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Composite and Outlook Forecast Accuracy

Evelyn V. Colino, Scott H. Irwin,
Philip Garcia, and Xiaoli Etienne

This paper investigates whether the accuracy of outlook hog price forecasts can be improved using
composite forecasts in an out-of-sample context. Price forecasts from four widely-recognized
outlook programs are combined with futures-based forecasts, ARMA, and unrestricted Vector
Autoregressive (VAR) models. Quarterly data are available from 1975.I through 2007.IV for
Illinois/Purdue and 1975.I-2010.IV for Iowa, Missouri, and USDA forecasts, which allow for
a relatively long out-of-sample evaluation after permitting model specification and appropriate
composite-weight training periods. Results show that futures and numerous composite procedures
outperform outlook forecasts, but no-change forecasts are inferior to outlook forecasts. At
intermediate horizons, OLS composite procedures perform well. The superiority of futures
and composite forecasts decreases at longer horizons except for an equal-weighted approach.
Importantly, with few exceptions, nothing outperforms the equal-weight approach significantly
in any program or horizon. In addition, the equal-weight approach as well as other composite
approaches can generally produce larger trading profits compared to outlook forecasts. Overall,
findings favor the use of equal-weighted composites, consistent with previous empirical findings
and recent theoretical papers.
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Introduction

U.S. public outlook forecasts are viewed as a valuable source of information and traditionally have
played an important role in agricultural decision making. As a consequence, agricultural economists
have devoted considerable effort evaluating their forecast performances (e.g., Allen, 1994). Recent
studies by Colino and Irwin (2010) and Colino, Irwin, and Garcia (2011) address the accuracy of
livestock price forecasts and assess whether outlook forecasts can be improved by combining with
other forecasts. Colino and Irwin (2010) evaluate the accuracy of four outlook programs relative
to hog and cattle futures prices. Results indicate that futures prices outperform outlook forecasts in
most root mean squared error (RMSE) comparisons with several statistically significant differences.
However, in a forecast-encompassing framework, forecast combinations among outlook and futures
are found to outperform futures alone.

Colino, Irwin, and Garcia (2011) investigate whether the predictability of outlook programs
providing hog price forecasts can be improved. Examining numerous time-series forecasts and
futures-based forecasts, they find that these alternative forecasts can substantially improve the
performance of outlook forecasts. Evidence from an encompassing analysis indicates that simple
combinations of outlook and any of the alternative forecasts are able to reduce the errors of outlook
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alone by economically significant levels. Averaging of multiple forecast models is also shown to
improve the accuracy of outlook forecasts.

Several earlier studies by Bessler and Brandt (1981) and Brandt and Bessler (1981, 1983) also
directly examine the benefits of combining outlook livestock price forecasts with econometric, time
series, and expert judgment forecasts. Using quarterly data and a one-period horizon for 1976 to
1979, they demonstrate that composite out-of-sample forecasts, formed by simple averaging or by
choosing weights for the individual forecasts by minimizing historical errors, can improve mean-
squared-error (MSE) accuracy of the Purdue outlook quarterly hog price forecasts (Brandt and
Bessler, 1981) as well as Purdue outlook quarterly cattle and broiler prices forecasts (Bessler and
Brandt, 1981). Extending the forecast period and simplifying the composite to include only an
average of the econometric, time series, and expert opinion, they find evidence that the composite
MSE for quarterly hog prices is statistically smaller than the naïve MSE, but the outlook expert
opinion is not (Brandt and Bessler, 1983). However, simulated producer returns/risk outcomes based
on the forecasts present a different story. The average composite provides higher mean returns and
lower risk than the expert forecasts (as do all the individual forecasts), but the economic value
of their additional information is questionable. (Bessler and Brandt, 1981) cautiously argue that
the composite forecasts improve on the outlook forecasts, and in most cases on the best individual
forecasts, and conclude that outlook commodity experts and quantitative econometric models should
combine efforts to improve the quality of information provided to producers.

Despite the tenor of these findings, which highlight the benefits of combining price forecasts in
livestock markets, several unanswered questions remain, including how they should be combined
and whether they possess economic value. Theoretical research and applications of combinatorial
forecast methods have expanded significantly in recent decades (Bates and Granger, 1969; Granger
and Ramanathan, 1984; McIntosh and Bessler, 1988; Bessler and Chamberlain, 1988; Clark and
McCracken, 2004, 2006; Stock and Watson, 2004; Capistrán and Timmermann, 2009). A systematic
comparison of alternative techniques would provide insight into which procedures lead to more
accurate forecasts. This is consistent with Clemen (1989) who emphasizes that “. . . combining
forecasts has been shown to be practical, economical, and useful . . . We no longer need to justify
this methodology. We do need to find ways to make the implementation of the technique easy and
efficient” (p. 567).

