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MULTICOLLINEARITY IN REGRESSION

WITH QUADRATIC REGRESSORS

by

W. E. Griffiths*

10 INTRODUCTION

A model commonly used in economics

y= Xb+u

is the linear regression model

(1.1)

where y is a T x 1 vector of observations on a dependent variable, X

is a T x K matrix of observations on K explanatory variables, b is a

K x 1 vector of unknown parameters which we wish to estimate, and u

is an unobservable random vector with zero mean.

If any of the K column vectors in X are linearly dependent or

almost linearly dependent we are faced with the problem of multi-

collinearity. With exact dependence XIX is singular and a unique

estimate for b cannot be found. When some of the explanatory variables

bear an almost-exact linear relation to each other, it is difficult

to obtain precise estimates of the elements of b, the estimates

obtained are often quite sensitive to the model specified and the

data used, and the explained variance can be allocated almost

arbitrarily between the highly correlated variables.~ It is

important, therefore, that one determine the degree of collinearity

of the variables in X to see if the multicollinearity problem will

be encountered.
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Calculation of zero order correlation coefficients for every

pair of variables in X is the most common method for looking at

collinearity. These correlations give evidence on any pairwise

linear dependencies but do not allow for linear dependencies between

three or more variables. If each vector in X is normalized so that

observations on each variable have zero mean and unit standard

deviation, then X’X is the ’matrixof zero order correlation

coefficients and its determinant satisfies the inequality,

0% 1X1X1% 1, enabling it to be used as an indicator of multi-

collinearity between any combination of the independent variables.~

Based on the assumption that observations in X come from a multi-

variate normal distribution, Farrar and Glauber have derived three

statistics. The first describes the extent to which multicollinearity

is present in ~ subset of variables within X, the

extent to which each variable depends on the others

gives an idea of the pattern of the dependency.

Although these methods determine the degree of

second gives the

and the third

collinearity,

they say nothing about what degree is considered “dangerous”

because of its effects on the variance of the estimates, and present

no method for overcoming the problem. The level of collinearity

which is dangerous depends on X, the true b and the reason for which

the econometric research is undertaken. There is no general method

for determining when multicollinearity is “bad”.i It is customary,

therefore, to use some kind of rule of thumb, recognizing multi-

collinearity as a possible problem if any zero order correlation
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coefficient is greater than 0.8 or 0.9 or if Farrar and Glauber’s

first statistic is greater than a preassigned value. To rectify

the problem it is generally recognized that we need additional

information either in the form of more data or prior knowledge about

some of the parameters.

Two specific forms of (1.1) which are frequently used in

applications are considered in this paper. The conditions on the

variables in X which lead to high zero order correlation coefficients

and high values of (1 - IX’XI) are derived for these specific ferns.

2. THE TWO MODELS CONSIDERED

Written in scalar form, the two

to be considered are

yt = bo + blxt
and

yt = co + Clxt

modifications

+ b2xt2 + Ut,

of (1.1) which are

(2.1)

+ c2zt + c3xtzt + ‘t (2.2)

‘=1, 2,..T. “>

Model (2.1) is used if the marginal contribution of x depends

linearly on x and (2.2) is used if the marginal contribution of x

depends on the level of z and vice versa. Multicollinearity is

present in (2.1) if there is a high correlation between x and X2

and in (2.2) if, (a) there is a high correlation between any pair

of the variables x, z and XZ, or (b) there is an almost-exact linear

dependence between the three variables. This paper derives the

conditions on x and z which lead to multicollinearity in these two

models. It was prompted by the frequency with which high correlations
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occur in applications of (2.1) and (2.2). Although x and X2

(or x and XZ) are statistically dependent they are not linearly

related and one would not expect, a priori, a high correlation

between thern.~

Knowledge of the conditions on x and z which lead to high

correlation coefficients, will enable the researcher, before

application of (2.1) or (2.2), to determine whether or not he is

likely to encounter the multicollinearity problem. If observations

on x and z are obtained from a designed experiment, such as one to

determine the effect of different fertilizers on crop response, the

experiment could possibly be designed so that the values which x

and z take on do not lead to excessive collinearity.

