients preceding the X_{j} 's in Equation (1.5).

Derivation of the Leontief inverse from the technical coefficients in Table 1.2 is illustrated in Appendix A with the use of simple matrix procedures. Results of using these procedures are summarized in Table l.3. This table contains the individual demand multipliers in the Leontief inverse. The multipliers can relate a given change in final purchases, say of Y_{1}, to a corresponding change in each of the three commodities with the form,

$$
\begin{equation*}
\Delta \mathrm{X}=[\mathrm{I}-\mathrm{A}]^{-1} \Delta \mathrm{Y} \tag{1.6}
\end{equation*}
$$

where $[I-A]^{-1}$ is the Leontief inverse and ΔY and ΔX are the specified demand and derived output changes, respectively.

Individual demand multipliers are illustrated by three columns of coefficients in Table 1.3. These coefficients were derived from the technical coefficients in Table 1.2. They show the consequences of large internal

Table 1.3. Illustrative Input-Output Table: Total Effect of a $\$ 1$ Change in Final Demand for Specified Industry Output.

	Goods		Services
Sgr. $\&$ Mining	 Mfg.	(dollars) 0.16323	0.03741
Agr, , Mining	1.33662	1.70565	0.22424
Constr., Mfg.	0.40867	0.35945	1.31252
Services	0.35411	2.22833	1.57427
Total	2.09940		

linkage in large demand multipliers. The construction and manufacturing industry group, which had the largest total for its individual technical coefficients, also has the largest demand multiplier. For example, a $\$ 1$ increase in final demand for construction and manufacturing output results in a $\$ 2.23$ increase in oxerall industry output. Of this total effect, $\$ 1.71$ is due to output change in the construction and manufacturing industry as a result of additional intra-industry requirements for achleving a sufficiently high increase in output to satisfy both the $\$ 1$ increase in final demand and the 71 cent additional increase in intra-industry purchases.

The basic assumptions of linearity, homogeneity and constancy impose important constraints on the use of the input-output approach in labor market analysis and forecasting. While input-output relationships may not change (that is, only the levels of inputs and outputs change, not their proportions), the degree of import dependency of a small area may change. More or less of an industry's inputs may be acquired from outside the labor market, thus changing the degree of internal, backward linkage and, also, the value of its demand multiplier. For small areas, particularly, the rule of constancy is inapplicable, unless changes in import levels are included in the derivation of the input-output coefficients. A similar qualification applies, also, in the use of the consumption coefficients in overall area analysis and forecasting.

Additional limitations in the use of the input-output approach stem from industry-specific technological and price changes. The computer industry, which is part of the non-electrical machinery industry in the Standard Industrial Classification System, has undergone rapid transformation of both its technology and price structure. Indeed, the price of computers fell at the same time that energy prices rapidly outpaced other price increases.

For Minnesota, particularly, the contrasting price experiences of the computer and the petroleum industries resulted in sharp changes in interindustry relationships. The rule of constancy in input-output relations was seriously violated during the 1970^{\prime} s as computer prices dropped relative to petroleum prices. Minnesota exports computers, but imports its petroleum. Its terms of trade thus worsened, except for the output-increasing effects of new computer technology and its widespread business applications. As prices dropped, utilization increased, partly because of substitution of new computers for old ones and partly because of new uses for new computers. With these and similar distortions of input-output relationships, great care and expertise must be exercised in the appropriate use of the input-output approach in small area impact anlaysis and forecasting.

Various computational procedures have been developed for dealing with the constraints imposed by the basic assumptions of input-output analysis. These procedures are discussed in later sections of this report. First, however, a problem focus for input-output approaches is delineated and discussed. Model building steps are related to the problem focus. They include the delineation of study area; industry and sector classification; model specification; data collection and preparation; model calibration, documentation and verification; and model validation and acceptance. Data interpretation is discussed next. In this section, the different parts of input-output tables of the U.S. and Minnesota, and their inverses, are examined, including industry sales and purchases; value added and final purchases; imports and exports; and direct and indirect effects. Finally, applications of the input-output approach in economic impact analysis and projection are presented.

MODEL BUILDING

Model-building involvesa series of steps starting with a definition of the problem and a delineation of the geographical problem area. The model building steps parallel the building of a decision information system in which local and national macro-economic data and analytical and forecasting methods are related to public sector planning and management. In such a system, the input-output model and the model builder in essence convert data into information which the model user translates into specific decisioninformation. Model-builder and model user thus collaborate in the deployment of the information system output for decision making purposes. They may collaborate, or at least exchange views, in earlier stages of model building, for example, the problem delineation.

Problem and Area Delineation

The problem focus in model building is identified as a primary consideration in deciding whether or not the input-output approach is ideally the appropriate one. Many problems require no more than the trained and experienced judgement of a practicing economic consultant. Others may require some quantification, but nothing more sophisticated than a single equation model with less than a half dozen variables. Some problems are less tractable. They call for more sophisticated approaches, but even then, neither the trained and experienced judgement of the practicing economist nor the quantification provided by a simple, single-equation model can be discarded. Effective use of the input-output approach depends on the parallel development of proven economic analytical competences.

The input-output approach is most suited for large areas with much internal linkage, or to small, growing areas which are in the process of becoming increasingly interdependent as a result of population and income growth and industry proliferation. The Upper Midwest Region (as defined by
the Minneapolis Federal Reserve Bank), the State of Minnesota, the sevencounty Metropolitan Council Region, and the eight-county Arrowhead Region plus Douglas County, Wisconsin are regions with much internal interdependence. Of the four regions, only the Arrowhead Region is declining rather than growing, but its internal interdependence is nonetheless increasing. Many smaller areas, of course, are growing in both total economic activity and internal linkage.

A problem focus in areas of strong internal linkages which emphasizes the measurement of industry-specific and sector-specific economic effects of changes in demand and supply, or related governmental policy and climatic conditions, is one obviously tailored to an input-output approach.

Further delineation of Minnesota substate regions for the input-output approach could start with a grouping of existing substate development regions. For example, Regions $1,2,4,6 \mathrm{~W}$ and 8 form a dominantly agricultural economic region, while Regions $6 \mathrm{E}, 7 \mathrm{E}, 7 \mathrm{~W}, 9$ and 10 form a transitional agricultural-industrial region (Figure 2.1). Indeed, the metropolitan core region, Region 11 , may be joined by Regions $7 E$ and 7 W to form an extended metropolitan focal region. Finally, Regions 2 and 5 could be grouped with Region 3 to form a natural resources-based urban-industrial economic region. With a minimum of four substate input-output models, economically different substate regional groupings can be related directly to U.S. output markets and input sources, as well as to each other.

Further regional subdivisions can be achieved within the three larger regional groupings outside the Metropolitan Council Region. The inputoutput approach could apply even to subregions. The use of substate regional groupings would facilitate, rather than preclude, the preparation and use of small area input-output tables. Both model calibration and validation procedures, for example, could be more readily implemented by starting with

Figure 2.1. Substate Planning and Development Districts,
Minnesota, 1978.
 Codes: Serius 8. 1981.

$\begin{aligned} & \text { Yerne } \\ & \text { 214-i } \\ & \hline \end{aligned}$	sota -dustev Code	BLS	ISDC	بinnesoes		SIC Code (1972 Edition)
No. Ticle		154-In	Ind. 496-1n等.	55-1nc	95-In¢.	
1.	Dosey farm prod.	pt. 1	1.01	pt. 1	pt. 1	0241,pt.0191,pt.0259,pt.0291
2.	Foulity 6 egss	pe. 1	1.02	pe. 1	pe.l	025 (exc.0254 \& pt.0359).p:.0191,pt.0229
	Meat antmals a prod.	2	1.0301,.0302	pt. 1	pe. 1	021 (exc.pt.021s), 27, pt.0191, pt.0219,pt.0259, $=0.0291$
4.	food, feed grain	4	2.0201.0202	pe. 2	pt. 2	pt.011,pt.0139,pt.0191,pt.0219,pt.0253,25.0291
5.	Vegetables	pr. 5	2.0501	pe. 2	pt. 2	0134,0161,pt.0115,pt.0139,pti0191,pt.0319, pe.E339pt.0291
	Sugar crops	pe. 5	2.0502	pt. 2	pt. 2	0133,pt.0191,pt.0219,pe .0259,pt.0291
	Oil-bearing crops	pt. 5	2.0500	pe. 2	pe. 2	0116,pt.0119pteol3,peol73,pe. C219,pe 0253p=0291
8.	orher crops	3,pt. 5	$\begin{aligned} & 2.01,2.0203, .03 \\ & .04, .07, .0503 \end{aligned}$	pt. 2	pt. 2	pt.0119,pt.0139,pt.0191, pt.0219,pt.025\%, zt.0291
9.	Forest. \& fish. prod.	6	3.00	pe. 3	3	081-4,091,097
10.	Agr.,for.,fish.serv.	7	4.00	pt. 3	4	0254,07 (exc.074), 085,092
11.	Iron ore mintag	8	5.00	4	5	101,106
12.	Copper ore miniaz	9	6.01	6	pt. 6	102
13.	Oeher nonfer. ores	10	6.02	5	pe. 6	103-105,pt.108,109
14.	Coal 6 peat mining	11	7.00	pe. 7	7	1111,pt.1112,1211,pt.1213
15.	0il 8 gas extrace.	12	8.00	pe. 7	8	131,132,pt.138
16.	Stone 8 clay	13	9.00	pt. 7	9	141-145,pt.148,149
17.	Chem. 6 Eert.	14	10.00	pe. 7	10	147
18.	Seut resid. bulld.	15	11.06	pt. 8	pr. 11	pt.13,pt.16,pt.17
	Nes nonres. build.	16	11.02	pt. 5	pt. 11	pt.15,ps.16,pt.17
20.	New public ueility	17	11.03	pt. 8	pe. 11	pr.16,pt. 17
21.	lide hishway const.	18	11.04	pt. 8	P=.11	pt.16,pt.17
22.	All other const.	191	11.0501, 2, 5,7	pt. 8	pe.11	pt.15,pt.16,pt.17
23.	Hell crilling,min.ex.	$20 \quad 11$	11.0503,4,6,8	PL. 8	pt.11	pt.108,pt.1112,pe.1213,pt.138
24.	vaint. \& repair	21	12.0100-.0215	pt. 8	12	pt.15,pt.16.pt.17
25.	Compleca guided ais.	23	13.01	pe. 9	pt. 13	3761
26.	Other ofdnance	22	13.02-.07	pt. 9	pt. 13	348, 3795
27.	Yeat packing	Pt. 24	14.0101	pt.11	Pt. 15	2011
28.	Sausazes 5 other	pt. 24	14.0102	pt.11	pt. 15	2013
29.	Poulery dressing	pt. 24	14.0103	pt.11	pe. 25	2016
30.	Zoulery a egz proc.	pe. 24	14.0104	pt. 11	pt. 15	2017
31.	Creamery butcer	pt. 25	14.02	pt.11	pe. 14	2021
32.	Cheese,nat. \& proc.	pt. 25	14.03	pt. 10	pe. 14	2022
33.	Cond. \& evap. milk	pt. 25	14.04	pe. 10	pe. 14	2023
34.	Ice cream à froz. des.	pt. 25	14.05	pe. 10	pt. 14	2024
35.	Fluid milk	pt. 25	14.05	pe.10	pe. 14	2026
36.	Canaed fir \& veb.	pt. 26	14.09	pt. 10	pt. 14	2033
	Frozert fr. 6 veg.	pt. 26	14.13	pe. 10	pt. 14	2037,8
38.	Orhar pres. ir. i veg.	pt. 26	14.03,.10	pt. 10	pe. 14	2032,2034,2035
39.	Fresi, Ezoz.,pres.fish	pt. 26	14.07,.11	pt. 10	pe.1\%	2091,2092
40.	Elouz 8 ocher graín	pr. 27	14.1401	pt. 12	pt. 16	2041
41.	Cereal preparations	pe. 27	14.1402	pt.12	pt. 16	2043
42.	Eiended \% prep. flour	pt. 27	14.1403	pt. 12	pe. 16	2045
43.	2og,cas \& other pet	pe. 27	14.1501	pt. 12	pe. 16	2047
4%.	Prepased feeds,n.e.c.	pt. 27	14.1592	pt. 12	pe. 16	2048
45.	Rice milling	pt. 27	14.16	pt. 12	pt. 16	2044
	\#̈et corn ailling	pr. 27	14.17	pt. 12	pt. 16	2046
47.	3read, cake 8 rel. pr.	.pt. 28	14.180i	pt. 10	pe. 14	2051
48.	Cookies o crackers	pt. 28	14.1802	pt. 10	pe. 14	2052
49.	Sugar	29	14.19	pt. 13	pt. 14	2061-3
50.	Confect. \& rel.	30	14.20	pt. 10	pt. 14	2065-7
5 S.	Alcoholle beverages	31	14.21	pt. 13	pt. 17	2032-2085
52.	Sost deinks	PE. 32	14.22	pt. 13	pt. 17	2086
53.	Elavoring ex. \& syr.	pt. 32	14.24 .23	pt. 13	PC. 17	2087 ,
54.	Fats \& oils	p: .33	14.24-.27,.29	$p=.14$	pe. 14	2074-7,2079
55.	Yisc. food prod.	pt. 33	14.28, .31,. 32	pt. 10	pt. 14	2095,2097-9
56.	Tobasco manuf.	34	15.01-.02	pt. 13	18	21
	Fabric of thread	35	16.01-.04	pt. 14	19	221-224,225,223
58.	Floor coveritizs	36	17.01	25.14	pt. 20	227 ,
	Misc. text. prod.	37	17.02-. 10	P2.14	pt. 20	229
60.	:ossury 8 knit	38	18.0101-. 0300	p6.14	pt. 21	225
61.	Apparel mid.	39	18.04	pe.14.	P=. 21	23(exc. 239),39955
62.	Fabricated text.	40	19.01-.0306	2:.14	22	239
53.	406 Lag	41	20.01	pt.13	pr. 23	241
64.	Sammilis s plan. bills	pt. 42	20.02	pe.ts	pt. 23	2421
63.	Harcwood slooring	Fc.á2	20.03	pe.16	pt. 23	2425
56.	Spectal prod. samillis	pe. 42	20.04	2:.15	pt. 33	2629
67.	: 113:ort s cabinues	pt. 43	20.05	pe. 16	$p=.23$	243!,4
65.	Otneer \& plywood	DE. 43	20.06	ne. 1 A	ar 9	Pirs

the larger regional groupings rather than individual substate development regions, or individual counties. Such a hierarchical approach would reduce data disclosure problems for small area studies and also reduce data costs while increasing the probability of user acceptance because of more readily implemented model calibration and validation methods.