In a related vein, many recently developed combinatorial methods use encompassing regressions
to identify composite weights (Fang, 2003). However, the same data or periods are often used
both to develop the composite weights—as a product of encompassing regressions—and to assess
the performance of the composite forecasts, which limits the usefulness of the analysis (e.g.,
Colino and Irwin, 2010). A more complete out-of-sample evaluation of composite forecasts requires
splitting the time series data into three individual periods. The first period is used for estimating
individual models, the second for investigating out-of-sample performance of individual models and
identifying optimal composite weights, and the third is used as a final for out-of-sample comparison
of forecast accuracy.

A final issue is related to the economic importance of the forecast information. A number of
studies find that results of forecast evaluations based on economic criteria may not be consistent with
results obtained from using statistical criteria (e.g., Brandt and Bessler, 1983; Garcia et al., 1988;
Park, Garcia, and Leuthold, 1989). Here, we assess the economic benefits of using combinatorial
forecast procedures by simulating trading activities in the futures markets and comparing them to
those from expert opinion.

This paper examines various composite procedures in a realistic out-of-sample context in order
to provide a thorough analysis of whether the accuracy of outlook hog price forecasts can be
improved through composite forecasts. Price forecasts from four well-recognized outlook programs
are combined with forecasts based on futures, ARMA, and unrestricted Vector Autoregressive (VAR)
models. In addition, forecast performance from the naïve no-change model based on the previous
period price is also evaluated. The outlook programs are the same as those evaluated by Colino and
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Irwin (2010). The time-series models, though relatively simple, performed well in the composite
analysis conducted by Colino, Irwin, and Garcia (2011). Quarterly data are available from 1975.I
through 2010.IV for most of the analysis, allowing for a relatively long out-of-sample evaluation
after accounting for model specification and appropriate composite-weight training periods.

Here, straightforward pooling techniques are considered. Several procedures have not yet
been applied to agricultural markets, and their accuracy is compared to more standard composite
procedures. Composite methods include equally-weighted average, equally-weighted average with
a bias correction, weights based on constrained and unconstrained regressions, time-varying weights
based on mean squared error, an odds matrix approach, and a shrinkage approach. These procedures
represent the most used and nearly all of the composite categories identified by Timmermann (2006).

Individual Forecast Models

Five individual forecasts are examined: an outlook forecast, a futures-based forecast, forecasts
from two time-series models, a VAR and an ARMA model, and the naïve no-change forecast
based on the previous period price. These models provide a representation of the main forecast
approaches available for agricultural markets. Outlook forecasts and forecasts based on futures
prices are among the most relevant instruments for agricultural decision-makers when planning
future actions. Quarterly finished hog price forecasts from four different outlook programs are
available for comparison. The outlook price forecasts considered here are issued by the University
of Illinois in combination with Purdue University, Iowa State University, the University of Missouri,
and the Economic Research Service of the USDA. Information about timing of release, target cash
prices, and sources for each outlook forecast series are provided in Colino and Irwin (2010). The
sample period for the Illinois/Purdue forecast runs from 1975.I to 2007.IV, while the other three
outlook programs run from 1975.I to 2010.IV. The difference in the sample period stems from the
cessation of the Illinois/Purdue outlook program in April 2008.

Price forecasts generated from futures prices are constructed using a procedure developed by
Hoffman (2005).1 For each calendar month, the model uses the nearest-to-maturity contract. On the
day outlook forecasts are released, the average of monthly futures prices over the forecast quarter
is used to represent the quarterly average futures price. Lean hog futures prices are then converted
to live hog units to make them comparable to outlook forecasts, which are reported in live weight
terms.2

The third and fourth forecast models are an AR(5) and an unrestricted VAR(5).3 These models
have been widely used in the livestock forecasting literature, are relatively easy to compute, and
performed well in the composite analysis conducted by Colino, Irwin, and Garcia (2011). The
VAR(5) specification is highly consistent with previous hog price forecasting models and is the
result of a through process of examining potential variables, structural changes undergone in the
industry, and preliminary estimations of reduced VARs. It is a five-variable system with a five fixed-
lag structure, which was determined by the Akaike’s Information Criteria (AIC), Final Prediction
Error (FPE), and Hannan and Quinn’s Information Criterion (HQIC). The variables used in this
VAR(5) are live-hog prices, corn prices, number of sows farrowing, pork production, and fed cattle
prices. More information about the VAR specification and variables selected are available in Colino,
Irwin, and Garcia (2011).

