
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Journal of Agricultural and Resource Economics 37(2):280–288
Copyright 2012 Western Agricultural Economics Association

Productive Efficiency of
Subsidized Organic Alfalfa Farms

Stefanos A. Nastis, Evangelos Papanagiotou, and Savvas Zamanidis

This paper assesses the efficiency and performance of organic alfalfa farms. Data were obtained
from questionnaires collected from forty farms participating in an EU-subsidized program
promoting the switch to organic farming. Results obtained using the bootstrap Data Envelopment
Analysis methodology show that larger farms had lower yields and lower efficiency scores
and more experienced farmers had higher efficiency scores. A Tobit analysis of the impact
of environmental factors and subsidies on farm efficiency demonstrates that CAP subsidies
cause perverse incentives, raising questions about the efficiency of such policies for sustainable
agricultural development.
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Introduction

In most EU countries, livestock production accounts for one third to one half of total agricultural
output. The cultivation of animal feed is an important sub-sector of agriculture that meets the needs
of livestock producers. Alfalfa grown in Western Greece is one of the most important crops used as
animal feed in Greece: 3.7% of Greek agricultural land—137,600 hectares (ha)—is devoted to alfalfa
cultivation, and annual production is estimated at 1,393,000 tons (Greek Ministry of Agriculture,
2007). Since 1999, subsidies provided by the EU Common Agricultural Policy (CAP) have helped
to promote a switch to organic alfalfa at the national level. These subsidies provide significant
financial incentives for farmers to switch their production to organic farming. However, given the
recent economic crisis, added pressure is being exerted to use public funds more productively and
efficiently. These pressures raise questions about the efficiency and performance of CAP subsidized
organic alfalfa farms and the effects the subsidies have on efficiency scores.

We use the bootstrap Data Envelopment Analysis (DEA) methodology developed by Simar and
Wilson (1998) to estimate farm efficiency scores. The bootstrap methodology is a straightforward
way to analyze the sensitivity of efficiency scores relative to the sampling variations of the estimated
frontier and provides a statistical basis for nonparametric efficiency measures. This study estimates
the productive efficiency of organic alfalfa farmers in Greece.

Materials and Methods

Bootstrap Data Envelopment Analysis

The economic theory on which efficiency analysis is based derives from Koopmans (1951) and
Debreu’s (1951) seminal work on activity analysis. The Data Envelopment Analysis (DEA)
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approach was introduced by Farrell (1957), whose study is the first empirical work to address the
problem of measuring efficiencies for a set of decision making units (DMUs). Charnes, Cooper, and
Rhodes (1978) later operationalized the DEA methodology in terms of linear programming.

We develop the DEA approach and bootstrap estimation, following notation introduced by Simar
and Wilson (2000). The activity of DMUs is constrained by the production set Ψ of feasible points
(x,y) as:

(1) Ψ = {(x,y)∈Rp+q
+ |x can produce y},

where x∈Rp
+ is an input vector and y∈Rq

+ is an output vector. The DEA methodology assumes
that Ψ is convex and the attainable set may be estimated by:

(2) Ψ̂DEA(χn) = {(x,y)∈Rp+q
+ |y≤

n

∑
i=1

γiyi,x≥
n

∑
i=1

γixi,
n

∑
i=1

γi = 1,γi ≥ 0∀i = 1,2, . . . ,n}

of the sample observations in χn. Efficiency corresponding to a given point x0,y0 is then estimated
relative to the Ψ̂DEA boundary as:

(3) θ̂DEA(x0,y0) = inf{θ |(θx0,y0)∈ Ψ̂DEA(χn)}.

Kneip, Park, and Simar (1998) derived analytic results for the consistency of the DEA estimator.
In addition, Gijbels et al. (1999) obtained asymptotic sampling distributions, albeit only for the
univariate framework. Given that the asymptotic results only apply in the univariate case, Simar
and Wilson (1998) proposed an algorithm that implements the bootstrap to frontier estimation.
The algorithm provides an approximation of the sampling distribution of θ̂DEA(x,y)− θ(x,y) in the
multivariate case and allows confidence intervals to be obtained for θ(x,y). This approach allows
statistical inference when using the DEA approach in non-parametric frontier models.