Model and Sector Classification

The extent of industry and sector disaggregation depends on the geographical area and its immunity from problems of industry disclosure. For example, a densely populated multi-county area would have economic data reported for many more individual industries than a sparsely populated multicounty area.

Starting with the State of Minnesota, a 214 -industry breakdown of industry output, employment and income, as specified in Table 2.1 , is readily implemented. Currently, such a breakdown is available, not only for the State, but, also, Regions 2, 3 and 11. These industry breakdowns were devised specifically for the mineral-related and forest-related studies now being completed at the University of Minnesota.

In addition to the 214 -industry breakdown, a potential 12-sector breakdown is available for the differentiating of final product by recipient sector. The 12 sectors are listed as follows:

Household: personal consumption expenditures.
Government: state and federal, with four state (education; welfare, and sanitation; safety; and other general governmant) and two federal (national defense and nondefense) sectors.

Business Investment: gross private capital formation and change in business inventories.

Rest-of-World: competitive exports;competitive imports; and exports from state or region to rest of nation.
 Codes: Serfes B, 1981.

$\begin{aligned} & \text { uline } \\ & \frac{214=!}{\text { No. }} \end{aligned}$	$\begin{aligned} & \text { sota } \\ & \text { - Cusery code } \\ & \text { Ticte } \end{aligned}$	$\begin{aligned} & \text { BLS } \\ & 154 \text { Ind. } \end{aligned}$	LSDC 496-1nd.	Yinmesoes		SIC Code (1972 Edition)
1.	Dalty farm prod.	pt. 1	1.01	pe. 1	pt. 1	0341,pt.0191,pt.0259,pt.0291
2.	Poulity 6 egss	pt. 1	1.02	pe. 1	pt. 1	025(exe.0254 \& pt.0259).pt.0101,pe.03:9
3.	Yeat antmals o prod.	2	1.0301,.0302	PE. 1	pt. 1	021 (exc.pt.021s),27,pt.0191, p= 0.219,pt.0259,pe.0291
	Food, feed grain	4	2.0201. 0202	pe. 2	$\mathrm{p}=.2$	pt.011,pt.0139,pE.0191.pt.0219,pt.0253,2t.0291
5.	Vegecables	pt. 5	2.0501	pt. 2	pt. 2	0134,0161,pt.0119,pt.0139,pt.0191,pt.0319,pe.ce3spt.0291
5.	Sugar crops	pt, 5	2.0502	pt. 2	P5. 2	0133,pt.0191,pt.0219,pt.0259,pt.0291
	Otl-bearing erops	pt. 5	2.0500	pt. 2	pe. 2	
8.	Orher crops	3,pt. 5	$\begin{aligned} & 2.01,2,0203, .03, \\ & .04, .07, .0503 \end{aligned}$	pt. 2	pt. 2	pt.0119,pt.0133,pt.0191,pt.0219,pt.0259,pe.0291
9.	Faresc. \& fish. prod.	6	3.00	pt. 3	3	081-4,091,097
10.	Agr.,for.,fish.serv.	7	4.00	pt. 3	4	0254,07 (exc.074),085,092
11.	Iron ore mining	8	5.00	4	5	101,106
12.	Coppar ore mining	9	6.01	6	pt. 6	102
13.	Orher nonfer. ores	10	6.02	5	pt. 6	103-105,pt.108,109
14.	Coal \& peat mining	11	7.00	pt. 7	7	1111,pt.1112,1211,pt.1213
15.	011 \& gas extract.	12	8.00	pt.?	8	131,132,pe. 138
16.	Stone \& clay	13	9.00	pt. 7	9	141-145,pt.148,149
17.	Chers. \& fert.	14	10.00	pt. 7	10	147
18.	Sew resid. build.	15	11.01	pt. 8	pe.11	pt.15,pt.16,pt.17
19.	New nonras. build.	16	11.02	pt. 5	pt.11	pt.15,pt.16,pt.17
20.	New public uelisey	17	11.03	pe. 8	pt. 11	pt.16,pt. 17
21.	\#ed hishway const.	18	11.04	pe.8	pt. 11	pt.16,pe.17
22.	211 orther coast.	1911	1.0501, 2, 5, 7	pt.8	pe.11	pt.15,pt.16.pt.17
23.	\#̈ell crilling,min.ex.	2011	11.0503,4,6,8	pt. 8	pt. 11	pt.108,pt.1112,pt.1213,pt.138
25.	:aint. \& repais	21	12.0100-.0215	pt. 8	12	pt.15,pt.16,pt.17
25.	Complece guifed ais.	23	13.01	pe. 9	pt. 13	3761
26.	Other ofdnance	22	13.02-. 07	Pt. 9	pe. 13	348, 3795
27.	Heat packing	pt. 24	14.0101	pt.11	pt. 15	2011
28.	Sausazes 5 other	pr. 24	14.0102	PC. 11	pt. 15	2013
29.	Poulvy dressing	pe. 34	14.0103	pt.11	pt. 15	2016
30.	Poultry a egs proc.	pt. 24	14.0104	pt.11	pt. 15	2017
31.	Creamezy butser	pt. 25	14.02	pt.11	pt. 14	2021
32.	Cheese,nat. 8 proc.	pe. 25	14.03	pt. 10	pt. 14	2022
33.	Cond. \& evap. milk	p. 25	14.04	P6. 10	pt. 14	2023
34.	Ice cream \& froz, des.	pt. 25	14.03	pe.10	pr. 14	2024
35.	Fluid milk	pt. 25	14.06	pt. 10	pt.14	2026
36.	Canaed Ez. ${ }^{\text {a }}$ veb.	pt. 26	14.09	pt. 10	pe. 14	2033
37.	Frozen fr. \& veg.	pt. 26	14.13	pt. 10	pt. 14	2037,8
38.	Ocher pres. ir. ${ }^{\text {c }}$ veg.	pt. 26	14.05,.10	p5.10	pt. 14	2032,2034,2035
39.	Fresi, Ezoz.,pres.Eish	PE. 26	14.07..11	pt. 10	pt.14	2091,2092
40.	Elour s ocher grain	pt. 27	14.1401	pt. 12	pt. 16	2041
41.	Cereal preparations	pe. 27	14.1402	pt.12	pt. 16	2043
42.	Eismed \% prep. flour	Pt. 27	14.1403	p5. 12	pe.16	2045
43.	Sog.ca: 4 ocher pet	pt. 27	14.1501	pt. 12	pe. 16	2047
4.6	Prepared feeds,n.e.c.	pt. 27	14.1502	pt. 12	pe.16	2048
45.	3ice ailling	pt. 27	14.16	pr. 12	pt. 16	2044
45.		pt. 27	14.17	Pt. 12	pt. 16	2046
47.	$3 \mathrm{read}, \mathrm{cake} 8 \mathrm{rel} . \mathrm{pr}$.	.pe. 28	14.1802	pt. 10	pt. 14	2051
48.	Cookies 5 crackers	pt. 28	14.1802	pt. 10	pt. 14	2052
49.	Sugar	29	14.19	pt. 13	pt. 14	2061-3
50.	Contect. 8 rel.	30	14.20	pt. 10	pe. 14	2065-7
5 S .	Aicoholic beverages	31	14.21	pt. 13	pt. 17	2032-2085
52.	Soft deinks	pe. 32	14.22	PE. 13	pt. 17	2086
53.	Flavaring ex. \& syr.	pt. 32	14.23	pe. 13	pe. 17	2087
54.	Eats \& oils	P:. 33	14.24-.37,.29	pe. 14	pt. 14	2074-7,2079
	Yisc. food prod.	pe. 33	14.28,.31,.32	pt. 10	pt. 14	2095,2097-9
55.	Eobasco manuf.	34	15.01-.02	pt. 13	18	21
57.	Fabric a theead	35	16.01-. 04	pe.14	19	221-224,225,228
58.	Floor coverings	36	17.01	25.14	pt. 20	227
	Misc. text. prod.	37	17.02-.10	p: 16	pt. 20	229
60.	rastury o knit	38	18.0101-.0303	p5.14	pe. 21	225
61.	apparel mig.	39	18.05	pi.14.	pt. 21	23(exc. 239),39955
62.	tiabricated text.	40	19.01-.0306	Pi. 14	22	239 .
53.	Lose ing	41	20.31	pe.15	p5. 23	24.
64.	Saminils of plan, 01115	pt. 42	20.02	pt. 15	$\mathrm{p}=23$	2421
	tiarcwood floortng	pt.42	20.03	pe.16	pt. 23	2425
56.	Spectal prod. saxinills	pe.42	20.04	p:.15	pe. 23	2699
67.	Stlimork s cabtnees	pt.43	20.05	pt. 15	P6. 33	2431.4
65.	Zeneer 4 plywood	pt. 43	20.06	$\mathrm{p}=16$	pt. 23	2435,6
69.	Struet. mod,n,e.c.	pt. 43	20.0901	p:.15	pt. 23	2639
70.	rrefabstrated voou	pt. 43	20.0702	P2. 15	pt. 23	2452
71.	: \because Ood proumering	pt. 43	20.0200	pt. 15	Pe. 23	2.91
72.	\#,apd pellets s skids	pt. 43	20.0901	it.l5	pt. 23	24:8
73.	Esricichoard	pt. 43	20.690	-5.15	pt. 23	2:92
74.		pt. 43	20.0903	pt.:5	pt. 23	2409
75.	arad co:talners	44	21.00	pe.in	24	264. (0xe. 2643)
76.	bios turnubuid fura.	pi.45	22.01..0?	pe.16	$p=.23$	2511,2512,2517,2517
7\%.	orner mounthold furn.	pt.45	22.03..04	Fe.14	pe. 23	2514.2515