1 The future forecast differs by programs since the forecast is adjusted by a program-related basis. Also the futures-based
forecast is constructed using the futures price on the day that the outlook forecast was released, which is different across
programs.

2 An estimated ratio of 0.73673 is applied to lean-hog futures prices. This factor is obtained by dividing the average weight
of lean hogs (180.5) by the average weight of live hogs (245) (Sutton and Albrecht, 1996). The adjustment is necessary
because the Chicago Mercantile Exchange shifted the hog contract delivery terms from a live weight to carcass weight basis
beginning with the February 1997 contract.

3 For each outlook programs, the AR(5) and VAR(5) models are different since the target cash price for each program is
different (the target cash price is the sole input of AR(5) model, and one of the variables included in the VAR(5) model).
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The fifth individual forecast model is the naïve no-change forecast based on the previous period
price. Alquist and Kilian (2010) find that under the mean-squared error (MSE) framework, the no-
change forecast generally outperforms various futures-based forecasts in the crude oil market. They
attribute the inferiority of oil futures forecasts to futures price variability about the spot price that
is captured by the oil futures spread. In this study, the forecasting performance of the no-change
forecast is compared to other individual forecasts to test whether the same hypothesis holds in the
livestock market.

Each outlook forecast has a different target cash price, which also has varied over time. To allow
for the different program-related target cash prices, futures prices are adjusted by a program-related
basis. Historical basis levels are computed by averaging daily futures prices for each quarter and
subtracting the quarterly target cash price specified by the outlook forecast. Following Garcia and
Sanders (1996), ARMA basis forecasts are estimated and the futures prices are adjusted. Time-series
models are specified and estimated for cash prices of the specific program.

Forecast Combination Methods

Theoretical and empirical research on forecast composites is extensive (Timmermann, 2006). A key
question is whether to use simple averages or estimate forecast combination weights. Empirical
evidence has shown that it is difficult to outperform simple procedures such as an arithmetic
average (Clemen, 1989; Makridakis and Hibon, 2000; Stock and Watson, 2004). The effect of
parameter estimation error can be a significant determinant of the performance of composite
forecasting models. For instance, least-square weight (slope) estimation procedures (e.g., Granger
and Ramanathan, 1984) require the estimation of covariances among forecast errors, which can
introduce an additional source of error in weight estimation. Simple combination schemes like
arithmetic averages, although perhaps biased, do not require the estimation of covariances across
model errors, so they offer a potentially attractive option (Timmermann, 2006). This question can
be viewed as a tradeoff between imposing equal weights for each individual forecast, which could
lead to bias (clearly a suboptimal scheme), and estimating the weights, which could lead to a loss
in efficiency. This bias-efficiency trade-off gives rise to the so-called forecast combination puzzle
recently analyzed by Smith and Wallis (2009) and Issler and Lima (2009).

After reviewing available approaches, we follow Capistrán and Timmermann (2009), who assess
nearly all categories of composite procedures outlined in Timmermann (2006). All approaches
assume that the combination rule takes a linear additive form:

(1) f c
t+h|t(p) =

K

∑
i=1

wi
t p̂i

t+h|t ,

where, wi
t is the estimated weight on model i at time t, K is the number of h-step-ahead forecasts of

the hog price p, p̂i − t + h|t is the ith forecast model available at time t for price at t + h, and f c
t+h|t

is the composite forecast. The task is to derive the optimal weight to be assigned to each forecast.
The first approach follows a naïve decision rule using the best-previous forecast. For each

forecast made at t, we identify the individual forecast with the most accurate historical performance
and use it to forecast into the future (Clark and McCracken, 2006; Capistrán and Timmermann,
2009). In other words, the forecast with the lowest mean-squared error (MSE) receives all the weight:

(2) f c
t+h|t = p̂i∗t

t+h|t ,

where:

(3) i∗t = argmini=1,...,Kt−1
t

∑
τ=1

(pτ − p̂i
τ|τ−h)

2.
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A second composite forecast uses an arithmetic average of the four individual forecasts. It is also
called the equal-weighted composite forecast:

(4) pt+h|t = K−1
K

∑
i=1

p̂i
t+h|t .