Telser@~used a model similar to (2.2) to estimate the way

in which transition probabilities change over time. He found high

correlations between terms such as xtzt and xt and xtzt and zt and

concluded that this was due to insufficient variation in x or z.

This paper extends this study by deriving explicitly general

expressions for the zero order correlation coefficients and

(1 –lX’X~)~in terms of (a) the moments of x and z in model (2.2),

and (b) the moments of x in model (2.1). These expressions will

be simplified for two specific distributions of x and z — the

normal distribution and the discrete uniform distribution.
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3. GENERAL EXPRESSIONS FOR THE
CORRELATION COEFFICIENTS

Let r (., “) refer to the correlation coefficient between two

random variables. Our aim is to find r(x, X2) in terms of the

moments of x. For model (2.2) we wish to find r(x, XZ), r(z, XZ)

and (1 - lXIX1)+ in temns of the moments of x and z.

Bohrnstedt and Goldberger [’ have derived the following

expression for the covariance of the products of random variables.

Let x, z, u and v be jointly distributed random variables and let

a’=a- E(a), then

c (Xz, Uv) = E(x)E(u)C(Z, V) + E(x)E(v)c(z, U) + E(z)E(u)C(X, V)

+ E(z)E(v)c(x, u) + .E(x’z’u’v’) + E(x)E(z’U’V’)

+ E(z)E(x’u’v’) + E(u)E(x’v’z’) + E(v)E(x’z’u’)

- C(x, Z)c(u, v),

where C(., ●) and E(.) refer to covariance and expectation respec-

tively.

(3.1)

By letting u = x and v = 1 we get:

C(xz, x) = E(x)C(Z, x) + E(z)V(X) +E((X’)2Z’), (3.2)

where V(.) refers to variance.

If z = x equation (3.2) becomes

C(X2, X) = 2E(x) V(x) + E(x’)3. (3.3)

To obtain the variance of xz we take equation (3.1) and let

u = x and v = z. This gives:

V(xz) = E2(X)V(Z) + 2E(x)E(z)C(X, Z) + E2(Z) V(X) + Eflx’)2(z’)~

+ 2E(x)Eflx’)(z’)7+ 2E(z)Eflx’)2(z’~ - C2(X, z). (3.4)
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Let z = x and equation (3.4) becomes:

V(X2) = 4E2(X)V(X) + E(x’)4+4E(x)E(x’)3 - V2(X)

The correlation coefficients and 1 - lXIX! are given by

and

r(x,x2) =

r(x,xz) =

1- Ix’q

C(x,xz)

~v(x)v(xz~’,

= r2(x,xz) + r2(z,xz) + r2(x,z)

(3.5)

(3.6)

(3.7)

2r(x,xz).r(z,xz).r(x,z), (3.8)

where C(X,X2), V(X2), C(x,xz) and V(xz) are given in equations (3.3),

(3.5), (3.2) and (3.4) respectively. Although this gives the

correlation coefficients in terms of the moments of x and z they

are still

moments.

somewhat complicated since they involve third and fourth

The expressions will be simplified by evaluating them

first assuming x and z are bivariate normal and then assuming they

have the discrete uniform distribution.

4. CORRELATION COEFFICIENTS AND }X’XI
UNDER THE ASSUMPTION OF NORMALITY

Consider the case where x in equation (2.1) is normally

distributed and x and z in equation (2.2) have the bivariate normal

distribution. This assumption is made because it greatly simplifies

the expressions for the correlation coefficients and because it is

likely to be a good approximation of many types of observations.

Observations on such things as quantities, prices and incomes

collected from time series data often fall into this category.
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Under this assumption all third moments around the mean are zero and

Eflx’)2(z’)~= V(X)V(Z) + 2C2(X,Z). ~ (4.1)

Letting x = z in (4.1) implies:

Eflx’)~= 3V2(X) (4.2)

This enables (3.2), (3.3), (3.4) and (3.5) to be written as (4.3),

(4.4), (4.5) and (4.6) respectively.