$\begin{aligned} & \text { Mitne } \\ & 210 \\ & \hline \end{aligned}$	-ants TnGune: Cinda $T E 10$	$\begin{gathered} 6!.3 \\ 154-1 n \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{csoc} \\ 495-1 n 1 \\ \hline \end{gathered}$	53-Tutuesen		SIC Coce (1972 Eidston)
73	Wood office furn.	pi.as	23.01	pe.!ó	pe. 25	2521
79.	Othes fura. S fix.	pt, 45	23.02-.07	pe. 16	pt.25	2522,2531,25:.35:
83.	Pulp allis	p5.47	25.01	pe.:17	pt. 27	361
a:	Paperallliz	Pt. 47	24.02	PE. 17	pt. 27	262
8.	Paperhoard mills	pt.47	2:. 03	pe. 17	pe. 27	263
	Conv. papar prod. ${ }^{\text {c }}$	pt. $\mathrm{id}^{\text {P }}$	24.04,.05,.07	pe.17	pt. 27	26.4
$8:$.	Ruild. Paper \& bl.	PS: $\cdot 7$.	24.0602	pc. 17	p5. 27	256
85.	Papestoard contaln.	43	25.00	pt. 17	28	265
	Hewspaper princ.spub.	49	26.01	pe. 18	p:. 29	271
87.	Period. \& book	50	25.02-.04	pe. 18	pt. 29	272-274
83.	Misc. Print. \& pub.	51	25.05-. 08	Pt. 18	pe.29,30	275-279
89.	Ind. Inorg. S org. ch.	52	27.01	pe.19	pe. 31	281(exe.28195).2355,2959
90.	Agrlculeural chem.	53	27.02-.03	pe.10	pe. 31	237
91.	Misc. chen. prod.	54	27.04	p 5.19	PC. 31	2861,259
92.	Plascic 6 rubber	55	23.01,.02	pe.19	pt. 32	282i, 2822
93.	Symehestc fibers	56	28.03-. 04	pt. 19	pt. 32	2823,2824
94.	Drugs	57	29.01	pe.19	pt. 33	283
95.	Cleantnz 4 coilec	58	29.09-. 03	pe. 19	pt. 33	284
95.	Paines	59	30.00	pr. 19	34	285
97.	Perroleum ref.	pt. 50	30.01	pt. 20	35	291,299
98.	Paving \& asp. mix.	pt. 60	31.02,.03	pe. 20	36	295
99.	Tires \& in. tubes	61	32.01	pt. 21	pe. 37	301
100.	Misc. rub. prod.	62	32.02,.03..05	pt.2!	pt. 37	302-305
102.	Plaseic prad.	63	32.04	pt. 21	pt. 37	307
102.	Leather can. a ind.	64	33.01	pt. 21	38	311
103.	Footware \& other	65	34.01-.0305	pe. 21	39	313-319
104.	Class	66	35.01-. 02	pt. 22	40	321-323
105.	Hydraulic cenene	pe. 67	36.01	pt. 22	pe.41	32.
105.	Bricix \& clay tile	pe.59	35.02	Pt. 22	pt.41	325:
107.	Other struct. clay	pt. 63	36.03	pt. 22	pt.41	3253,3255,3253
103.	Poteery \& rel. prod.	59	36.06-. 09	pe. 22	P5.41	325
109.	Concrete, exc. block	P*. 67	36.11	pt. 22	pt. 41	3272
110.	Concr. block	.pt. 67	36.10,. 12	pt. 22	pt. 41	3271,3273
111.	Lime \& gypsum	pe. 67	36.13,.14	pt. 22	pe.ti	3274,3275
112.	Misc. stone i clay	70	36.15-. 22	pt. 23	pt.4]	328,329
113.	B1. furn. \& steel	pe. 71	37.0101	pe. 23	pt. 42	3312
114.	Electrocet. prod.	Pe. 71	37.0102	PE. 23	pe.4?	3313
115.	Steell uite δ ral.	pt.71	37.0103	pt. 23	pt. 42	3315
116.	Cold Ein. steel	pe. 71	37.0104	pt. 23	pt. 42	3315
117.	Steel gipa 5 tube3	pe. 71	37.0105	pt. 23	pt. 42	3317
113.	Iron \& sceel found.	pt. 72	37.0200	pe. 23	pe. 42	332
119.	Iron os st. Forg.	pt. 72	37.0300	pt. 23	Pt. 42	3462
120.	Metal heat treat.	pe. 72	37.0401	pt. 23	pt. 42	3398
121.	Pri. cat. prod.n.e.c.	pt. 72	37.0402	pe. 23	PE. 42	3399
122.	Primary copper	$\mathrm{p}=.73$	38.0100	pt. 24	pt. 43	3331
123.	Other prim. cop.	pe. 73	38.07,.10, 12	P6. 24	pt.43	3351,3357,3362
124.	Pri. alua. \& prod.	74	33.04,.08	pe. 25	pt. 43	3334,3353-5,3251,23195
125.	Other pri. nonter.	75	$\begin{aligned} & 38.02, .03, .05 \\ & .06, .09, .13, .14 \end{aligned}$	pt. 25	pt. 43	3332,3333,3339,334,3356,3359,3463
126.	Metal containers	76	39.01-. 02	pt. 25	44	341
127.	Heac. \& plumb. §ix.	77	40.01-. 02	pt. 25	pe.45	343
123.	Fabricated metal	78	40.03-. 09	pt. 26	pe. 45	344
129.	Screa machine prod.	79	41.01	pe. 26	pe.46	345
130.	Metal stampligs	80	41.02	pe. 26	pt. 46	3465,3456,3459
131.	Cutlery a gen. hdw.	81	42.01-. 03	pe. 26	pe.47	342
132.	Ocher febr. metal	82	42.01-.11	pe. 26	pe. 47	347,349
133.	Engines	83	43.01	pe. 27	48	351
134.	Farm machinery	84	44.00	pt. 37	49	352
135.	Const. \% mining mach.	85	45.01-. 03	pe. 27	50	3531-3333
135.	Materials handling	85	46.01-. 03	pe. 27	51	3534-3537
137.	Metaluorking mach.	87	47.01-. 04	pc. 72	52	354
133.	Spectal inds. meta.	38	48.01-.06	pe. 27	53	355
139.	Cen. Induatrial	89	49.01-. 07	pe. 27	54	356
140.	Machine shops	90	50.00	pe. 27	55	359
141.	Elecetonle coaputing	pe. 91	51.0101	pe. 27	pt. 57	3573
122.	Calculathog i aceez.	pe.9!	51.0102	pe. 27	pt. 37	3574
143.	Oiflce macinines	92	51.02-. 04	pt. 27	56	3572,3576,3577
144.	Serrice ind, mach.	93	52.01-.05	pt. 27	58	358
145.	Electrical crans. eq.	94	53.01-. 01	pt. 28	pt. 59	351,3825
145.	Elecsrtial lad. appar.	95	53.04-.08	pt. 23	pe. 59	362
167.	Houseiole appl.	95	54.01-.07	pr. 28	60	363
149.	Elesertc lighe.	97	55.01-. 03	pt. 39	$6!$	364
1:3.	Rutio : TV sees	93	56.01-. 02	pe. 28	pt. 62	365
isj.	Telephone 4 cel. eq.	97	54.03	pt. 28	pt. 62	3661
15.	Radio 5 comen. equip.	100	56.04	pt. 28	p6. 62	3562
132.	Eleceron cubes	pt. 101	57.01	pr. 28	pt. 63	3671-3
ij3.	Semidamlycears	pe.tol	57.02	pt. 28	pt.53	3674
15.	Dehur aluctr. camp.	pe. 101	57.03	pt. 28	pe.63.	3575-9
15 S.	M1sc.elerter. eq.	102	$58.01-.05$	PC. 29	64	349
155.	Nocor yehlicles	123	$37.01-.03$	29	65	371
157.	discerse	104	$60.01-.04$	30	66	372,3764,3759

For current studies, the four state sectors are combined into one sector and the two federal sectors are combined into a second government sector.

A second industry breakdown is available for Minnesota that parallels the 85-industry breakdown of published U.S. input-output tables (34), but with disaggregation of petroleum refining, food products, nonelectrical machinery manufacturing, and public utilities industries which results in a 95 -industry listing. In addition, a 75 -industry breakdown is available for general-purpose studies. This breakdown uniquely delineates economically important Minnesota industries.

Use of different industry and sector classification systems is guided by knowledge of the basic input-output assumptions and their implications for both the model builder and the model user. More or less homogeneous economic activities are grouped together on the assumption that their input requirements per unit of output will remain constant. If the activity composition in an industry changes, the assumption of constancy may be violated. Similarly, for small area studies, the import requirements per unit of output must remain constant for the input-output multiplier values to hold. Input substitution within an industry group, however, would not contradict the constancy assumption as long as the input requirements per unit of output remain unchanged. When the basic input-output assumptions no longer hold, new input-output tahles must be constructed which may require a re-classification of a region's economic activities to form more homogeneous groupings of industries and final demand sectors. Public disclosure rules and data limitations, of course, will force compromises which may require frequent updating of the input-output tables. Time and money costs of maintaining and updating state and substate regional input-output tables become an important consideration in the acceptance of the input-output approach for labor market studies.

Model Specification
An input-output table is based on an input-output model, as shown in Eq. (1.5), which is now specified in the matrix form,

$$
\begin{equation*}
X[A-I]=Y \tag{2.1}
\end{equation*}
$$

where,

$$
X=\text { individual industry outputs in dollars; }
$$

$[I-A]=$ matrix of individual input-output (i.e., technical) coefficients, ${ }_{i j}{ }^{\prime} s$, subtracted from an identity matrix, $I ;$
$Y=$ final demand for individual industry outputs in dollars. The input-output coefficient, $a_{i j}$, was defined earlier as the purchases of i-th industry output per $\$ 1$ of all purchases by the $j-t h$ industry.

A three-industry (I-A) matrix is presented in the Appendix (p.), where its derivation and use in the input-output approach is also indicated. The (I-A) matrix is inverted to obtain the Leontief input-output model of the form,

$$
\begin{equation*}
\mathrm{X}=[\mathrm{I}-\mathrm{A}]^{-1} \mathrm{Y} \tag{2.2}
\end{equation*}
$$

where, $[I-A]^{-1}=$ Leontief inverse of demand multipliers which show the total effects -- direct and indirect -- of a one-unit change in industry-specific final demand, Y, on all industry as specified by the individual elements and their total in each column of the Leontief inverse.

All final demand sectors are treated alike with respect to their effects on individual industry outputs. A one-unit increase in the final demand is the same whether the increase occurs in household purchases or government purchases.

Input-output model specification thus requires identification of at least three components as listed in Equation (2.2) -- industry gross outputs, $X ;$ final demands for industry gross outputs, Y; and all interindustry
transactions, which are shown by a matrix, [I-A] ${ }^{-1}$, of input-output multipliers. This model specification represents the input-output approach as demand based. A change in final demand, ΔY, "drives" the input-output model, thus yielding estimates of corresponding changes in industry outputs, which are indicated by the vector, $\Delta \mathrm{X}$, shown earlier in Eq. (1.6).

An alternate specification of the input-output model is given by the form,

$$
X(I-C)=V, \quad \quad E q \cdot(2.3)
$$

where, (I-C) = matrix of individual disbursement coefficients, $c_{i j}$, subtracted from an identity matrix, X.
$\mathrm{V}=$ value of individual industry primary inputs and imports in dollars.

The $c_{i j}$ coefficient represents the value of disbursements of the i-th industry to the j-th purchasing industry or sector per $\$ 1$ of total i-th industry disbursements of gross output. Only the diagonal disbursement and technical coefficients would be the same from a given interindustry transactions table. Off-diagonal values would differ (because the denominators of the two ratios would differ for a given $X_{i j}$). Thus, the inverse of the (I-C) matrix is multiplied by the change in primary inputs and imports to obtain the corresponding change in industry outputs, as indicated by the form,

$$
\begin{equation*}
\Delta X=[I-C]^{-1} \Delta V \tag{2.4}
\end{equation*}
$$

In this formulation of the input-output model, a change in industry input supply, rather than output demand, accounts for the corresponding changes in industry outputs $(6,7)$. The input-output model is now supply-constrained rather than demand-constrained and, hence, increases in output will depend upon increases in input supply rather than output demand.

Both the demand-constrained and supply-constrained versions of the input-output approach can be represented totally in terms of output changes by dividing each column and row in the inverse by its corresponding diagonal
coefficients. Thus, a series of output multipliers are obtained in place of the demand and supply multipliers specified in Eq. (2.2) and Eq. (2.4), respectively. The new output and input multipliers are specified in the two forms,

Therefore, in the two adjusted matrices each diagonal element is equal to unity, and each off-diagonal element also is smaller than its original value.

The adjusted output (i.e., $\hat{b}_{i j}$) multipliers constrast with adjusted input (i.e., $\hat{\mathrm{d}}_{i j}$) multipliers in the direction of causality, whether demandoriginating or supply-originating. A one-unit change in total output due to a change in output demand results in direct and indirect effects on other industry outputs in proportion to the given industry's backward linkages with other industries in the state. Thus, the larger the local backward linkages, the larger the output multiplier, and the larger the total output change. On the other hand, a one-unit change in total output due to a change in primary input or import supply results in direct and indirect effects on other industry outputs in proportion to the given industry's forward linkages with other industries inithe state. Thus, the larger the local
forward linkages, the larger the input multiplier, and the larger the total output change.

The input-output relationships specified in the first six equations are static representations of state or regional industry structure. They refer to industry input and output changes in response to changes in specified demand and supply constraints in a given time period. Additional variables, and their relationships with the exogeneous input-output variables, V and Y, must be specified in a dynamic, forecasting model of the state or regional economy depicted by the series of six equations. The additional variables and their relationships are discussed in the last two chapters. Implementation of the static input-output model is discussed next.

Data Collection and Preparation

Two distinctly different methods -- one direct (see, ref. 9,11), the other indirect (see, ref. 12,23) -- and varying combinations of these two methods (see, ref. 10,20), have been used in preparing state and regional input-output tables. The direct method makes use of business, household and government surveys in the estimation of individual industry sales and purchases, and individual sector disbursements and receipts. Usually, surveys include high proportions of all large establishments and low proportions of small establishments. The number of households is small, also, while all government units are likely to be surveyed.