A third composite uses a projection of the equal-weighted combination:

(5) p̃t+h|t = ât + β̂t pt+h|t .

This regression on the equal-weighted forecast includes a constant to adjust for potential biases in
individual forecasts as well as in the aggregate and allows the slope coefficient to differ from unity.
The combination is an extension of equation (4) and only requires the estimation of α and β . This
is a potentially useful technique because it uses information from all forecasts in the average but
adjusts for possible bias and noise in the aggregate forecast. Capistrán and Timmermann (2009) find
this procedure possesses good overall forecast performance.

Probably the most common procedure for estimating combination weights is least squares
regressions (Bates and Granger, 1969; Nelson, 1972; Granger and Ramanathan, 1984). In matrix
notation, the K-dimension weight vector at forecast period T , WT , is estimated by regressing the
actual values of the target variable, PPPt+h on the K-vector of forecasts, P̂PPN+h|N over the period
t = 1, . . . ,T ,

(6) ŴWW T = (
T−1

∑
t=1

P̂PPt+h|tPPP
′′′
t+h)

−1
T−1

∑
t=1

P̂PPt+h|tPPP
′′′
t+h.

Following Granger and Ramanathan (1984), three versions of the procedure are examined:

PPPt+h|t =WWW ′′′T P̂PPt+h|t + EEEt+h→ s.t.WWW ′′′T 111 = 1;(7)

PPPt+h =WWW 0
T +WWW ′′′T P̂PPt+h|t + EEEt+h;(8)

PPPt+h =WWW ′′′T P̂PPt+h|t + EEEt+h;(9)

where in equation (7), 111 is a K-dimension vector of ones. Equation (7) is essentially a constrained
regression requiring composite weights to sum up to unity and individual forecasts to be unbiased
in order to guarantee that the combined forecast is also unbiased. This procedure has been used in
many studies and is directly related to Harvey, Leybourne, and Newbold’s (1998) encompassing test.
Equation (8) is an unconstrained regression since it allows for bias in the individual forecasts, which
can be corrected by the constant W 0

T , and does not require the weights to sum to unity. Equation (9)
is a simple variation of equation (8) without a constant. The equations are estimated using standard
OLS procedures.

As mentioned, errors in the combination weights tend to be high in procedures—like least
squares regressions—that require the estimation of the covariance matrix of forecast errors. An
alternative is to ignore the correlations among forecast errors and to weight each forecast by some
measure of relative performance. Consider equation (10), where the weight for each forecast is
determined by the inverse of its MSE relative to the sum of the inverse MSE values for all the
models (Bates and Granger, 1969; Newbold and Granger, 1974):

(10) wi
t =

MSE−1
i

∑
K
i=1 MSE−1

i
.

Gupta and Wilton (1987, 1988) propose a non-parametric odds matrix approach based on a matrix of
pair-wise odds ratios to incorporate prior forecast accuracy. Specifically, let πi j be the probability that



Colino et al. Composite and Outlook Forecast Accuracy 233

forecast model i will outperform forecast j in the next realization. Then, each element of the matrix
OOO, oi j = πi j/π ji, can be viewed as the odds that forecast i will outperform forecast j. Combination
weights are the solution to the system of equations:

(11) (OOO−−− KKKIII)WWW = 000,

where III is the identity matrix and WWW is the weight vector. The solution (the estimated weight vector)
is given by the eigenvector corresponding to the largest positive eigenvalue that solves OOOWWW = τmaxWWW ;
it is unique when normalized. To estimate the pair-wise probabilities, πi j, we follow Gupta and
Witlon’s (1987) empirical application:

(12) πi j =
ai j

aa j + a ji
,

where ai j is the number of times forecast i had a smaller absolute error than forecast j in the past.
This approach has been shown to be superior to many methods particularly in small samples.