C(xz,x) = E(x)C(X,Z) + E(z)V(X), (

c(x,x2) = 2E(x)V(X),

V(xz) = E2(X)V(Z) + 2E(x)E(z)C(X,Z) + E2(Z)V(X)

+ V(x)v(z) + @(x,z),

V(X2) = 4E2(X)V(X) + 2V2(X).

Substituting (4.6) and (4.4) into (3.6) will give us the

correlation between x and X2.

r(x,x2) = 2E(X)V(X)
/v(x){4E2(x)v(x) + 2v2(x)~$

Let CV(X) = @(x)/ E(x) be the coefficient of variation of x and

(4.7) simplifies to:

Q/
‘( X’X2) = ~ + (&f2(xfi .

Thus, when x is normally distributed the correlation between x and

X2 “IS a function only of the coefficient of variation of x. As

expected, the correlation is unity when CV(x) = O and decreases as

CV(X) increases. Two observations are worth making.

First, the value for CV(X) which gives r(x,x2) = 0.8 is 1.06,

or approximately one. This means that if x is normally distributed

the correlation between x and X2 will always be greater than 0.8

unless the mean of the observations is less then the standard

deviation.

(4.3)

(4.4)

(4*5)

(4.6)

(4.7)

(4.8)
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Secondly, most observations on economic variables are positive.

If we assume that the data lies within 3 standard deviations of the

mean then in order to ensure all observations are positive we need

cv(x)<l/3. From (4.8) this implies r(x,x2)>0.97. This would explain

why so many empirical studies find very high correlations between a

variable and its square.

Looking now at model (2.2), we can derive expressions for

r(x,xz), r(z,xz) and 1 - fX’Xlwhen x and z have a bivariate normal

distribution. Substituting (4.3) and (4.5) into (3.7) gives:

T(x,xz) = E(z)V(X) + E(X)C(X$Z)
~

where A= V(X)fi2(Z)V(X) + 2E(x)E(z)C(X,Z) +E2(x)v(z)

+ v(x)v(~) +Cqx,zy

Assuming E(z)>O, dividing numerator and denominator of (4.9) by

E(z)V(X) gives

(4.9)

r(x,xz)

where

B=l+

~ + CV(Z) r(x,z)

Cv(x)=

2CV(Z) r(x,z) + CV2(z) + CV2(z) + cv2(z)r2(x,~)

(4.10)

Cv(x) CV2(X)

Thus, r(x,xz) is a function of the coefficients of variation of the

two variables and their correlation coefficient. An expression for

r(z,xz) can be found by interchanging CV(X) and CV(Z) in (4.10).

Tables 1 to 9 give r(z,xz) for different values of CV(X), CV(Z) and

r(x,z). The correlation r(x,xz) can also be read from these tables

by reading CV(x) for CV(Z) and vice versa. For example, in Table 1,

when CV(x) = 0.3 and CV(Z) = 0.5, r (Z,XZ) = 0.703. From this we

know that r(x,xz) = 0.703 when CV(X) = 0.5 andcv(z) = 0030
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.

Each table is divided into two parts, one part being those

values of CV(x) and CV(Z) which lead to both r(x,xz) and r(z,xz)

being less than 0.8 and the other being those values of CV(X)

and CV(Z) where either r(x,xz) or r(z,xz) is greater than 0.8.Z/

The southeast portion of each table contains correlations less

than 0.8, the northeast corner is where r(z,xz)>O.8 and the

southwest corner where r(x~ XZ)>O.8.

The tables show that multicollinearity is worst when one of

the coefficients of variation is small relative to the other.

It is reduced when they are approximately the same size and is

likely to be more of a problem when r(x,z)>O than when r(x,z)<O.

It is difficult to generalize about the coefficient of

variation of most economic data. However, a large number of

studies use data where the CV is between 0.1 and 1.0 and so it

seems likely that the dangers of multicollinearity will often be

encountered when using a model such as (2.2).