Size of sample is dictated by size of industry, desired accuracy of estimates, and total survey budget. For most studies, the primary survey costs are much too high to warrant use of survey data only in the preparation of state or regional input-output tables.

The indirect method makes use of existing published and unpublished statistics of business, household and government activities. Much of these
data is obtained from reporting requirements of state unemployment insurance programs and state sales and income tax laws. The U.S. Department of Commerce also publishes detailed annual statistics of employment and income for each state. Comparable statistical series are available for the entire U.S., also. Thus, ratios of state employment or income to corresponding U.S. employment or income can be derived for use in allocating U.S. industry gross outputs to individual states.

A University of Minnesota two-region input-output computer program is available for making use of state and national statistical series, along with U.S. input-output tables, in the preparation of U.S. two-region inputoutput tables $(12,21,22,25,26,27)$. This is an efficient, speciaf purpose computer program which fully utilizes existing data series in the implementation of indirect input-output estimation procedures.

Combined direct and indirect input-output estimation methods make use of both survey data (covering mostly manufacturing industries and large establishments in selected non-manufacturing industries) and existing comparable area input-output tables. This method, while less costly than a completely survey-based estimation procedure, is much more costly than the indirect estimation procedures and, also, less complete in its implementation of the import sector for both intermediate and final purchasing sectors. Neither the direct nor the combined methods usually provide import matrices (i.e., tables of specific local industry purchases from specific out-of-state or out-of-region industries) for a state or region to serve as a source of additional information for later adjustments which incorporate changes in individual industry exports and imports. Updating of input-output tables based on combined estimation methods is difficult without access to import matrices for deriving the effects of specified input-output changes on import requirements and input-output relationships.

Implementation of the input-output approach is usually in terms of the convention established by Leontief, namely, that producers' prices apply to all industry gross output, except in the case of the wholesale and retail trade group where only the trading margins are included. In the alternate formulation of the input-output approach, the originating industry of all goods which are resold would be identified in an input-supplying industry in Quadrant I. In this formulation, all imports from rest-of-nation would be received by a purchasing industry and, hence, included in Quadrant III. In the conventional input-output formulation, however, imports of goods for resale are shown under the appropriate final purchasing sector (as would the originating local industry of all final purchases), and they are entered in both Quadrant III and Quadrant IV.

Calibration, Documentation and Verification
Implementation of the input-output model is followed by its calibration, documentation and verification -- the most important steps for model acceptance and application (28). Calibration usually refers to parameter and variable adjustments which allow the model forecasts to track actual events. For example, if the input-output model is based on 1972 data it may not forecast 1977 or 1980 industry output levels because of the structural effects of post-1972 price increases. A calibration procedure is available to adjust the 1972 input-output coefficients to 1977 or 1980 prices relationships which results in improved forecast accuracy (see, p.). Documentation refers to the exact 1 isting and identification of specific data sources and computational procedures for replicating the working model and its results by another model builder or user. Verification, finally, is the reality-testing part of model specification. It refers to the logical fit of the model and the overall conformance of model implementation with model specification.

Model calibration is the first step following model implementation. It includes the initial comparisons of model forecasts with actual events. For example, if 1973 final demands were given in 1972 dollars, then Eq. (2.2) would be used to forecast 1973 industry gross outputs in 1972 dollars. Similarly, other post-1972 forecasts would be prepared and, also, compared with actual industry output levels -- all in 1972 dollars. Large differences between forecast and actual output levels would be examined for probable sources of structural change. These differences may be tolerable insofar as they more or less balance for the economy and also yield acceptable levels of aggregate industry output and value added. Input-output ratios may be adjusted for some industries when these adjustments improve both individual industry and aggregate industry forecasts.

Preparation of the U.S. and Minnesota 1977 input-output tables was based on a two-step calibration procedure, starting with forecasts of 1977 U.S. industry final demands, given acual 1977 industry output levels, and the adjustment of these forecasts to actual 1977 national gross product and export and import levels. This step involved recomputation of input-output coefficients. The 1977 industry output levels, in 1972 dollars, were then adjusted to 1977 price levels and a second new interindustry transactions table was created. This step resulted in further changes in input-output relationships and, hence, required another recomputation of input-output tables. The first part of the two-step procedure would be repeated for the post-1977 period,for example, in the preparation of 1978 industry output forecasts, based on 1978 given or forecast final demand levels, and these forecasts would be compared with actual 1978 industry output levels. Again, differences between forecast and actual output levels are likely, but these differences may balance and the aggregate forecast levels of economic
activity may compare closely with actual levels.
Additional post-1977 forecasts would be prepared to more completely determine the extent of individual industry and aggregate industry differences between the forecast and the actual series and the acceptability of these differences, if any, as measures of forecast accuracy and tests of model reliability. Both the additional and the initial series of comparisons are part of model validation, which is discussed next. The correspondence of actual computer programs and the initially specified input-output model and its assumptions would be verified, and also validated, if the two were identical. The verification step focuses on model implementation and its conformance with model specification; in short, whether or not the model is, indeed, what it purports to be.

Validation and Acceptance
Next to documentation, verification and validation are considered the most important steps in model acceptance (28). Validation differs from verification by its focus on reality and the conformance of model assumptions and forecasts with actual events. It addresses the issue of reasonableness of fit between the forecast and the actual event.

A model may be re-calibrated, because of the perceived lack of forecast reasonableness, as in the case of the $1972 \mathrm{U} . \mathrm{S}$. input-output model (whichwas re-calibrated when used to forecast post-1977 industry output changes). Certain tests of forecast reasonableness are introduced in the validation step as a basis for deciding whether or not model refitting and re-calibration is necessary and desirable. These tests are discussed later in the discussion of model use.

The final test of model adequacy is its acceptance by the model builder and model user. Model rejection may be due to any one of the steps towards
model acceptance, or it may be rejected because of its lack of timeliness and/or its high development, maintenance, and utilization costs. The latter constraints to model acceptance are considered also with reference to model use in impact analysis and forecasting.

Validation of an input-output model is less difficult than validation of the dynamic forecasting system cited earlier of which the input-output model is a part (23). Even with the input-output model, validation procedures may require indirect, rather than direct, approaches (28). For example, alternatively a small area model may be used to prepare a reference forecast series for comparison with the input-output-based results. Large unexplained differences between the two sets of forecasts would signal a need to re-evaluate the reliability of both models, and especially the input-output mode1.

The six topical areas of model building discussed in this section deal with the design, implementation, assessment, and acceptance of the inputoutput model in labor market analysis and forecasting. The six areas are interrelated to one another. Ultimately, model acceptance depends on feedback from decision maker to model user and from model user to model builder. Because of interaction between model user and model builder, feedback starts in early stages of model building, indeed, with problem and area delineation. The final stages of model building are most important, however, because of the progressive and accumulative nature of the model building process itself. Feedback from decisions makers to model builder may not convey fully the lack of model acceptance, and the reasons for it. Familarity with the decision making processes in which model forecasts become involved thus becomes an additional pre-condition of successful model building.

DATA INTERPRETATION

Data interpretation refers to activities surrounding the use of model output in decision making. The model builder interprets the input-output findings for the model user, who in turn interprets them for the decision makers. Neither the data input nor the data output are self-explanatory; they require competent and careful interpretation if they are to be used effectively in model building or in model use.

Direct and Indirect Effects
The demand and supply multipliers obtained from the ($I-A$) and ($I-c$) inverses are used in calculating individual industry output effects of given changes in final demand or primary inputs and imports. Whether or not the particular use of input-output multipliers is appropriate is a question, again, of interpretation, in this case, of the multiplier relationships with particular demand and supply variables.

The multiplier effect in the conventional demand-centered input-output analysis results from its linkages with local input-supplying industries. For example, in the case of the agriculture and mining industry group, the total multiplier of 2.09940 (see,Table 1.3) is due to the internal linkages of this industry and its "backward" linkages with the construction and manufacturing industry group and the services industry group. The direct linkages account for 0.55455 dollars of purchase per $\$ 1$ total purchases (see, Table 1.2). Thus, the indirect linkages much account for the remaining 1.54485 dollars of the 2.09940 -dollar total effect. In summary, the direct and indirect effects included in the total multiplier for the agriculture and mining industry group are distributed among the three industry groups as follows:

Industry	Direct	Indirect	Total
Agr., Mining	0.22727		1.10935

Inclusion of the household sector with the interacting local industries sharply increases the individual multiplier values. First, the Type II total multiplier for the agriculture and mining industry group is nearly twice as large as the Type I multiplier -- 4.19668 as compared with 2.09940 (see, Appendix, p. 60). This expansion of the Leontief inverse by one row and one column had brought the induced effects of household spending into the computation of the total multiplier effects. The distribution of the total induced effect among the three industry groups is shown as follows:

Industry	Direct	Indirect	Induced	Total
Agr., Mining	0.22727		1.10935	0.06564
Const., Mfg.	0.16364		0.24503	
Services	0.16364	0.50167	0.90226	
Households	0.10000	0.66156		0.76841
Total	0.65455	2.20641	1.335	1.12252
				0.76156

The induced effect here refers to the added impact of household spending on the industry groups, while the direct effect includes the added contribution of household purchases from the three input-supplying industries. The size of the induced effect is directly related to the proportion that labor is of total input purchases. The larger the value of labor inputs per \$1 total purchases, the larger the induced effect. More than half of the induced effect of a $\$ 1$ increase in the demand for agriculture and mining industry output is due to the purchase of services by this industry.

Both the Type I and the Type II input-output multipliers are related to changes in certain exogeneous variables, like exports and imports, which
are external to the interacting industries and sectors included in Quadrant I of the interindustry transactions table. Use of the multipliers depends, therefore, on an accurate estimate or forecast of external change - its magnitude and its relationships with the interacting industries and sectors. The internal changes are industry specific; their local impact depends on the backward or forward linkages of each industry or sector with other industries or sectors which are located in Quadrant I of the interindustry transactions table. Each of the backward and forward linkages of the external final demand, primary input, and export and import sectors with the internally interacting industries and sectors are delineated and discussed next.

Industry Sales and Purchases
Implementation of the input-output approach, based on secondary data, starts wtih the estimation of total industry sales and purchases and the use of these estimates as control totals in the determination of individual industry transactions. In this section, 1972 U.S. industry sales and purchases were derived for a 1θ-industry breakdown of the total U.S. economy, which was depicted earlier in the three-industry representation of the U.S. economy in Table 1.1. The presentation here differs, however, from the earlier presentation in more than the additional industry detail: Industry disbursements refer to individual commodity groups while industry purchases refer to individual industry groups. One industry may produce more than one commodity. Similarly, a given commodity may be prodeced by more than one industry.

The 10 -industry breakdown cited earlier is presented in Table 3.1, to show input purchases of each of the 10 industry groups from the 10 commodityproducing gronps, the three primary input sectors, and the rest-of-world
Table 3.1. Intermediate Purchases of Specified Commodities and Primary Inputs by Intermediate Demand Sectors, U.S., 1972. 1/

sector (Table 3.1). In 1972, the agriculture industry, for example, accounted for $\$ 80$ billion of the $\$ 1,966$ billion of all industry purchases. Of this total domestic commodity purchases were $\$ 50$ billion, or 62 percent. Intermediate input purchases thus were one and two-thirds times the primary input purchases. The most important intermediate purchases originated in the agriculture industry itself and in nondurable goods manufacturing. Each of the remaining 10 input-supplying industries was a source of agriculture industry inputs.

Purchases of other industry groups differed sharply from purchasing patterns of the agriculture industry group. In the U.S. economy, where very few inputs are not produced domestically (and, hence, noncomparable imports are small), the input purchases conform to the technological requirements of each industry as represented by the production function for that industry. In the input-output approach, this production function is linear and constant in its input-output relationships. For the open economy, of course, imports from rest-of-nation must be taken into account when using an industry production function to estimate or verify surveybased estimates of corresponding input purchases.

An input-output table of the Minnesota economy differs from the corresponding U.S. input-output table by the much larger purchases of intermediate inputs from industries located outside Minnesota, but in the U.S., as shown in Table 3.2. In the Minnesota table, however, imports from rest of nation include inputs which may be produced in the state, also, but which are less than total requirements. When imports exceed exports of any industry output, the net import figure is entered in the import row of the interindustry transactions table.

The Minnesota industry sales and purchases in Table 3 . 2 were estimated entirely from existing data sources with the use of the computer program
Table 3.2. Intermediate Purchasea of Specified Industry Output and Primary Inputs by Intermediate Demand Sectors, Minnesota, 1972. ${ }^{1 /}$

for the Minnesota two-region input-output model (12). Minnesota industry gross outputs and final demands were estimated, first, from a wide range of data sources. A series of input-output tables were derived subsequently which show industry output disbursements to individual industries and sectors in (1) Minnesota and (2) rest of nation. Two regional and two interregional (i.e., industry-specific exports from Minnesota to rest-ofnation and industry-specific imports from rest-of-nation to Minnesota) interindustry transactions tables were prepared with the use of the tworegion computer program.