Shrinkage methods are a set of combination approaches widely and rather successfully used in
the macroeconomic literature. Shrinkage methods offer a trade-off between the bias in averaging
weights and parameter error when estimating weights (Timmermann, 2006). The most common
shrinkage approach usually shrinks towards equal-weights or the average of forecasts (Stock and
Watson, 2004; Diebold and Pauly, 1990) Let ŵi

t be the least-squares weight estimator for model i
from regression (7) up to period t. Stock and Watson’s combination weights take the form:

(13) w̃i
t = φt ŵi

t + (1− φt)(
1
K
),

where:

(14) φt = max(0,1− θK
N − 1− K − 1

),

and θ is the shrinkage parameter. For fixed values of K and N, as the values of θ become larger
(lower φt ), the greater the shrinkage towards equal-weights. As the sample size N increases relative
to the number of forecast models K, more weight is given to the least-squares estimate. Following
Capistrán and Timmermann (2009), we consider two values for the θ shrinkage parameter, 0.25 and
1, to assess forecast performance.

Finally, for composite techniques that require historical data for each forecast, weights are
recursively estimated using two procedures. The first uses all the data available to the time of the
prediction. Weights are also estimated using a fixed-rolling window of sixty observations to allow
estimated weights to reflect only information in the most recent fifteen-year period.

Data and Estimation Procedures

The data are divided into three periods: initial fitting, weight determination, and final assessment.
In the second period, we develop the composite weights that are used to forecast in the last period.
An exception to this process is the equally-weighted composite, which averages the forecasts for
each period. Four individual forecasts are used for composite forecasting, outlook forecasts, futures
forecasts, ARMA and VAR forecasts.4

Quarterly data for outlook forecasts, hog prices, and related variables are available for 1975.I-
2007.IV (Illinois/Purdue) and 1975.I-2010.IV (Iowa, Missouri, and USDA). Following Ashley
(2003), a sample size of at least fifty observations for the out-of sample evaluation was first specified

4 Due to their markedly poor performance relative to the other individual forecasts, the no-change forecast is not used
when constructing composite forecasts. Also, note that hog prices are stationary as discussed in Colino, Irwin, and Garcia
(2011).
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at the end of the data. Next, a composite identification period of thirty-two observations was used to
establish the initial weights. The remaining data starting from the beginning of the study period were
used for initial fitting of the models. Chronologically, models are initially specified and estimated
for the 1975.I-1984.IV sub-period. Individual model forecasts are generated recursively (by adding
the next observation to the estimation window for each forecast date) for 1985.I-1993.IV sub-period
and used to estimate the combination weights. For the 1994.I-2010.IV period (or 1994.I-2007.IV for
Illinois/Purdue), out-of-sample forecasts for the individual and composite models are also estimated,
in which the weights are allowed to change at each forecast based on specified procedures. In
the last period, composite forecasts are computed recursively using all data and a rolling window
specifying a fixed number of observations. The performance of all composite forecasts is compared
to the performance of the individual forecasts for the 1994.I to 2010.IV period (1994.I-2007.IV for
Illinois/Purdue).

As an example of the estimation procedure, univariate and VAR models are initially specified
and estimated over 1975.I to 1984.IV. Next, their out-of-sample forecasts are generated recursively
for the period 1985.I-1993.IV. Combined with the ex-ante outlook and futures forecasts for the
same period, initial optimal composite weights are estimated. These weights are used for the first
out-of-sample composite forecast of 1994.I. For the 1994.II composite forecast, weights are re-
estimated using data from 1985.I to 1994.I. The process is repeated period-by-period adding the
latest observation and generating a forecast for the subsequent period. Once the combined number
of out-of-sample forecasts reaches sixty observations (beginning in 1985.I), weights are re-estimated
both recursively and by fixing a rolling window of sixty observations. One-, two-, and three-quarter
ahead price forecasts are analyzed for all outlook programs except the USDA, where availability is
limited to one- and two-quarter ahead forecasts.

Results

Overall, the forecast combination analysis applied to the four outlook programs yields strong
similarities. For brevity, we focus on forecasts released by Iowa State University and identify
important similarities and differences found in other outlook programs.

RMSE Analysis

Table 1 presents the RMSE over 1994.I-2010.IV for the individual and composite models compared
to the Iowa outlook forecasts. RMSE for a forecast model i at a given horizon h is computed as:

(15) RMSEh
i =

[
1
N

N

∑
t=1

(pt+h − p̂i
t+h|t)