Pairwise correlations are indicated by r(x,xz) and r(z,xz)

but it is still possible for these two values to be small when

an almost exact linear relationship exists between x, z and XZ.

To examine this 1 - lXIX1 needs to”be calculated. Substituting

(4.9) and the equivalent expression for r(z,xz) into (3.8) gives,

after some algebra,

1- Ix’xl =
D + r4(x,z)

D+l
(4.11)

where D= 1 + 1 + 2r(x,z) + r2(x,z)

C@(z) Cvqx) Cv(x)cv(z)
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In Tables 10 to 18, (1 - IX’XI)* is evaluated for different

values of r(x,z), CV(X) and CV(Z). It is evident that multi-

collinearity is less of a problem when CV(X) and CV(Z) are both

high and when x and z are uncorrelated or have a small negative

correlation such as -0.2 or -0.4. Although an r(x,z) of -0.8 leads

to relatively low values of r(x,xz) and r(z,xz) the high inverse

correlation between x and z still means that (1 - IX’XI)+ will be

fairly high.

In general one can conclude that when x and z are normally

distributed, and when a model such as (2.2) is being estimated,

multicollinearity could be a serious problem unless the coefficients

of variation of x’and z are high.

5. CORRELATION COEFFICIENTS USING
THE DISCRETE UNIFORM DISTRIBUTION

When one is investigating topics such as crop response under

different applications of fertilizer or weight gains of animals

under different feeding rates, the discrete uniform distribution

is likely to be more appropriate than the normal distribution.U

Assume, in model (2.1), that x is set at (n + 1) different levels,

that the initial level is zero and each level is d units greater

than the previous oneo~This can be represented by the

following probability distribution.

p(x=k)= 1 k=O, d, 2d, . . ., nd.
n+l,

(5.1)
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The mean and second, third and fourth moments about the mean of this

distribution are given by:

E(x)=$,
Y

v(x) =
N2
(~+~)d2,

E(x’)3 = O, and

E(x’)4=(n4+n3+#- $) d4. w
80 20 30

Substituting (3.3) and (3.5) into (3.6) and using (5.4) we have

2E(x) @(X)
r(x,x2) =

~(x’)4+4E2(x)V(x) - V2(x~ “

Dividing (5.5) by (5.3) gives

E(x’)4 = d2(0.15n2 + 0.3n - 0.2) v(x).

Substituting (5.7) into (5.6) we get

2E(x)
r(x,x2) =

.15n2 + 0.3n -~~ “

The correlation between x and its square can now be found completely

in terms of n by substituting (5.2) and (5.3) into (5.8) and

simplifying.

1
r(x,x2) =

(1.0667 +0.1333 -0.2)~
n n

Values of r(x,x2) for different values of n are given in Table 19.

The minimum correlation is 0.958 and this is when n=3. After this

point the correlation increases as n increases. However, this

should not be used as an argument for limiting sample size since

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

a larger sample size means lower variances of the estimates and

this may more than compensate for the increase in variance from
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multicollinearityo It is interesting that as long as n>l we can

derive a maximum correlation between x and X2 which is less than

unity.

lim r(x,x2) = 0.9682

n+=

Thus when x has

x and X2 will always

the discrete uniform

be highly correlated

correlation are given by

0.958 <r(x,x2)4 0.968.

(5.10)

distribution and n>l,

and the bounds on this

(5*11)

Now consider model (2.2). Assume x and z have independent

discrete unifozm distributions with (nl + 1) and(n2 + 1) observa-

tions respectively. ~ From the assumption of independence (3.2)

and (3.4) can be written as:

C(x,xz) = E(z)V(X),

and

V(XZ) = E2(X)V(Z) + E2(Z)V(X) + V(X)V(Z).

Substituting these expressions into (3.7) gives:

r(x,xz) =

.