Access to an industry-specific import matrix facilitates revisions of the Minnesota interindustry transactions table when export-import balances shift from net exports to net imports. The two-region computer program also provides import and export multipliers which represent reductions in the regional multipliers due to imports from rest of nation.

Intermediate input purchases from indus-ries located in Minnesota, as a proportion of total purchases of a specific industry, will not exceed the U.S. proportion of domestic intermediate input purchases for the same industry. Any purchases of imports will reduce this internal linkage. For three Minnesota industry groups in Table 3.2, however, the internal backward linkages appear greater than for the U.S. because of industry mix. Those industries with large backward linkages were relatively more important in Minnesota than in the rest of nation. Statistical measures of their backward linkages and their relative importance are summarized as follows:

Industry	Intermediate Inputs as Prop. of Total Purchases		Minnesota Total Purchases as $\frac{\text { Prop. of U.S. }}{(\mathrm{pct} \text {) }}$ (pct.)
	$\frac{\text { Minn. }}{(p c t .)}$	$\frac{U . S_{.}}{(\mathrm{pct})}$	
Agriculture	50.8	62.1	3.997
Mining	42.2	37.8	2.193
Construction	42.3	54.1	1.786
Mfg., Durables	41.7	57.3	2.408
Mfg., Nondurables	70.8	65.0	1.291
Transportation	33.3	38.6	2.081
Comm., Util.	33.5	37.0	1.711
Trade	25.7	23.2	2.505
Fin., Ins., Real Est.	24.8	26.6	1.689
Services	34.8	40.1	1.603
Govern. Enter.	31.6	38.8	1.576
Average	48.6	46.5	1.965

Industry mix differences in mining, nondurable goods manufacturing and trade account for the high lebels of intermediate inputs in these industries. For two of the three industries -- mining and trade -- total purchases also were above average relative to U.S. total purchases.

The relative importance of each Minnesota industry group is indicated by the proportion of Minnesota to U.S. total purchases (in the third column above). A high proportion of total purchases, which are identical to total sales, will not also represent high proportions of employment and value added. Indeed, Minnesota mining employment is low relative to U.S. mining employment, while service employment is high.

Final Purchases and Value Added
Final purchases of commodities by each final demand sector, including rest-of-world, are listed, for the U.S. in Table 3.3. In 1972, final purchases of domestically produced commodities exceeded $\$ 1$ trillion. Final purchases of primary inputs (household, and government employment and inventory adjustments) and of noncomparable imports accounted for more than $\$ 100$ billion, which resulted in total final purchases of nearly $\$ 1.2$ trillion in 1972.
Table 3.3. Final Purchases of Specified Commodities and Primary Inputs by Final Demand Sectors, U.S., 1972. 1/

$\frac{\text { Commodity }}{\text { ctic }}$	Domestic Final Demand						Rest-of-World		Total Final Purchases	Total Commodity Output-
	Personal Consump. Expendi- tures	Government		Investment		Total	Competative Exports	Competative Imports		
		Federal	State \& Local	Gross Priv. Cap. Formation	Chg. in Bus. Inv.					
					1110n \$)					
1. Agriculture	6,882	-1,511	267	0	2,510	8,151	4,979	-2,041	11,089	77,112
2. Mining	3,113	11	22	252	206	627	729	-4,072	-2,716	29,075
3. Construction	0	6,471	33,429	99,086	0	138,986	16	0	139,002	165,997
4. Mfg., Nondur.	149,782	3,493	7,240	814	4,463	166,292	11,253	-18,464	159,081	346,623
5. Mfg., Durables	66,773	24,070	5,676	66,566	8,892	171,977	27,255	-2,478	196,754	483,545
6. Tran., Comm., Util.	55,094	4,253	5,427	3,380	529	68,683	5,762	-1,567	72,878	165,770
7. Trade	140,323	1,130	1,582	10,204	1,000	154,237	4,089	2,993	161,319	218,236
8. Fin., Ins., Real	147,700	1,144	3,821	4,432	0	157,096	2,290	-165	159,221	252,388
9. Services	158,733	6,979	10,008	192	-164	175,749	1,335	-53	177,031	301,729
10. Gov. Ent., Scrap	4,156	444	594	0	0	5,193	140	0	5,333	12,367
11. Total	729,697	49,505	68,069	184,926	17,936	1,050,134	57,946	-56,835	1,051,245	1,964,290
Primary Input:										
12. Emp. Comp.	5,349	49,329	82,019	0	0	137,297	0	0	137,297	717,663
13. Ind. Bus. Tax	0	0	0	0	0	0	0	0	0	110,981
14. Prop.-Type Inc.	0	0	0	0	-7,591	-7,591	0	0	-7,591	354,112
15. Total Value Added	5,349	49,329	82,019	0	-7,591	129,706	0	0	129,706	1,182,766
Rest-of-World										
16. Noncomp. Imp.	6,550	3,497	5	5	4	10,059	681	-15,843	-5,103	0
17. Dummy Ind.	3,524	-205	0	0	0	-3,727	14,167	-3,521	6,919	6,919
18. Gross Outlay	738,072	102,126	150,693	184,931	10,350	1,186,172	72,794	-76,199	1,182,767	3,148,485

The distribution of the U.S. final product among the five final demand sectors listed in Table 4.1 is summarized as follows:

Sector	Domestic Commodities		All Final Purchases	
	Total	Prop. of Total	Total	$\begin{aligned} & \text { Prop. of } \\ & \text { Total } \\ & \hline \end{aligned}$
	(bil. ${ }^{\text {) }}$	(\%)	(bil. ${ }^{\text {) }}$	(\%)
Pers. Cons. Exp.	729.7	69.5	738.1	62.2
State \& Local	68.1	6.5	150.7	12.7
Federal	49.5	4.7	102.1	8.6
Gr. Priv. Cap. Form.	184.9	17.6	184.9	15.6
Change in Bus. Inv.	17.9	1.7	10.4	0.9
Total	1,050.1	100.0	1,186.2	100.0

Nearly 70 percent of the final purchases of U.S. commodity output were made by the household sector, while government accounted for an additional 11 percent and investment for the remaining 19 percent. When primary input and noncomparable import purchases are included, the household and investment shares dropped to 62 percent and 17 percent, respectively, while the government share increased to 21 percent.

Domestic final product plus net exports equals domestic value added in the form, $D F P+(E X P-I M P)=V A$,
or, $1,186.2+(72.8-76.2)=1,182.8 ;$
where, $\quad \mathrm{DFP}=$ domestic final product in billion dollars, EXP = total U.S. competitive exports in billion dollars, IMP $=$ total U.S. competitive imports in billion dollars, $\mathrm{VA}=$ domestic value added in billion dollars.

Domestic value added originates from both producing industries and final demand sectors in the form of employee compensation, indirect tax receipts and property-type income. Value added is distributed between the intermediate and final demand sectors and among the three primary input sectors as follows:

Value Added	Prod. Sectors		A11 Sectors	
	Total	Prop. of Total	Total	Prop. of Total
	(bil.\$)	(\%)	(bil.\$)	(\%)
Employee Comp.	580.3	55.5	717.7	60.7
Indirect Bus. Taxes	111.0	10.6	111.0	9.4
Property-Type Inc.	354.8	33.9	354.1	29.9
Total	1,046.1	100.0	1,182.8	100.0

Thus, for the U.S. economy, employee compensation accounted for nearly 61 percent of total value added. In the private sector alone, however, employee componsation accounted for nearly 66 percent of total value added while property-type, including proprietorial income, was nearly 34 percent of this total.

The distribution of final purchases in Minnesota compared closely with the 1972 U.S. distribution (\mathbf{T} able 3.4). Personal consumption expenditures accounted for nearly 70 percent of final purchases from local industry and slightly more than 62 percent of all final purchases. Government purchases were 10 percent of local industry purchases and 19 percent of all final purchases. Compensation of government employees was equivalent to 10 percent of final purchases. Private investment expenditures in Minnesota also compared closely with the U.S. pattern, accounting for over 18 percent of the Minnesota final product. The sector distribution of the 1972 Minnesota final product is summarized as follows:

Sector	Purchases From Local Industry		All Final Purchases	
	Total	Prop. of Total	Total	$\begin{aligned} & \text { Prop. of } \\ & \text { Total } \\ & \hline \end{aligned}$
	(mil. \$)	(\%)	(mil. \$)	(\%)
Pers. Cons. Exp.	10,945	69.4	12,995	62.5
State \& Local	1,179	7.5	2,863	13.8
Federal	371	2.4	1,105	5.3
Gr. Priv. Cap. Form.	2,836	18.2	3,475	16.7
Change in Bus. Inv.	386	2.5	343	1.7
Total	15,617	100.0	20,780	100.0

Table 3.4. Final Purchases of Specified Industry Output and Primary Inputs by Final Demand Secotrs, Minnesota, 1972. 1/

Following Equation (4.1), the equality between final product and value added for the 1972 Minnesota economy is represented by the equation,

$$
\begin{equation*}
V A=20,780+(8,473-8,378)=20,875 \tag{4.3}
\end{equation*}
$$

Thus, the 1972 Minnesota gross state product, as represented by total value added, was nearly $\$ 21$ billion.

Exports and Imports

In 1972, U.S. competitive exports were slightly less than U.S. competitive imports, which together with noncomparable imports resulted in a negative balance of trade of $\$ 14.1$ billion, as shown below:

Item	Total
(bil. $\$ \mathrm{l}$	
Competitive exports	57.9
Competitive imports	-56.8
Noncomparable imports:	
\quad Intermediate inputs	$-5,1$
\quad Final purchases	-10.1
Total	-14.1

The overall balance of trade deficit was less the $\$ 14.1$ billion because of intersectoral transfers (which are shown in Table 3.3).

A11 U.S. foreign trade items are entered in the Minnesota interindustry transactions tables. In addition, net exports and net imports, derived from the Minnesota two-region input-output data and procedures, are included in the determination of state and regional balance of trade, as shown below:

Item	$\frac{\text { Total }}{\text { (mil. } \$ \text {) }}$
U.S. Competitive exports	652
U.S. Competitive imports	-411
Minn. net exports	7,183
Minn. net imports (inc. noncomp.)	
Intermediate inputs	$-4,279$
Final purchases	$-3,281$
Total	-36

Thus, an apparent net balance of trade of -36 million is estimated for Minnesota in 1972. Because of intersectoral transfers with rest of nation, however, the Minnesota net balance of payments would differ from its net balance of trade. A positive overall balance of trade is indicated for Minnesota in Table 3.4 because of the inclusion of certain rest-of-nation transfers which were included, also, in the U.S. input-output table (26,27). Derivation of export and import levels for Minnesota depends entirely upon the procedures for allocating U.S. competitive exports and imports and noncomparable imports to Minnesota, differences between total industry output and industry-specific input requirements, and the Minnesota industry output levels relative to corresponding U.S. industry output levels. The Minnesota two-region input-output data base and computer program deal with these factors simultaneously in the derivation of the external trade flows.

Employment and Earnings

Employment and earnings of the employed work force are related to industry output in deriving a variety of economic indicators, including output per worker, value added per worker, wages and salaries and other employee compensation per worker, and total hours worked. In addition, employment and income multipliers can be derived from these data as direct measures of the effects of given changes in industry employment and value added on the economic indicators cited earlier. In this section the derivation and use of employment and income multipliers are cited with reference to industry value added, as represented in Table 1.2.

The first step in the derivation of the industry value added multipliers is preparation of the value added matrix (which is discussed in the Appendix). This matrix provides a set of value added coefficients for converting the demand multipliers in Table 1.3 into value added mutlipliers. In effect,
the value added conversion matrix is a series of value added coefficient ratios which account for industries in output per $\$ 1$ value added -- the larger the ratio, the larger the value added impact, or, conversely, the smaller the value added coefficient, as given in Table 1.2, the larger the value added multiplier, as shown in Table 3.5. In this case, the value added multipliers in Table 3.5 vary less than the demand multipliers in Table 1.3 because of the compensating effects of the value added conversion coefficients. However, the rank order of the multipliers remains the same as a result of both a similarity in the two sets of rankings and nearly equal differences in the absolute values between the first-to-second-ranking, and second-to-third-ranking coefficients.

Interpretation of the value added multiplier is similar to the interpretation of the demand multiplier. Indeed, the value added multiplier is a form of demand multiplier, that is, it related to changes in industry value added rather than industry gross output. For example, the total value added effect of an increase in the demand for a specified industry output which is equivalent to a $\$ 1$ increase in industry value added is represented by the total value added multiplier for this industry. An industry with high value added per unit of output would have a low output change relative to other industries and, hence, the value added multiplier is small and the total value added effect of a $\$ 1$ increase in specified industry value added demand is also small.

Table 3.5. Illustrative Input-Output Total: Total Effect of a $\$ 1$ Change in Final Demand for Specified Industry Value Added.