Measurement Error Identification

We first employ the methodology developed by Wilson (1993) to identify observations that may
contain some form of measurement error. This step is necessary because the efficiency scores
produced by DEA methods (as well as other linear programming-based models like the deterministic
parametric models proposed by Lovell and Sickles (1983) and others) may be severely influenced
by the presence of outliers in the data. Outliers are the result of recording or measurement errors
and should be corrected if possible or else deleted from the data. In the case of DEA, since the
frontier is nonparametric, diagnostics based on parameter estimation cannot be employed. The
statistic developed by Wilson (1993) is an extension of the one developed by Andrews and Pregibon
(1978) for the case of multiple outputs and is most commonly based on graphical analysis.

First, some notational definitions are needed. For a value ξ computed from a set of observations
S = {1, . . . ,n}, let D(i)

L ξ denote the value computed similarly from observations in the set S− L,
where L⊂ S and L contains i elements, i < n. More specifically, the statistics defined by Andrews
and Pregibon (1978) and by Wilson (1993) are:

(4) R(i)
L (XXX∗)≡

[
D(i)

L

(∣∣∣XXX∗′XXX∣∣∣)]∣∣∣XXX∗′XXX∣∣∣−1
,

where XXX∗ = [X ′Y ], XXX is an (n× K) matrix of inputs including a column of ones, YYY is an (n× 1)
matrix of the one output, for each of the n firms, each of which uses K − 1 inputs to produce the one
output, and D(||̇) is the determinant of the matrix DDD()̇. This statistic represents the proportion of the
geometric volume in K space spanned by a subset of the data obtained by deleting i observations
relative to the volume spanned by the entire data set. Sets of observations L deleted from the sample
that produce small values of R(i)

L are then considered to be outliers in the real sense. Andrews and
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Pregibon (1978) recommend computing R(i)
L for i = 1,2, . . . ,n to avoid the problem that would occur

if two or more points lie near each other in K space but lie far from other observations in the data.
They suggested a graphical analysis in which the log ratios log[R(i)

L (XXX∗)/R(i)
min] (i = 1, . . . , imax) are

computed for the subsets, with the largest values q∗l q∗
′

l , where q∗l is the lth row of Q∗, XXX∗ = Q∗R∗,
imax is the largest subset to be deleted, and R(i)

min is the minimum ratio. Examining the separation
between the smallest ratios indicates possible outliers. The results of the outlier detection analysis
are presented below.

Data and Descriptive Statistics

Data were collected from the Prefecture of Kozani, Western Macedonia, Greece, in 2008, when
sixty-five farms participated in the EU-subsidized program promoting organic farming. Forty of
those farms cultivated alfalfa as the only organic crop and were selected because of their crop
homogeneity. Farmers either fully (on all crops and all plots) or partially adopted organic farming
and were subsidized for land plots converted to organic farming with a per hectare payment of 600e.
On average, subsidies amounted to 12,550e per farm, about 12% of agricultural output value.

As part of the program, farmers were required to fill out questionnaires that included information
about farmers’ sociodemographic characteristics and detailed accounting records for the organic
farming portion of the farming activities. Thus, reported capital, land, labor, and variable input
expenditures were calculated either by direct values reported by the farmers (for land, labor,
and variable inputs) or by apportioning costs for capital inputs of partial adopters. In addition,
information was collected about each farmer’s experience with organic farming, reasons for
converting to organic farming, and whether they were full or partial adopters of organic farming
and full or part-time farmers.

The average farm had an output valued at approximately 128,000e, while employing
approximately 85,000e capital, 20,000e of variable inputs; 295 workdays were used to farm 2.2
ha of land (table 1). In addition, table 1 reports descriptive statistics for the sub-samples of partial
and full organic farming adopters. The sample consists of thirteen partial adopters and twenty-five
full adopters. The descriptive statistics show that full adopters employ more of all inputs. More
specifically, on average full adopters employ 30% more capital, 54% more land, 19% more labor
and 32% more variable inputs to produce 18% more output, compared to partial adopters. A farmer’s
status as a full or partial adopter of organic farming may therefore explain differences in efficiency.
In addition, substantial variation in all measured variables exists among the sample farms. Output
varied from 5000e to 630,000e, capital employed on the farm varied from 0e to 500,000e, land
cultivated varied from 0.14 ha to 18 ha, and labor employed varied from 22 workdays per year
to 1980 workdays per year. The substantial variation among the representative sample of farms
allows us to examine whether or not organic alfalfa production exhibits constant returns to scale
and, furthermore, to determine optimal farm size based on estimated efficiency scores. In addition,
it should be noted that a number of farms reported zero use of capital inputs. These farms rent
all necessary farming equipment, or, more often, hire foreign labor and equipment to perform all
cultivation tasks; they are therefore not missing values.