From (5.2) and

E(z)V~(x)

@2(z) V(x) + E2(X)V(Z) + V(x) V(Zfi

1

‘+1 + CV2 z + cvqz~
Cv x)

(5.3),

CV2(X) = 1/3(1 + 2/n,)
L

Using this and a similar expression for CV2(Z) we have:

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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This correlation is calculated for different values of nl and

n2 in Table 20. The values are much

of the previous cases. There are no

more encouraging than in any

values of nl and n2 which give

r(x,xz)>O.8. For large values of nl and n2 we have:

lim r(x,xz) = 0.655

nlv n2 +-

(5.17)

The correlation between z and XZ, r(z,xz), can be found by

interchanging nl and n2 in Table 20.

Since x and z are independent we have

1- IX’XI = r2(x,xz) + r2(z,xz). (5.18)

Values of (1 - IX’XI)+ for different values of nl and n2 are given

in Table 21. For most sample sizes these values are slightly

larger than 0.9 indicating that a fairly strong linear relationship

exists between XZ, x and z even although the correlations r(xz,x)

and r(xz,z) were not very high. However, multicollinearity appears

to be less of a problem in this case than when x and z are normally

distributed. The maximum value is given by

lim (1 - IX’XI)+ = 0.926. (5.19)
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6. CONCLUSIONS

In empirical studies using models such as (2.1) and (2.2) the

researcher often finds high zero order correlation coefficients

between the explanatory

these high correlations

as normally distributed

variables. This paper has explained why

occur. When the variables can be regarded

their coefficients of variation provide a

great deal of

will be. The

the variables

information about how high the correlation coefficients

number of observations provides this information when

have the discrete uniform distribution. Consulting

the tables will enable one to determine what kind of correlations

are likely when using models similar to the two studied.

Future research needs to be directed towards finding what

degree of correlation is damaging. Multicollinearity could be

regarded as damaging in estimation if it leads to estimates which

are too unreliable to be used for the purpose for which they were

estimated. In hypothesis testing one might regard multicollinearity

as damaging if it causes statistically non-significant results.

Thus the level of correlation which is damaging will depend on the

reason for the research and the unknown parameters and perhaps would

be best investigated using a Monte Carlo experiment.
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Table 10

Cv(x)
m(z)
.1
.3
.5
.75

1.00
1.25
1,5
2,0

(1 - lX’Xl)l’2 for r(~,z) = -008

.1 .3 .5 .75 1.00 1.25

.993 .995 .996 .996 .997 .997
.950 .950 .959 .964 .967

.904 .901 .910 .917
.865 .861 .865

.843 .840
.830

Table 11

1/2
(1 -lx’xl) for r(x,z) = -9.6

Cv(x) .1 ●3 .5 .75 1.00 1.25
Cv(z)
.1 .995 .994 .995 .995 ● 995 .995
.3 .957 .947 .950 .953 .955
.5 .900 .883 .883 .887
.75 .829 .811 .807

1.00 .773 757
1.25 :731
1.5
2.0

1.5 2.0

.997 .997

.969 .971

.922 .929

.871 .879

.841 .847

.827 .829
,822 .820

.813

1.5

.995

.957

.890

.809

.752

.719

.702

2.0

.995

.959

.896

.815

.753
713
:688
.665
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Table 12

Cv(x)
Cv(z)