	Goods		Services
Sector	Mining	Constr. \& Mfg.	0.14587
Agr., Mining	1.33662	1.70565	0.05690
Constr., Mfg.	0.45731	0.21120	0.38130
Services	0.23283	2.06272	1.31282
			1.75102

EMPLOYMENT ANALYSIS

Use of detailed input-output tables in industry employment analysis is illustrated by U.S. input-output data for 1972. Both U.S. Department of Commerce and U.S. Bureau of Labor Statistics input-output data sources were consulted in the preparation of the U.S. data series presented here. Only the U.S. data series are presented in this report. Later reports in this report series will include Minnesota 1972 employment estimates which are compatible with the U.S. estimates.

Two different data series are presented -- one from the U.S. Department of Commerce, the other from the U.S. Bureau of Labor Statistics ($34,35,37,38$ 39,40). The 80 -industry breakdown from the 1972 U.S. Department of Commerce, Interindustry Economics Division input-output tables is used for both data series (Table 4.1). The Minnesota 214-industry classification system in Table 2.1 can be aggregated into the 80 -industry classification in Table 4.1.

The two data series are compared in terms of (a) total employment and income and (b) per worker and per hour employment and income levels in each of the 80 -industries. These comparisons are discussed, finally, with reference to state-level industry employment analysis, specifically, Minnesota.

Industry Employment and Income
Individual industry employment and income levels refer to the data base of two different input-output tables as noted earlier. Differences occur between the two models because of underlying differences in industry classification and agency orientation. The 1972 U.S. Department of Commerce inputoutput tables are based on the 1972 Standard Industry Classification while the U.S. Bureau of Labor Statistics input-output tables are based on the 1967 Standard Industry Classification. The 1967 U.S. Department of Commerce

Table 4.1

input-output classification system was used in the preparation of both the historical data series and the employment projections (presented in the next report in the series). Because of orientation of the U.S. Bureau of Labor Statistics activities towards industry employment, a dichotomy of work exists between the two agencies which is not necessarily coordinated with reference to data estimate and estimation procedures.

The employment and income estimates in Table 4.2 are derived from several data sources, as indicated in the table footnotes, and adjusted to the 1972 industry employee compensation in the 1972 U.S. Department of Commerce input-output tables. Thus, all estimates in Table 4.2 are consistent with the employee compensation and, also, the value added and gross output estimates for each industry.
U.S. Bureau of Labor Statistics input-output data are presented in Table 4.3. Individual industry estimates generally differ from corresponging estimates in Table 4.2, as noted earlier. These differences are readily identified by comparing the individual industry gross output estimates (in column 1) in the two tables and, also, by comparing the two estimates of wage and salary employment (in columns 6 and 7) in Table 4.3.

Employment and Income Relationships

The 80 -industry data series are reduced to the 10 -industry breakdown in earlier tables for discussion purposes. In Table 4.4, the data in Table 4.2 are regrouped as in Table 3.1, starting with agriculture and ending with services, exclusive of government. Household and government workers (federal civilian, federal military, and state and local) are included in Rows 12 to 15 , respectively. The summary tabulations show the gross output, employee compensation, and other value added per unit of gross output or per hour worked for each industry group.

1/ V.s. Department of Comerce, Interiadustry Economics Division. Input-Output Structura of the प.S. Econong,
1972, Survey of Curranc Business, 59(2): 34-12. Pebruary 1979; Phil M. R1tz, Eugeae P. Robarts, and Pauis
C. Toung, Dollar-Value Tablez for the 1972 Iapur-Oueput Scudy, Survay of Curreat Businass, 59(4): 51-72,

2/ Table 6.6, Wages and Salary by Induatry, Table 6.7, Full-Time and Part-Time Raployaan by Induatry, Table 6.8,
Hull-Time Equivalant Employees by Induntry, and Table 6.10, Hours Worked by Full-Tiae and Part-Tima Employees by fodustry, Survay of Curzenc Businasa, 57(7): $51-52$. July 1977.
3/ Includas household and general govarnment nectera.

¢6＊ヵ¢	\％1＊62	06＇ヶ	－6688	「そでし	Is＇s	－s21	$0 \cdot$	0	＇000I	－6000	${ }^{-0588}$	
¢¢．6E	［9＇62	$85^{\prime \prime}{ }^{\text {a }}$	－ 6098	－功9	1¢＇，	$\cdot \tau \varepsilon$	0	0	$\cdot 000 \pm$	－6988	－0799	xejfith iexapad
O5＊）E	82．¢¢	20．L	－6197t	－0¢zzr	$06^{\circ} \mathrm{L}$	－8It	0	0	－000	9くエヶT	－L9ET	［日rapad｀¢
$62 \cdot 8 \varepsilon$	¢¢•¢z	86.1	－ 7 ¢68	－66¢2	$00^{\circ} 2$	ZI	0.	0	－000t	－¢86\％	－6272	
£0＊8¢	Ts ${ }^{\text {¢ }}$ ¢	ヶヶ\％	－ 2728	－6892	LS． $\mathrm{SI}^{\text {I }}$	－s¢t	－$¢ 1 \varepsilon$	－66	－019	$\cdot 07882$	－ 78 ¢S	TP70］ 11
50．98	加＊62	62＇b	－5168	－azel	19＊5	－sot	¢－	－ 0	－¢00	－ 0 ISOI	［85	
¢8＊9E	$89 \cdot 2 \varepsilon$	$06^{\circ} \mathrm{E}$	－ $2 \angle \rightarrow 2$	－9¢99	カ・¢	－¢от	－ 10ε	$\stackrel{\bullet 2}{ }$	－699	－ 2176 T	－iczli	вәjparas 6
$88 \cdot 9 \varepsilon$	くら．\％	09．\％	－8188	－ 2978	$99 . \varepsilon \varepsilon$	97I	＇880t	－ 881	－¢	－ 55579	－SIS09	
$50 \cdot 07$	¢0 ${ }^{\circ} \mathrm{y}$ ¢	¢¢ ${ }^{\text {¢ }}$ ¢	－6269	－ 4885	カ＊6	－ 251	112	nt	－5 15	－2596	－86999	－．${ }^{\text {apera }}$
加－8¢		97.5	$\cdot \mathrm{CO601}$	－ $21 / 26$	St．0z	－821	－09E	88II	I2s	－1820\％	－ 26098	
LL：LE	$66^{\circ 96}$	21．s	－ 4 ¢оot	－0786	8E 6 c	－991	－6\％	$\cdot 91$	－9¢L	－0208E	－58zLE	
09．8£	$20 \cdot 18$	$62 \cdot 7$	8098	－5¢78	$\mathrm{cq}^{\circ} \mathrm{zz}$	－Est	－ 52	ヶIt	£¢9	－02ヶ5 ${ }^{\text {¢ }}$	855	saiqeinpuon $\mathrm{sigh}^{\text {gin }}$
26．68	61＇2¢	$10^{\circ} 9$	¢8721	－55zoI	LE．81	－ 201	\％61	－91	－06L	－sz18¢	0ze	иордэпилsuog
09＊ 6ε	09．68	72.5	－ 26201	－ $6620 \pm$	00．0¢	－18T	ISs	－2	ze¢	09＜19	－094T9	8u¢utw＇ 2
0ع．9\％	29．88	\＄6． 1	－ $502 \boldsymbol{y}$	－sz6E	$8{ }^{6} 62$	－8	－092	25	－88	－0¢LOL	－6668s	
（＊ou）	（＊ou）	（\＄）	（\＄）	（\＄）	（\＄）	（s）	（s）	（\＄）	（\＄）	（\＄）	（s）	
$\begin{gathered} \text { ATnbig } \\ \text { aurf } \end{gathered}$					дпон		$\begin{aligned} { }^{\circ} \mathrm{d} \mathrm{C}_{1} \end{aligned}$	$\underset{\substack{\operatorname{sax} \operatorname{sing}}}{ }$	－duos			
	गб口	sotrietes		2yiom 73 d			$\cdots{ }^{-\mathrm{dox}_{\text {d }}}$	${ }^{\text {P }{ }^{\text {PuI }} \text { I }}$	－dua	$\mathrm{IL}^{\text {nid }}$	awfz－7xed	
${ }^{13} \mathrm{~d}$ pa		¢ sazem	sornete	es $\mathrm{s}^{\text {sagem }}$	$\begin{gathered} \text { andino } \\ \text { ssoio } \end{gathered}$	$\begin{aligned} \cdot \text { duoo } \\ \text { duwa } \\ \hline \text { dut } \end{aligned}$	PPPpy	${ }^{8} 000$	［ ${ }^{\text {Pad }}$	тәухом	xad matio	Kı7snpui

Table 4.5 also is an aggregation of the 80 industries into 10 industries, except here the industry gross output and related employment and income relationships are based on U.S. Bureau of Labor Statistics, rather than U.S. Department of Commerce, data. Included with these data are the corresponding industry earnings estimates reported in the U.S. Department of Commerce, Regional Economic Information System. These estimates will differ from the estimates sumarized in Table 4.4 because of differences in industry defintions as well as primary data sources.

Large differences in labor productivity and compensation are shown, even in the 10 -industry breakdown of the U.S. data. The large variance in hours worked per worker is reduced by using output per hour, rather than output per worker, ratios. Similarly, industry-to-industry variance in employee compensation is reduced by using a per hour rather than a per worker basis.

Corresponding Minnesota data are being prepared for use with the 1972 Minnesota input-output tables. Currently, however, only 1977 base year data, and their projection to 1990, are available for use with the 1977 input-output tables. These data were prepared for the 214 -industry breakdown. They are available, therefore, in much greater detail for the state, as well as the nation, starting with the 1977 base year.
Table 4．5．Estimated gross output，earnings，and employment ratios in specified industry based on U．S． Bureau of Labor Statistics input－output tables for 10 industries，U．S．， 1972 ．
0

Ind． No．	Output per Worker		Earnings		Wages \＆ Salaries per Employee	Prop． Inc． per Propri etor	BLS Wage \＆ Salary Emp：－per －1，000 Total	REIS $\&$ Wage \＆ Salary Emp．per 1,000 Total	Per Hour		Hours Worked per Week
	Total	Wage $\&$ Salary	Per \＄100 Gross Outpu	Per Worker					Gross Output	Earnings	
	（\＄）	（\＄）	（\＄）	（\＄）	（\＄）	（\＄）	（no．）	（no．）	（\＄）	（\＄）	（no．）
1.	－0．1．	ノ1001．	1\％＊	〕，but		8931.	： 91.	241.	13.90	2.64	25.9
－	－136\％	いい」い。	11.	1u90．	13007.	1ヵヵ）	940.	929．	20.67	5.07	41.3
\checkmark	い40\％	40くらり．	4 L ．	14．64．	10256.	18492．	49.1	1137.	17.25	7.17	38.1
4	49 ¢，	49193．	19．	9533．	0375	05151.	989.	990.	23.85	4.48	39.7
3	いこうご．	かッコン。	2u．	14080.	1652．0．	315916.	y 834.	925.	10.15	6.81	40.6
\because	wesu．	asucto．	No．	1u713．	106yc．	＜8350．	953.	870.	17.20	5.08	40.5
1	1000% ．	1490．	5.	0725.	5858%	＋2790．	874.	867.	0.94	3.57	36.3
－	wish．	wsasu．	4_{4} ．	24243.	0267	co23u．	ヶ23．	977.	29.83	12.34	37.6
\geqslant	$1+700$.	18150	S．	148\％．	$0030 \cdot$	12302．	347.	894.	7.74	2.86	36.7
4	veci．	かくぐり．	23.	＋985．	128\％	$i)$	$1000 \cdot 1$	1001.	0.56	1.28	29.8
is	c574．	conut	3.	1641.	7176．	」69\％）．	907.	898.	12.85	4.27	35.5
14.	－44\％．	2440．	9%	2，14．	2099 －	13	1000.1	1005.	1.96	1.94	23.9
10	65084.	isuta．	96.	16004．	12230．	0	1000， 1	1000.	1.90	7.26	33.3
1.4	い口斤い。	wora	71.	4 134．	＋7．3．	${ }^{1}$	$1000 \cdot 1$	1000.	4.31	3.07	29.6
$1{ }^{\circ}$	O34．	6．54．30	9.	3．34．	769%	0	$1600 \cdot 1$	1000.	5.51	5.31	29.1