Results and Discussion

Outlier Detection

Following Wilson (1993), the outlier detection analysis reported values of R(i)
min for i = 1, . . . ,12, and

are presented in table 2. R(i)
min was found by computing all values for R(i)

L (XXX∗ and then compared to
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Table 1: Descriptive Statistics

Mean Std. Dev. Min Max
Full sample

Output (in e) 127,198.43 155,839.40 5,000.00 63,0000.00
Capital (in e) 84,926.99 94,911.68 0.00 500,000.00
Land (in ha) 2.19 3.25 0.14 18.00
Labor (in workdays) 294.21 393.62 22.19 1,980.00
Variable Inputs (in e) 19,722.78 21,515.06 928.56 103,362.00

Partial adopters .

Output (in e) 118,215.80 161,935.20 5,000.00 630,000.00
Capital (in e) 74,519.49 81,159.63 7,797.43 266,095.90
Land (in ha) 1.66 2.07 0.14 10.50
Labor (in workdays) 267.88 438.07 22.19 1,701.00
Variable Inputs (in e) 16,640.10 24,448.99 928.56 96,388.5

Full adopters .

Output (in e) 139,839.30 159,041.20 11,060.00 600,000.00
Capital (in e) 97,133.05 102,615.80 5,000.00 500,000.00
Land (in ha) 2.58 3.61 0.16 18.00
Labor (in workdays) 320.22 390.82 25.59 1,980.00
Variable Inputs (in e) 22,077.79 20,854.19 1,115.48 103,362.00

Table 2: Outliers
i Observations
1 38
2 22 23
3 22 23 38
4 31 22 23 38
5 31 30 22 23 38
6 31 30 28 22 23 38
7 31 30 29 28 22 23 38
8 31 30 40 29 28 22 23 38

the value obtained by computing the

(
2imax

i

)
subsets with the largest values of R(i)

L (XXX∗) from

the subset of observations, described above. For each i = 1, . . . ,n, figure 1 displays the 17 smallest

values of the log ratios log[R(i)
L (XXX∗)/R(i)

min] computed for the

(
16
i

)
subsets with the largest values

q∗l q∗
′

l , where a line connects the second smallest values for each i to illustrate the separation between
the smallest rations for each i (Wilson, 1993). For i = 2, the separation is relatively large, with a log
ratio larger than 1. Observations 22 and 23 listed for i = 2 in table 2 are regarded as outliers. Looking
more closely at observations 22 and 23, we note that these are very small-scale farms with less than
0.7 ha of land and zero values for capital. As mentioned earlier, a number of farms in the sample
report zero capital, since they rent all necessary equipment or have others perform required tasks for
them. These expenses appear in variable inputs. Therefore, we proceed with a reduced sample of 38
observations to perform the DEA bootstrapping efficiency analysis.
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Figure 1: Log-Ratio Outliers Plot

Table 3: Distribution of Technical and Scale Efficiencies
Technical efficiency Scale efficiency

Efficiency Score Number of
DMUs % Number of

DMUs %

0.0-0.19 4 10.5 1 2.6
0.2-0.39 6 15.7 1 2.6
0.4-0.59 9 23.7 4 10.5
0.6-0.79 16 42.1 11 28.9
0.8-1.00 3 8.0 21 55.4

Notes: Efficiencies are estimated from the bootstrap DEA. Technical efficiency is estimated under Variable Returns to Scale.

Technical and Scale Efficiency

Table 3 includes results obtained using the bootstrap method introduced by Simar and Wilson (1998)
and the input-oriented DEA. Three farms are best-practice (technical efficiency scores of over 0.8)
and half of the sample’s farms have a technical efficiency score above 0.6. Mean Technical Efficiency
under VRS is 0.664 (0.544 after the bootstrap correction), implying that farms could reduce their
inputs, on average, by 33.4% (45.6%) to produce the same level of output and that considerable
variation exists among alfalfa farmers in the region.

The interpretation of the scale efficiency scores, with mean scale efficiency after the bootstrap
correction of 0.776, implies that the average farm size is very close to optimal, since only an
additional 22.4% productivity gain is feasible, assuming no other constraining factors, if farms are
scaled to optimal size.