2

]1/2

,

where, as before, pt+h is the actual cash price in quarter t + h, p̂i
t+h is the ith forecast price evaluated

for quarter t + h made at period t, and N is the number of forecast observations. For each forecast
horizon the three forecast models with the smallest RMSEs are in bold. When compared individually,
Iowa forecasts are generally superior to those from the time series models, except at the two-quarter
ahead horizon. Iowa outperforms the AR(5) and VAR(5) models by 0.61%-12.88% across horizons.
However, futures forecasts beat the Iowa forecast at all horizons by 10.68% on average. The naïve
forecasts based on the previous period performs significantly worse than the Iowa forecasts, with
RMSEs that are 34.73%, 36.39% and 23.36% higher than the RMSEs of the Iowa forecasts at the
one-, two-, and three-quarter horizons. The naïve no-change forecasts perform even worse when
compared to the futures forecasts at all three forecasting horizons. The superiority of no-change
forecasts found in the crude oil market by Alquist and Kilian (2010) thus cannot be established in the
hog market. For the first and second horizons, when Iowa is combined with other forecasts significant
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Table 1: Out-of-Sample RMSEs of Hog Price Forecasts, Iowa State University, 1994.I-2010.IV
Forecast Horizon

Forecast model 1-qtr.-ahead 2-qtr.-ahead 3-qtr.-ahead
#1 Iowa State University 4.87 6.97 8.19
#2 Futures 3.72∗∗∗ 6.57 7.97
#3 VAR(5) 4.90 6.38 8.36
#4 ARMA(5,0) 5.59 7.75 8.45
#5 No change 6.56∗∗ 9.50∗∗∗ 10.11∗∗

#6 Best previous model 3.72∗∗∗ 6.38 8.62
#7 equal-weight composite 4.15∗∗ 6.07∗∗ 7.40
#8 MSE-weight composite 4.01∗∗∗ 6.06∗∗ 7.45
#9 MSE-weight composite - rolling window 4.01∗∗∗ 6.06∗∗ 7.46
#10 Unrestricted OLS composite 3.74∗∗∗ 6.06 8.16
#11 Unrestricted OLS composite - rolling window 3.71∗∗∗ 5.95 8.01
#12 Unrestricted OLS composite -noconstant 3.67∗∗∗ 6.03 7.96
#13 Unrestricted OLS composite -noconstant - rolling window 3.68∗∗∗ 6.06 8.07
#14 Restricted OLS composite 3.65∗∗∗ 6.05 7.84
#15 Restricted OLS composite - rolling window 3.66∗∗∗ 6.05 7.86
#16 Projection on the equal-weight composite 4.17∗∗ 6.05∗ 7.72
#17 Projection on the equal-weight composite - rolling window 4.19∗∗ 6.06∗ 7.70
#18 Shrinkage - 0.25 composite 3.66∗∗∗ 6.04 7.83
#19 Shrinkage - 0.25 composite - rolling window 3.67∗∗∗ 6.04 7.84
#20 Shrinkage - 1 composite 3.67∗∗∗ 6.02∗ 7.77
#21 Shrinkage - 1 composite - rolling window 3.68∗∗∗ 6.02∗ 7.80
#22 Odds matrix composite 4.03∗∗ 6.06∗∗ 7.43
#23 Odds matrix composite - rolling window 4.01∗∗ 6.04∗∗ 7.45

Notes: All figures are reported as $/cwt. At each horizon, the three forecasts with the smallest RMSEs are in bold font. Single, double, and
triple asterisks (∗, ∗∗, ∗∗∗) represent significance in the RMSE differences between outlook forecast and the alternative forecast model at the
10%, 5% and 1% level based on the Modified Diebold-Mariano (MDM) test.

improvements in forecast accuracy emerge. On average, Iowa RMSE is reduced by 20.99%, 13.26%,
and 5.40% at one-, two-, and three-quarter ahead through combining. Notably at the three-quarter
ahead horizon, the equal-weighted composite forecast has the smallest RMSE compared to all other
forecasts.

To analyze whether differences in RMSEs are statistically different among the various forecasts,
we use the modified Diebold-Mariano (MDM) test proposed by Harvey, Leybourne, and Newbold
(1997). The MDM statistic tests the null hypothesis of equality of forecast performance between
forecasts i and j based on a specified loss function, E

(
g(ei

t+h|t − g(e j
t+h|t)

)
= 0, where ei

t+h|t and

e j
t+h|t are forecast errors of models i and j at period t for price at period t + h. Assuming a quadratic

loss function, the test is based on the difference in squared errors for two forecasts at a given horizon
h:

(16) dt+h|t = g(ei
t+h|t)− g(e j

t+h|t) = (ei
t+h|t)

2 − (e j
t+h|t)

2.