.1

.3

.5

.75
1.00
1.25
1.5
2.0

(1- IX’XI)1/2 forr(x,Z) = -004

.1 .3 .5 .75 1.00 1.25

.996 .994 .995 .995 .995 .995

.996 .954 ,952 .953 .954

.915 .893 .887 .886

.839 .813 .801
.766 .741

.703

Table 13

(1- lXfXl)1/2 forr(x,z) = -0.2

Cv(x) .1 .3 .5 .75 1.00 1.25

Cv(z)
.1 .997 .995 .995 .995 .995 .995
‘3.. .973 .962 .958 .957 .956

.5 .930 .909 .900 .895

.75 .862 .834 .819
1.00 .789 .760

1.25 .719
1.5
2.0

1.5 2.0

.995 .995

.954 .955

.886 .888

.797 .796

.728 .718

.681 .661

.652 .622

.577

1.5

,995

.956
,893

.810

.741

.691

.656

2,0

.995

.957

.892

.802

.723
,660
.614

.554
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Table 14

Cv(z)
.1

.3

.5
,75
1.00

1.25
1,5

2,0

(1- lXIX1)1/2 for r(x, z) = O

Cv(x) .1 .3 .5 .75 1.00 1,25 1.5

. 998 .996 .995 .995 .995 .995 .995

.978 .968 .963 .961 .960 .959

● 943 .923 .913 .907 .904

.883 .857 .841 .830

.816 .788 .769

.749 .721

.686

Table 15

(1-1 XIX I )1/2 for r(x, z) = 0.2

Cv(x) .1 .3 .5 .75 1.00

Cv(z)
.1 .998 .996 .996 .995 ,995

.3 .982 .973 .968 .965

,!5 .952 .935 .924

.75 .901 .878

1.00 .842

1.25

1.5
2.0

1.25 1,5

.995 , 995

.963 .962

.918 .913

.862 .851

.817 .798

. 783 .757

.725

2.0

.995

.959
,900
.818

.745

.686

.640

,577

2.0

,995
.961

.908

.837

.774

.723

.682

.625
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Table 16

Cv(x)
Cv(z)
.1

.3

.5

. 75
1, 00

1.25
1.5
2.0

Cv(x)
Cv(z)
,1

,3
5.,

. 75
1.00

1.25
1.5
2.0

(1- ~X’X ~)112forr(x,z) = 0.4

.1 .3 .5 .75 1.00 1.25 1.5

.998 , 996 .996 .996 .996 .995 , 995
. 985 , 977 .972 .969 .967 .966

.960 .945 .935 .929 .924
. 917 .897 .883 .873

.868 .847 .830
, 818 .797

.771

Table 17

(1 - IX’X [ )1/2 for r(x, z) = O.6

2.0

.995

.964

. 918

.859

, 808
.767

. 735

. 690

.1 .3 .5 .75 1.OO 1.25 1.5 2.0

.999 .997 .997 .996 .996 .996 ,996 .996
.988 .982 .978 .975 .973 .972 .970

.969 .957 .949 .943 .939 .934
.936 .921 .910 .902 , 890

.900 .883 .871 .854
.863 , 847 .825

.829 .803
.773
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Table 18

Cv(x)
Cv(z)

.1

.3

. 5

.75

1.00
1.25
1.5

2.0

(1- ~X’Xl)1/2 for r(x,z) = O.8

. 1 .3 .5 .75 1.00

. 999 .998 .998 .998 .998
.993 .989 .986 .984

.981 .974 .970
.963 ,954

.942

Table 19

r (x,X2) When x has Uniform Distribution

n.— r(x, x2)

2
3

4

5
6
8

10
12
15
20

30

40
50

0.961
0.958
0.959

0.960

0.961
0.962
0.963
0.964
0.965
0.965

0.966

0.967
0.967

1.25 1.5

.997 .997

.983 .982

.966 .963

.947 .942

.933 .926

.922 .914
,904

2.0

. 997

.981

.960

.936

. 917

. 902

. 891

. 876
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Table 20

n2 1

nl

1 0.577

3 0.513
5 0.491
7 0.480
9 0,474

11 0.469
13 0.466
15 0.464
25 0.457

n2 1
nl

1 0.816
3
5
7

9
11
13
15
25

r(x,xz)When x and z are Uniformly Distributed

and r(x, z) = O

3 5 7 9 11 13

0,688 0.719 0, 734 0.742
0.626 0.658 0.674 0.683
0.603 0.637 0.653 0.662
0.592 0.626 0.642 0.651
0.585 0.619 0.635 0.645
0.581 0.614 0.630 0.640
0.577 0.611 0.627 0.637
0.575 0.608 0.625 0.634
0.568 0.601 0.618 0.628