The classification of alfalfa farms by size shows that on average, small farms (less than 1 ha)
are more technically efficient than medium-size and large farms (table 4). Small and large farms
are equally scale efficient, with medium-size farms being more scale efficient, as their average
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Table 4: Average Efficiency Scores by Size, Experience, and Degree of Organic Farming
Adoption

TE CRS TE VRS SE % of
DMUs

Overall sample mean 0.42 0.54 0.78

Classification by size
Less than 1 ha 0.48 0.67 0.72 39.47
1-2 ha 0.37 0.44 0.80 34.21
More than 2 ha 0.40 0.49 0.83 26.32

Classification by organic farming experience
Before 2005 0.40 0.56 0.82 36.84
2005-2006 0.46 0.53 0.75 63.16

Classification by degree of organic farming adoption
Partial adopter 0.41 0.59 0.70 34.21
Full adopter 0.50 0.57 0.85 65.79

Notes: TE CRS: Technical efficiency under Constant Returns to Scale. TE VRS: Technical efficiency under Variable Returns to Scale. SE:
Scale Efficiency. DMU: Decision making unit. The bootstrap DEA approach was used to make inference of efficiency estimates.

size is only 2.5% away from optimum. Explaining why small farms are more technically efficient
(0.479 and 0.670) requires an examination of farmers’ organic farming experience. Efficiency scores
for farmers with more organic farming experience are substantially higher than for other farmers
(table 4). Farmers who began organic farming prior to 2005 (37% of sample) have mean technical
efficiency scores of 0.401 (CRS) and 0.563 (VRS) and scale efficiency scores of 0.819. Farmers
with only one or two years of organic farming experience (63% of sample) have mean technical
efficiency scores of 0.455 (CRS) and 0.534 (VRS) and scale efficiency scores of 0.750. The average
farm size for older organic farmers (prior to 2005) is 1.15 ha, whereas the average farm size for
newer organic farmers (after 2005) is 2.74 ha, which may explain why small-scale farmers appear
to be more technically efficient than medium- and large-scale farmers. Finally, whether farmers
decide to partially or fully adopt organic farming may explain some of efficiency differences. The
classification of efficiency scores based on whether farmers partially or fully adopt organic farming
indicates that full adopters have higher technical efficiency and scale efficiency scores than partial
adopters. However, the independent samples t-test indicated that for all the efficiency measures
employed, the two sub-samples cannot be statistically distinguished at the 5% significance level.

The most notable feature of DEA is that it is possible obtain information and evidence for a
managerial evaluation of each individual DMU, thereby identifying and assessing the exact sources
of inefficiencies for each unit (Galanopoulos et al., 2006). This process facilitates the determination
of where the greatest gains can be made from improvements in efficiency (Abbott and Doucouliagos,
2003). The analysis is performed here for the least technically efficient farm, DMU 4. For this
analysis we examine the VRS DEA efficiency score (pure technical efficiency), since the assumption
of constant returns to scale is only appropriate when all DMUs are operating at an optimal scale.
The results of the analysis for the sample do not support this argument, as only a small fraction of
the farms in the sample are optimally sized.

The TE VRS for DMU 4 is 0.096, implying that the farm could become technically efficient
(under the Farrell definition) if all inputs are reduced proportionally by 90.4% (table 5). In addition,
slack movements and the projected point for DMU 4 are reported in table 4. More specifically, capital
use can be reduced by 484,160.58e (96.8%), land by 0.28 ha (8.7%), labor by 406.21 days/year
(90.2%), and variable inputs by 28,522.02e (90.7%) and the farm can still produce the same output
level. It should be noted that this DMU is a full adopter and therefore produces only organic alfalfa.
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Table 5: Actual and Efficient Input Use Levels of DMU 4
Inputs

Capital
(e)

Land
(ha)

Labor
(Days/year)

Variable Inputs
(e)

Actual values 500,000.00 3.20 450.00 31,438.00
Radial movement −451,350.00 −0.28 −406.21 −28,379.00
Slack movement −32,810.58 0.00 0.00 −142.94
Projected change −484,160.58 −0.28 −406.21 −28,522.02
Projected point 15,839.42 0.32 43.79 2,915.98

There are several plausible explanations for the DMU’s low efficiency score. However, given the
available information, it is impossible to fully explain the results, other than reporting that the farm
owner is a 44 year old, male high-school graduate who recently converted the operation to organic
farming. However, in Greece farmers are often observed to over-invest in capital due to capital
equipment’s role as “status symbols” in local communities. The excess capacity serves no purpose
other than to convey the farmers’ status, even if it is inefficient.