The MDM test is then specified as:

MDM =
[

N+1−2h+N−1h(h−1)
N

] 1
2
[V (d)]−

1
2 [d],

(17)
V (d) =

[
N−1

(
γ0 + 2∑

h−1
s=1 γs

)]
,
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where d is the sample mean dt+h|t , h = 1,2,3 is the forecast horizon, γ0 = N−1
∑

N
t=1(dt+h|t − d)2 is

the variance of dt+h|t , and γs = N−1
∑

N
t=s+1(dt+h|t − d)(dt+h−s|t−s − d) is the sth auto-covariance of

dt+h|t (s = 1, . . . ,h− 1). Auto-covariance terms are included to account for the overlap in two- and
three-quarter ahead forecasts. The MDM test statistic follows a t-distribution with N − 1 degrees of
freedom.

Table 2 presents results from the MDM test applied to Iowa for one-, two-, and three-quarter
horizons.5 The MDM test of significantly different RMSEs is computed for each pair of forecast
comparisons to analyze not only the statistical improvement of forecast combination relative to
outlook but also to assess meaningful differences among alternative composite approaches. The
non-empty cells in the upper part of a matrix correspond to those comparisons between the
particular row- and column-forecasts that are statistically different from zero. The number in the
parenthesis identifies the forecast with smaller RMSE. Results show that at one-quarter ahead,
futures forecasts (#2), all composite forecasts (#7 - #23), and even the simple approach of following
the best previous model (#6) provide statistically smaller RMSEs than those from Iowa alone. At
more distant horizons, using futures and composite forecasts becomes less attractive. The equal-
weighted approach, the composite forecasts based on the odds matrix, the shrinkage methods with
the shrinkage parameter equal to 1, and those based on the historical MSE show a statistically
significant superiority that tends to increase at longer horizons. Notably no composite forecast is
statistically superior to the Iowa forecast at the three-quarter ahead horizon.

To better understand the successful performance of forecast combination, the evolution of Iowa
forecast errors over time is compared to those from the equal-weighted composite approach and
the constrained- (or restricted) OLS regression. The constrained-OLS regression is of interest not
only because of its connection to encompassing tests, but also because it reflects those approaches
that require the estimation of error covariances. In contrast, the equal weighted composite reflects
combinatory techniques that ignore any correlation between individual forecasts. They also perform
well, as shown in other studies and in table 2, particularly across horizons. Examination of the
forecast errors at one-, two-, and three-quarter ahead provided insights into these relationships.6

While all errors move closely together through time, forecast errors of the equal-weighted composite
approach tend to fall inside the range of the outlook and OLS-regression errors. Equal-weighted
composite forecast errors tend to be less variable and to provide more precise estimates. This
tendency becomes even more evident at two- and three-quarter horizons. Specifically, the forecast
errors of the equal-weighted composite approach fall inside the range of the outlook and the OLS-
regression errors in 28 out of 67, 33 out of 66, and 34 out of 65 cases for the one-, two-, and
three-quarter ahead forecasts.

Examination of the RMSEs for the other outlook programs reveals several significant results
(tables 3, 4, and 5). First, futures forecasts exhibit lower RMSEs than the other three outlook
forecasts at all horizons, except for Missouri at three-quarter ahead. Second, the naïve no-change
forecasts based on the previous period prices perform much worse than the Illinois/Purdue and
Missouri forecasts and, in fact, their RMSEs are much larger than any other forecasts at all
horizons. However, the no-change forecast outperforms the USDA forecast at the one-quarter
horizon. Third, while a variety of composite forecasts have significantly smaller RMSEs than the
other outlook forecasts, the equal-weighted approach is always smaller than outlook forecasts and
significantly outperforms all outlook forecasts at all forecast horizons, except for Missouri at one-
and three-quarter ahead. Fourth, composites generated using OLS regressions perform well in
several programs, particularly at the first and second horizons; however, their ability declines at
the most distant horizon, where the forecast errors are largest for all procedures. Added estimation
error during periods of high variability may explain the decline in forecast ability relative to equal-
weighting, inverse MSE, and posterior odds. These last results are consistent with previous findings

5 MDM test results for the other three outlook forecasts are available from the authors upon request.
6 These figures are available on request from the authors upon request.
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(Clemen, 1989; Makridakis and Hibon, 2000; Stock and Watson, 2004; Capistrán and Timmermann,
2009), which point to the use of an equal-weighted composite procedure. Overall, results suggest that
most of the forecast combination models significantly improve the performance of outlook forecasts
in isolation, with an average percentage reduction in RMSEs across all four programs of -19.80%,
-17.22%, and -6.19% across horizons.