0.748 0.752
0.690 0.694

0.668 0.673

0.658 0.662

0.651 0.655

0.646 0.651

0.643 0.648

0.641 0.645

0.634 0.638

Table 21

(1- ~X’X I)1/2 forthe Uniform Distribution

3 5 7 9 11 13

0.858 0.871 0.877 0.881 0.883 0.885
0.885 0.893 0.897 0.900 0.901 0.903

0.900 0.904 0.906 0.908 0.909
0.907 0.910 0.911 0.912

0.911 0.913 0.914

0.914 0.915

0.916

15

0.755
0.697

0.676

0.665

0.659
0,654
0.651

0,649
0.642

15

0.886

0,904
0.910
0.913

0.914
0.916
0.916
0.917

25

0.762
0.706

0,685

0.674
0.668
0,663

0,660

0.658
0.650

25

0.889

0.906
0.912
0.915
0.916

0.917
0.918
0.919
0.921

I
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FOOTNOTES

W. E. Griffiths is Research Associate, Department of Agricultural

and Applied Economics, University of Minnesota. The author thanks

Terry Roe, George Judge and Mathew Shane for their comments on an

earlier draft

An excellent discussion of multicollinearity and its effects is

given by Farrar and Glauber~4].

See Farrar and Glauber~4~.

Under three different reasons for econometric research Valentine

~9~ outlines the variables which are likely to determine whether

or not multicollinearity is damaging.

See Christ ~, p. 14~ for

not imply a high correlation.

See Anderson E, p. 3~.

a discussion on why dependence need

It is necessary to assume E(x)>O. If E(x)<O the operations

involved in changing (4.7) to (4.8) would change the correlation

from negative to positive. If E(x) = O, (4.8) is not valid because

it involves division by zero. However, in this case r(x,x2) = O

from (4.7).

As mentioned above it is impossible to determine what value of

r is considered critical. The value 0.8 may or may not lead to

“excessively” high variances of the estimated coefficients. It is

used only

For a

Heady and

as a guideline.

number of examples of these types of applications see

Dillon ~6~.



9.

10.

11.

The correlation coefficients derived will be invariant with

respect to d but not with respect to the lowest level of application

of x. The results hold only for the case when this lowest level is

zero. This greatly simplifies derivations and should be realistic

for many applications. It is not evident, a priori, whether a

positive initial level of x will increase or decrease the correlation.

These moments can be derived by setting up the moment generating

function and using, from Rektnrys ~, p. 5~, the following

algebraic identities:

1+2+*** +n. d.!dLL
2

12+22+ ..* + n2 = n(n+l)(2n+l)
6

~3+23+ . . . + n3 = n2(n+l)2
4

14+24+ ..O + n4 = n(n+l)(2n+l)(3n2+3n-1)

30

If both x and z are set according to the distribution in (5.1)

and if there are (nl + 1) (n2 + 1) observations on y, that is, one

observation for every possible combination of x and z, x and z can

be regarded as independent and r(x,z) = O.



-32-

REFERENCES

[lj’ Anderson, T. ‘N.,An Introduction to Multivariate Statistical Analysis,

New York: John Wiley and Sons, Inc., 1958.

~2] Bohrnstedt, G. W. and Goldberger, A. S., “On the Exact Covariance

of Products of Random Variables”, Journal of Anerican Statistical

Association, 64(1969), 1439-42.

Christ, C. F., Econometric Models and Methods, New York: John Wiley

and Sons, Inc., 1966.

Farrar, D. E. and Glauber, D. R., “Multicollinearity in Regression

Analysis: The Problem Revisited”, Review of Economics and Statistics,

49(1967), 92-107.

Goldberger, A. S., Econometric Theory, New York: John Wiley and

Sons, Inc., 1964.

Heady, E. O. and Dillon, J. L., Agricultural Production Functions,

Ames, Iowa: Iowa State University Press, 1961.

Rektorys, K., cd., Survey of Applicable Mathematics, Cambridge,

Massachusetts: The M.I.T. Press, 1969.

Telser, L. G., “Least Squares Estimates of Transition Probabilities”

in Christ, C. F., cd., Measurement of Economics, Stanford:

Stanford University Press, 1963.

Valentine, Thomas J., “A Note on Multicollinearity”, Australian

Economic Papers, 8 (June, 1969), 99-105.