REFERENCES CITED

1. Almon, Clopper and others. 1985: Interindustry Forecasts of the American Economy. Lexington Books, Lexington, Mass. 1974.
2. Borque, Phillip J. and Millicent Cox. An Inventory of Regional InputOutput Studies in the United States. Occassional Paper No. 22, Graduate School of Business Administration, University of Washington, Seattle. 1972.
3. Chenery, Hollis B. and Paul G. Clark. Interindustry Economics. John Wiley and Sons, New York. 1959.
4. Evans, W. Duane and Marvin Hoffenberg. The Interindustry Relations Study for 1947. Review of Economics and Statistics, 34: 97-142. 1952.
5. Fraase, Ronald G. (ed.). Statistical Appendix to a Study of the Economic Interdependence of Minnesota and North Dakota. Department of Agricultural Economics and Upper Great Plains Transportation Institute, North Dakota State University, Fargo, and Department of Agricultural and Applied Economics, University of Minnesota, St. Paul, in cooperation with the Souris-Red-Raany River Basins Commission, Moorhead, Minnesota. August 1971.
6. Ghosh, A. Input-Output Approach in Allocation System. Economicia, : 58-64. February 1958.
7. Ghosh, A. Experiments with Input-Output Models: An Application to the Economy of the United Kingdom, 1948-55. Cambridge University Press, Cambridge, England. 1964.
8. Glickman, Norman J. Son of "The Specification of Regional Econometric Models". Regional Science Association Papers, 32: 155-177. 1974.
9. Harmston, Floyd K. and Richard E. Lund. Application of an Input-Output Framework to a Community Economic System. University of Missouri Press, Columbia. 1967.
10. Hoppe, Robert. Building a Nonmetropolitan Input-Output Model: Minnesota's Region Six East. Technical Bulletin 313, Agricultural Experiment Station, University of Minnesota, St. Paul. 1978.
11. Hughes, Jay M. Forestry in Itasca County's Economy: An Input-Output Analysis. Miscellaneous Report No. 95, Forestry Series 4, Agricultural Experiment Station, University of Minnesota, St. Paul. 1970.
12. Hwang, Henry and Wilbur R. Maki. Users' Guide to the Minnesota Two Region Input-Output Model. Staff Paper Series P79-34, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul. 1979.
13. Klein, Lawrence R. The Specification of Regional Econometric Models. Regional Science Association Papers, 23: 105-115. 1969.
14. Leontief, Wassily, Quantitative Input-Output Relations in the Economic System of the United States. Review of Economics and Statistics, 28: 105-125. 1936.
15. Leontief, Wassily. The Structure of American Economy, 1919-1929. Oxford University Press, New York. 1951.
16. Leontief, Wassily and others. Studies in the Structure of the American Economy. Oxford University Press, New York. 1953.
17. Leontief, Wassily and Marvin Hoffenberg. The Economic Effects of Disarmament. Scientific American, 204: 3-11. 1961.
18. Leontief, Wassily. Input-Output Economics. Oxford University Press, New York. 1966.
19. Leontief, Wassily et al. The Future of the World Economy. Oxford University Press, New York. 1977.
20. Maki, Wilbur R. Area Financing of Water Resource Development in West Minnesota. Bulletin 66, Water Resources Research Center, University of Minnesota, Minneapolis. 1974.
21. Maki, Wilbur R., Leonard A. Laulainen, Jr., Mason Chen and Donald R. Newell. Economic Impact of Irrigated Agriculture in West Minnesota. Miscellaneous Report 151, Agricultural Experiment Station, University of Minnesota, St. Paul. 1978.
22. Maki, Wilbur R., Patrick D. Meagher and Leonard A. Laulainen, Jr. Economic Effects of Copper-Nickel Development in Northeast Minnesota. Staff Paper Series P79-26, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul. 1979.
23. Maki, Wilbur R., Patrick D. Meagher, Leonard A. Laulainen, Jr. and Mason Chen. Users' Guide to the Minnesota Regional Development Simulation Laboratory, Staff Paper Series P79-28, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul. 1979.
24. Maki, Wilbur R. Regional Input-Output and Social Accounting Systems for Agricultural and Rural Development Planning. Staff Paper Series P80-21, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul. 1980.
25. Maki, Wilbur R., Peter Stenberg and Mason Chen. Economic Importance of Export-Producing Industry in Minneapolis-St. Paul Metropolitan Region. Staff Paper Series P80-29, Department of Agricultural and Applied Economics, University of Minnesota, St. Pau1. 1980.
26. Maki, Wilbur R., Peter Stenberg and Mason Chen. Economic Importance of Export-Producing Industry in Minnesota. Staff Paper Series P81-3, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul. 1981.
27. Maki, Wilbur R., Peter L. Stenberg and Mason Chen. Economic Importance of Agriculture-Related Industry in Minnesota. Staff Paper Series P81-7, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul. 1981.
28. Maki, Wilbur R. Socioeconomic Models for Development Planning. I. Validation Methods. Staff Paper Series P81-9, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul. 1981.
29. Metropolitan Council of the Twin Cities Area. The Structure of the Twin Cities' Economy: An Input-Output Perspective. Metropolitan Council, Metropolitan Square Bulding, St. Paul, March 1976.
30. Miernyk, William H. The Elements of Input-Output Analysis. Random House, New York. 1965.
31. Minnesota Department of Employment Security. Minnesota Employment Outlook to 1985. Research and Statistical Services Office, Minnesota Department of Employment Security, 390 North Robert Street, St. Paul, MN 55101. January 1981.
32. Mullendore, Walter E. and Lawrence F. Ziegler. Forecasting Regional Manpower Requirements: Input-Output Analysis vs. BLS Regression Techniques. Regional Science Perspectives, 5: 61-75. 1975.
33. Pyatt, Graham and Alan Roe. Social Accounting for Development Planning with Special Reference to Sri Lanka. Cambridge University Press, Cambridge, England. 1977.
34. Ritz, Philip M., Eugene P. Roberts and Paula G. Young. Dollar-Value Tables for the 1972 Input-Output Study. Survey of Current Business, 59(4): 51-72. 1979.
35. U.S. Department of Commerce, Bureau of Economic Analysis. The Detailed Input-Output Sturcture of the U.S. Economy, 1972 (3 volumes). U.S. Government Printing Office, Washington, D.C. 1979.
36. U.S. Department of Labor, Bureau of Labor Statistics. Full Employment Patterns: 1950, Bulletin No. , U.S. Government Printing Office, Washington, D.C. 1946.
37. U.S. Department of Labor, Bureau of Labor Statistics. Tomorrow's Manpower Needs, Bulletin No. 1606. U.S. Government Printing Office, Washington, D.C. 1969.
38. U.S. Department of Labor, Bureau of Labor Statistics. Patterns of U.S. Economic Growth. Bulletin No. 1672, U.S. Government Printing Office, Washington, D.C. 1970.
39. U.S. Department of Labor, Bureau of Labor Statistics. Tomorrow's Manpower Needs. Vo1. IV, Revised Edition, Bulletin No. 1737. U.S. Government Printing Office, Washington, D.C. 1971.
40. U.S. Department of Labor, Bureau of Labor Statistics. Employment Projections for the 1980's, Bulletin 2030, U.S. Government Printing Office, Washington, D.C. 1979.

APPENDIX: INVERTING INPUT-OUTPUT MATRIX AND DERIVING EMPLOYMENT AND INCOME MULTIPLIERS

A. Problem: Invert three-industry table (see, p. 8) of input-output coefficients:

$$
[A]=\left[\begin{array}{lll}
.22727 & .07189 & .00974 \\
.16364 & .37661 & .10173 \\
.16364 & .15129 & .20779
\end{array}\right]
$$

1. Convert (A) matrix to (I-A) matrix by subtracting (A) matrix from identity matrix (I):

$$
[I-A]=\left[\begin{array}{rrr}
.77273 & -.07189 & -.00974 \\
-.16364 & .62339 & -.10173 \\
-.16364 & -.15129 & .79221
\end{array}\right]
$$

2. Evaluate determinant of ($I-A$) matrix:

$$
\begin{aligned}
\mathrm{D}= & (.77273)\left|\begin{array}{rrr}
.62339 & -.10173 \\
-.15129 & .79221
\end{array}\right|-(-.07189)\left|\begin{array}{rr}
-.16364 & -.10173 \\
-.16364 & .79221
\end{array}\right| \\
& +(-.009744)\left|\begin{array}{rr}
-.16363 & .62339 \\
-.16364 & -.15129
\end{array}\right| \\
= & (.77273)[(.62339)(.79221)-(0.15129)(-.10173)] \\
& \quad-(-.07189)[(-.16364)(.79221)-(-.16364)(-.10173)] \\
& +(-.009744)[(-.16364)(-.15129)-(-.16364)(.62339)] \\
= & (.77273) 9.36922)-(-.07189)(.01052)+(-.00974)(.00123) \\
= & .35797
\end{aligned}
$$

3. Identify all cofactors of determinant, D:

$$
\hat{A}_{11}=\left|\begin{array}{cc}
-(-.47847) \\
.62339 & -.10173 \\
-.16129 & .79221
\end{array}\right| \quad \hat{A}_{12}=\left|\begin{array}{rr}
-.16364 & -.10173 \\
-.16364 & .79221
\end{array}\right| \quad \hat{A}_{13}=\left|\begin{array}{rr}
-.16364 & .62339 \\
-.16364 & -.15129
\end{array}\right|
$$

$$
-(-.05843) \quad(.61057) \quad-(-.12867)
$$

$$
\hat{A}_{21}=\left|\begin{array}{rr}
.07189 & -.00974 \\
-.15129 & .79221
\end{array}\right| \hat{A}_{22}=\left|\begin{array}{rr}
.77273 & -.00974 \\
-.16364 & .79221
\end{array}\right| \quad \hat{A}_{23}=\left|\begin{array}{rr}
.77273 & -.07189 \\
-.16364 & -.15129
\end{array}\right|
$$

$$
(.01339) \quad-(-.08020)
$$

$$
(.46995)
$$

$$
\hat{A}_{31}=\left|\begin{array}{lr}
-.017189 & -.00974 \\
-.15129 & .79221
\end{array}\right| \quad \hat{A}_{32}=\left|\begin{array}{rr}
.77273 & -.00974 \\
-.16364 & .79221
\end{array}\right| \quad \hat{A}_{33}=\left|\begin{array}{rr}
.77273 & -.07189 \\
-.16364 & .62339
\end{array}\right|
$$

4. Derive matrix of cofactors and transposed matrix of cofactors (called the adjoint matrix):

Matrix of cofactors
Adjoint matrix
$\left[\begin{array}{lll}.47847 & .14629 & .12676 \\ .05843 & .61057 & .12867 \\ .01339 & .08020 & .46995\end{array}\right] \quad\left[\begin{array}{lll}.47847 & .05843 & .01339 \\ .14639 & .61057 & .08020 \\ .12676 & .12867 & .46995\end{array}\right]$
5. Divide each element in the adjoint matrix by determinant, $D:$
$\left[\begin{array}{rrr}1.33662 & . .16323 & .03741 \\ .40867 & 1.70565 & .22404 \\ .35411 & .35945 & 1.31282\end{array}\right]=[I-A]^{-1}$
6. Multiply original matrix [I-A] by inverse $[I-A]^{-1}$ to obtain identity matrix [I] as check on calculations:
$[I-A] \cdot[I-A]^{-1}=[I]$
$=\left[\begin{array}{rrr}.77273 & -.07189 & -.00974 \\ -.16364 & .62339 & -.10173 \\ -.16364 & -.16129 & .79221\end{array}\right] \cdot\left[\begin{array}{rrr}1.33662 & .16323 & .03741 \\ .40867 & 1.70565 & .22424 \\ .35411 & .35945 & 1.31252\end{array}\right]$
Complete matrix multiplication as follows:
$(.77273 \times 1.33552)+(-.07189 \times .40867)+(-.00974 \times .35411)=1.00002$
$(.77273 \times .16323)+(=.07189 \times 1.70565)+(-.00924 \times .35945)=.00019$
$(.77273 \times .03741)+(-.07189 \times .22424)+(-.00974 \times 1.31252)=.00010$
$(-.16364 \times 1.33662)+(.62339 \times 1.70565)+(-.10173 \times .35945)=.00001$
$(-.16364 \times .16323)+(.62339 \times 1.70565)+(-.10173 \times .35945)=1.00001$
$(-.16364 \times .03741)+(.62339 \times .22424)+(-.10173 \times 1.31252)=.00014$
$(-.16364 \times 1.33662)+(-.15129 \times .40867)+(.79221 \times .35441)=.00022$
$(-.16364 \times .16323)+(-.16129 \times 1.70565)+(.79221 \times .35934)=.00000$
$(-.16364 \times .03741)+(-.16129 \times .22424)+(.79221 \times 1.31252)=.99974$
Thus, derived matrix values approximate [I] values as follows:
$\left[\begin{array}{rrr}1.00002 & .00019 & .00010 \\ .00001 & 1.00001 & .00014 \\ .00022 & .00000 & .99974\end{array}\right] \cong\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
B. Problem: Invert four-industry table (see p.) of input-output coefficients.