Eight farms are purely technically efficient; that is, they operate on the production possibilities
frontier. The eight pure technically efficient DMUs employ 79,188.54e of capital, 2,86 ha of land,
372,4 workdays per year, and 25,743e of variable inputs to produce 233,633e of output. The
preceding analysis may provide farmers with useful information in determining excessive input use
and provides the basis for managerial actions that can improve farm efficiency. However, DEA can
neither fully explain the underlying differences in efficiencies in the use of a single input nor assess
the constraints that limit changes in operational practices that would otherwise improve efficiency
(Galanopoulos et al., 2006). Thus, given the limitations of the information provided by DEA, it
should only be considered as the starting point for a farmer seeking to improve their farm production
system.

Assessment of Environmental Impact on Farm Efficiency

We regress the estimated efficiency scores on a set of explanatory variables, paying particular
attention to the role of subsidies and sociodemographic and managerial characteristics and
investigating the extent to which they influence the efficiency of an organic alfalfa farm. The
regressors are the farmer’s age (Age), years of school (School), household size (Hhd), years of
experience in organic farming (OrgExp), whether they are full-time farmers (FullTime), whether
they became organic farmers due to concern for the environment (Env) (as opposed to the economic
incentives offered), and the ratio of subsidies to output (S/Y ).

The dependent variable (inefficiency scores) takes values in the unit interval. Hence, a Tobit with
lower limits at zero and upper limits at one is an appropriate regression model (Sharma, Leung, and
Zaleski, 1999; Tauer and Stefanides, 1998). The Tobit specification is defined as:

(5) y∗i = xiβ + ui with the observed y given by: yi =


0 i f y∗i ≤ 0
y∗i i f 0≤ y∗i ≤ 1
1 i f y∗i > 1

,

where y∗i is the latent variable, xi denotes the vector of explanatory variables, β denotes the
parameters to be estimated, and ui is an i.i.d. random error term. The results of the Tobit analysis are
based on the VRS efficiency scores and so bootstrapped confidence intervals are employed to help
correct for heteroskedasticity, since ignoring heteroskedasticity can lead to inconsistent estimates.1

It should be noted that the estimated coefficients in a Tobit regression model do not have a direct

1 We thank an anonymous referee for this suggestion.
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Table 6: Tobit Regression Results (N=38)
Variable Coefficient Std. Error
Age 0.02∗∗ 0.01
School 0.01 0.02
Hhd −0.05 0.09
OrgExp −0.01 0.01
FullTime −0.28∗∗ 0.15
Env −0.17∗ 0.10
S/Y −0.49∗∗∗ 0.42
Constant 0.67 0.55

Notes: Log-likelihood=-9.46, Prob>chi2=0.047, Pseudo R2=0.57. Single, double, and triple asterisks (∗, ∗∗, ∗∗∗) indicate significance at the
10%, 5% and 1% level.

interpretation as a true marginal effect, but as a two-scale effect: first, an effect on the mean of
the dependent variable, given that it is observed, and second, an effect on the probability of the
dependent variable being observed. Therefore, we report marginal effects calculated at the mean of
the data.

The regression results show that the farmer’s age and full-time employment status are statistically
significant positive determinants of the pure technical efficiency score, implying that older farmers
and full-time farmers are more efficient. Furthermore, farmers who indicate that they switched
to organic farming purely for ecological reasons are statistically significantly less likely to be
technically efficient; that is, farmers with ecological rather than financial motives for switching
to organic farming are less efficient (table 6). More importantly, the effect of subsidies on farm
efficiency is negative and statistically significant. The marginal effect of a 1% increase in the ratio
of subsidies to farm output decreases a farm’s pure technical efficiency score by 1%. This finding
provides evidence that subsidies either work as a disincentive for farmers to manage their operations
efficiently or attract less efficient farmers into the activity, since either way they are compensated for
their reduced efficiency through CAP subsidies.

Conclusions

We estimate the production efficiency of individual organic alfalfa farmers in Greece by employing
the Simar and Wilson bootstrap Data Envelopment Analysis methodology and then examine the
effect of farm size and farmer experience on productive efficiency. The results indicate that smaller
farms and farmers who have more experience with organic alfalfa farming are more technically
efficient.

More interestingly, an assessment of the impact of CAP subsidies on pure technical efficiency
revealed that, on average, a given percentage increase in the ratio of subsidies to farm output
decreases the pure technical efficiency score by the same percentage. This finding highlights the
perverse incentive effects of subsidies and raises serious doubts about the efficiency of such policies,
both in terms of their impact on farm-level efficiency and on sustainable agricultural development at
the macro level.

[Received May 2011; final revision received March 2012.]
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