1. Convert (A) matrix to (I-A) matrix by subtracting (A) matrix from identity matrix (I):
$[A]=\left[\begin{array}{llll}.22727 & .07189 & .00974 & .00949 \\ .16364 & .37661 & .10173 & .29404 \\ .16363 & .15129 & .20779 & .68564 \\ .10000 & .28326 & .31926 & .00678\end{array}\right]$
$[I-A]=\left[\begin{array}{rrrr}. .77273 & -.07189 & -.00974 & -.00949 \\ -.16364 & .62339 & -.10173 & -.29404 \\ -.16364 & -.15129 & .79221 & -.68564 \\ -.10000 & -.28326 & -.31926 & . .99322\end{array}\right]$
2. Evaluate determinant of (I-A) matrix:

$$
\begin{aligned}
& D=\left(e_{11} \hat{A}_{11}\right)-\left(e_{21} \hat{A}_{21}\right)+\left(e_{31} \hat{A}_{31}\right)-\left(e_{41} \hat{A}_{41}\right) \\
& =(.77273)\left[\begin{array}{rrr}
.62339 & -.10173 & -.29404 \\
-.15129 & .79221 & -.68564 \\
-.28326 & -.31926 & .99322
\end{array}\right] \quad \begin{array}{rr}
.62339 & -.10173 \\
-.15129 & -.79221 \\
-.28320 & -.31926
\end{array} \\
& -(-.16364)\left[\begin{array}{rrr}
-.07189 & -.00974 & -.00494 \\
-.15129 & .79221 & -.68564 \\
-.28326 & -.31926 & .99322
\end{array}\right] \begin{array}{rr}
-.07189 & -.00974 \\
-.15129 & -.79221 \\
-.28320 & -.31920
\end{array} \\
& +(-.10364)\left[\begin{array}{rrr}
-.07189 & -.00974 & -.00949 \\
.62339 & -.10173 & -.29404 \\
-.28326 & -.31926 & .99322
\end{array}\right] \quad \begin{array}{rr}
-.07189 & -.00974 \\
. .62339 & -.10173 \\
-.28326 & -.31926
\end{array} \\
& -(-.10000)\left[\begin{array}{rrr}
-.07189 & -.00974 & -.00949 \\
.62339 & -.10173 & -.29404 \\
-.15129 & .79221 & -.68564
\end{array}\right] \quad \begin{array}{rr}
-.07189 & -.00974 \\
. .62339 & -.10173 \\
-.15129 & .79221
\end{array}
\end{aligned}
$$

To find a 3×3 matrix determinant, solve for determinant, D, as follows:

Thus,

$$
\begin{aligned}
\mathrm{D}=(.77273) & {[(.62339)(.79221)(.99322)+(-.10173)(-.68564)(-.28326)} \\
& +(-.29404)(-.15129)(-.31926)-(-.28326)(.79221)(-.29404) \\
& -(.31926)(-.68564)(.62339)-(.99322)(-.15129)(-.10173)] \\
+ & (.16364)[(-.07189)(.79221)(.99322)+(-.00974)(-.68564)(-.28326) \\
& +(-.00949)(-.15129)(-.31926)-(-.29326)(.79221)(-.00949) \\
& \quad-(-.31926)(-.68564)(-.07198)-(.99322)(-.15129)(-.00974)] \\
& \quad(.16364)[(-.07189)(-.10173)(.99322)+(-.00974)(-.29404)(-.29326) \\
& \quad-(-.31926)(-.29404)(-.07189)-(.99322)(.62339)(-.00974)] \\
+ & \quad(.10000)[(-.07189)(-.19173)(-.68564)+(-.00974)(-.29404)(-.15129) \\
& \quad(.79221)(-.29404)(-.07189)-(-.68564)(.62339)(-.00974)] \\
= & (.77273)[.49051-.01976-.01420-.06598-.13646-.01529] \\
+ & (.16364)[-.05656-.00189-.00046-.00213+.01576-.00146] \\
- & (.16364)[.00726-.00081+.00189+.00027+.00675+.00603]
\end{aligned}
$$

3. Identify all cofactors of determinant, D :
(Note that above step yeilded cofactor values as follows:

$$
(+) \hat{A}_{11}=.23891
$$

$$
(-) \hat{A}_{21}=-.04675
$$

$$
(+) \hat{A}_{31}=.02139
$$

$$
(-) \hat{A}_{41}=-.03089
$$

$$
\begin{aligned}
\hat{\mathrm{A}}_{12} & =\left[\begin{array}{rrr}
-.16364 & -.15510) \\
-.16364 & .79221 & -.29404 \\
-.10000 & -.31926 & -.99322
\end{array}\right]
\end{aligned} \begin{array}{ll}
-.16364 & -.10173 \\
-.16364 & -.79221 \\
-. & \\
& =-.12876-.00698-.01536-.02329+.03582-.01653 \\
& =-.15510
\end{array}
$$

$$
\begin{aligned}
\hat{A}_{22} & =\left[\begin{array}{ccc}
.73546) \\
-.16364 & -.00974 & -.00949 \\
-.1000 & -.31921 & -.68564 \\
-.31926 & .99322
\end{array}\right] \quad \begin{array}{lr}
.77273 & -.00974 \\
-.16364 & .79221 \\
& =.60801-.00067-.00050-.0075-.16915-.00158 \\
& =.43536
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\hat{A}_{32} & =\left[\begin{array}{ccc}
.(.15204) \\
-.77273 & -.00974 & -.00949 \\
-.16364 & -.10173 & -.09404 \\
-.1000 & -.31926 & .99322
\end{array}\right] \\
& =-.078076-.00029-.0050+.00095-.07254-.00158 \\
& -.1000 \\
& =.15204
\end{aligned}
$$

$$
(.23591)
$$

$$
\hat{A}_{42}=\left[\begin{array}{rrrrr}
.77273 & -.00974 & -.00949 \\
-.16364 & -.10173 & -.29404 \\
-.16364 & . .79221 & -.68564
\end{array}\right] \quad \begin{array}{rr}
.77273 & -.00974 \\
-.16364 & -.10173 \\
-.16364 & .79221
\end{array}
$$

$$
=.05390-.00047+.00123+.00016+.1800+.00109
$$

$$
=.23591
$$

(.19125)

$$
\begin{aligned}
\hat{A}_{13} & =\left[\begin{array}{lll}
-.16364 & .62339 & -.29404 \\
-.16364 & -.15129 & -.68564 \\
-.1000 & -.28326 & .99322
\end{array}\right] \\
& =.16364 \\
-.1000 & -.62339 \\
& =.02459+.04274-.01363+.00445+.03178+.10132 \\
& =.19125
\end{aligned}
$$

$$
\begin{aligned}
\hat{A}_{23} & =\left[\begin{array}{ccc}
.(-.28309) \\
-.17273 & -.07189 & -.00949 \\
-.10364 & -.15129 & -.68564 \\
-.1000 & -.27326 & .99322
\end{array}\right] \begin{array}{cc}
.77273 & -.07189 \\
-.16364 & -.15129 \\
-.1000 & -.28326
\end{array} \\
& =-.11611-.00493-.00044+.00014-.15007-.01168 \\
& =-.28309
\end{aligned}
$$

$$
\begin{aligned}
\hat{A}_{33} & =\left[\begin{array}{ccc}
.779927) \\
-.16364 & -.07189 & -.00949 \\
-.1000 & -.62339 & -.29404 \\
-.9836 & -.99322
\end{array}\right] \begin{array}{rr}
.77273 & -.07189 \\
-.16364 & .62339 \\
-.1000 & -.28326
\end{array} \\
& =.47845-.00211-.00044-.00059=.06436-.01168 \\
& =.39927
\end{aligned}
$$

$$
\begin{aligned}
\hat{A}_{43} & =\left[\begin{array}{rrr}
.-.36124) \\
-.16364 & -.07189 & -.00949 \\
-.16364 & -.15129 & -.29404 \\
-.68564
\end{array}\right] \begin{array}{rr}
.77273 & -.07189 \\
-.16364 & -.62339 \\
-.16364 & -.15129
\end{array} \\
& =-.33028-.00346-.00023-.00097-.03437+.00807 \\
& =-.36124
\end{aligned}
$$

$$
\begin{aligned}
\hat{A}_{14} & =\left[\begin{array}{lll}
-.16364 & .62339 & -.10173 \\
-.16364 & -.15129 & .79221 \\
-.100 & -.28326 & -.31926
\end{array}\right] \begin{array}{ll}
-.16364 & .62339 \\
-.16364 & -.15129 \\
-.100 & -.28326
\end{array} \\
& =-.00790-.04939-.00472+.00154-.03672-.03256 \\
& =-.12975
\end{aligned}
$$

$$
\begin{aligned}
& \text { (.21987) } \\
& \hat{A}_{24}=\left[\begin{array}{ccc}
.77273 & -.07189 & -.00974 \\
-.16364 & -.15129 & .79221 \\
-.1000 & -.28326 & -.31926
\end{array}\right] \quad \begin{aligned}
.77273 & -.07189 \\
-.16364 & -.15129 \\
-.1000 & -.28326
\end{aligned} \\
& =.03732+.00570-.00045+.00015+.1734+.00376 \\
& =.21987
\end{aligned}
$$

$$
\begin{aligned}
&-(-.17409) \\
& \hat{A}_{34}=\left[\begin{array}{ccc}
.77273 & -.07189 & -.00974 \\
-.16364 & .62339 & -.10173 \\
-.100 & -.27326 & -.31926
\end{array}\right] \begin{array}{cc}
.77273 & -.07189 \\
-.16364 & -.62339 \\
& =-.15379-.00073-.00045-.00061-.02227+.00376 \\
& =-.17409 \\
& \\
& =\left[\begin{array}{rrr}
.77273 & -.35198) \\
-.16364 & .62339 & -.00974 \\
-.16364 & -.16129 & .79221
\end{array}\right] \quad \begin{aligned}
& .77273-.07189 \\
& \hat{A}_{44}=.16364 \\
& \hline
\end{aligned} \\
& =.38162=.00120-.00024-.00099-.01189-.00932
\end{array} \\
&
\end{aligned}
$$

4. Derive matrix of cofactors and transposed matrix of cofactors (i.e., adjoint matrix):

Matrix of Cofactors

.23891	.15510	.19125	.12975
.04674	.43536	.28309	.21987
.02139	.15204	.39927	.17409
.03089	.23591	.36124	.35798

Adjoint Matrix

.23891	.04674	.02139	.03089
.15510	.43536	.15204	.23591
.19125	.28309	.39927	.36124
.12975	.21987	.17409	.35798

5. Divide each element in the adjoint matrix by determinant, $D:$
$\left|\begin{array}{rrrr}1.40226 & .27434 & .12555 & .18131 \\ .91034 & 2.55530 & .89238 & 1.38465 \\ 1.12252 & 1.66157 & 2.34348 & 2.12026 \\ .76156 & 1.29051 & 1.02180 & 2.10113\end{array}\right|$
6. Multiply original matrix [I-A] by inverse $[I-A]^{-1}$ to obtain identity matrix [I] as check on calculations:
$[I-A] \cdot[I-A]^{-1}=[I]$
Result of matrix multiplication is as follows:
$\left[\begin{array}{cccc}.99996 & .00002 & .00058 & .00000 \\ .00001 & .99958 & .00058 & .00000 \\ .0000 . & .00000 & 1.00038 & .00001 \\ .00001 & .00000 & .000234 & .999624\end{array}\right] \cong\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
C. Problem: Derive income multipliers, e_{j}.
7. Given, income coefficient vector (see, Table 1.2):

$$
\left[\begin{array}{lll}
.10000 & .28326 & .33009]
\end{array}\right.
$$

where, $a_{41}=.10000$

$$
\begin{aligned}
& a_{42}=.28326 \\
& a_{43}=.33009
\end{aligned}
$$

2. Prepare matrix of income coefficients:

$$
\begin{aligned}
{[E] } & =\left[a_{4 j=i} / a_{4 j=j}\right] \\
& =\left[\begin{array}{rrr}
1.00000 & .35303 & .30295 \\
2.83260 & 1.00000 & .85813 \\
3.30090 & 1.16533 & 1.00000
\end{array}\right]
\end{aligned}
$$

3. Multiply Leontief Inverse, $[I-A]^{-1}$ by income matrix, [E] to obtain multiplier matrix [EC]:

$$
\begin{aligned}
{[\mathrm{EC}] } & =[I-\mathrm{A}]^{-1}[\mathrm{E}] \\
& =\left[\begin{array}{rrr}
1.33662 & .16323 & .03741 \\
.40867 & 1.70565 & . .22404 \\
.35411 & .35945 & 1.31282
\end{array}\right] \cdot\left[\begin{array}{rrr}
1.00000 & 2.83260 & 3.30090 \\
.35303 & 1.00000 & 1.16533 \\
.30295 & .85813 & 1.00000
\end{array}\right] \\
& =\left[\begin{array}{lrr}
1.33662 & .05763 & .01133 \\
1.5760 & 1.70565 & .19226 \\
1.16888 & .41888 & 1.31282
\end{array}\right]
\end{aligned}
$$

[^0]: 1/ See, particularly, the discussion of state and substate employment projections and projection methods in the recent update of the 1985 industry and occupational employment projections for the State of Minnesota and the Minneapolis-St. Paul SMSA (31, p. 94).