Table 6 summarizes the benefits of pooling the four individual hog price forecasts using an
equal-weighted approach, which exhibited relative superiority among the forecast combination
approaches. The table presents the percentage RMSE reductions (increments) obtained from the
combinations relative to futures forecasts alone and to outlook forecasts alone. Percentage RMSE
changes from futures forecasts are also of interest, since they are usually considered as the “gold
standard” for comparison in agricultural price forecasting. At one-quarter ahead, the average
composite forecast does not provide smaller RMSEs than the futures in isolation, except for
the USDA outlook forecast. Excluding the USDA, average forecast errors across the three other
programs are 9.26% larger than those from futures. Average equal-weighted forecasts do a better
job at two- and three-quarter ahead. RMSE reductions relative to futures forecasts average -9.79%
across outlook programs and horizons. Reductions at these horizons are statistically significant in
two out of seven cases.

The usefulness of equal-weighted forecasts is more noticeable when outlook forecasts are the
benchmark. Regardless of the outlook program, the equal-weighted composite forecast consistently
provides smaller RMSEs than those obtained from outlook alone. Across programs, the average
forecast error reductions are -13.73%, -16.44%, and -14.67% at one-, two-, and three-quarter ahead.
Furthermore, reductions versus outlook are significant in all but three cases. Within programs,
the largest reduction is obtained for the USDA, while Missouri receives the fewest benefits
from the combinations. On average, the equal-weighted composite reduces the Missouri, Iowa,
Illinois/Purdue, and the USDA forecast errors by -10.55%, -12.45%, -14.08%, and -26.74%.

The overall benefit of the equally-weighted forecasts is consistent with extensive literature and
the forecast combination puzzle, which identifies that it is difficult to outperform simple average
combinatorial procedures. Clearly, relevant information for different sources can improve forecast
accuracy. The finding that the equally-weighted forecasts are often better than procedures estimating
weights by statistical procedures supports the idea that any bias in using simple averages is less
than the loss in efficiency from estimation (Timmermann, 2006). Another potential reason for the
performance of the equally-weighted forecasts is that outlook experts have changed with the passage
of time in most cases. Only at Illinois/Purdue did the same expert remain for the entire period, but
the program stopped generating outlook forecasts in 2008 (Colino and Irwin, 2010). The changes in
outlook experts, who form the basis of the judgmental component of the composites, likely resulted
in different sources of objective information and subjective insights affecting outlook forecasts over
time. These differences can make it difficult to clearly identify the systematic effect of the experts in
the composite forecasts and may have influenced the relatively superior performance of the simple
equal-weight procedure.7

Analysis of Economic Benefits

A model with smaller RMSE may not be a sufficient condition for generating positive economic
opportunities (e.g., Brandt and Bessler, 1983; Garcia et al., 1988; Park, Garcia, and Leuthold, 1989).
To assess the economic benefits of using composite forecast procedures, trading activities in the
futures market are simulated using the forecast information from the forecasting models for the out-
of-sample evaluation period. Following a similar approach used by Gerlow, Irwin, and Liu (1993),

7 We would like to thank a reviewer for this suggestion.
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Table 3: Out-of-Sample RMSEs of Hog Price Forecasts, University of Missouri,
1994.I-2010.IV

Forecast horizon
Forecast model 1-qtr.-ahead 2-qtr.-ahead 3-qtr.-ahead

#1 University of Missouri 4.27 6.76 7.96
#2 Futures 3.96 6.49 8.18
#3 VAR(5) 4.72 6.45 8.46
#4 ARMA(5,0) 6.12∗∗∗ 7.92∗ 8.57
#5 No change 6.29∗∗∗ 9.24∗∗∗ 9.71∗∗∗

#6 Best previous model 3.96 6.38 8.62
#7 equal-weight composite 4.17 6.12∗ 7.47
#8 MSE-weight composite 3.99 6.08∗ 7.50
#9 MSE-weight composite - rolling window 3.98 6.09∗ 7.51
#10 Unrestricted OLS composite 3.79 6.11 8.14
#11 Unrestricted OLS composite - rolling window 3.75 6.08 8.05
#12 Unrestricted OLS composite -noconstant 3.73 5.98 7.96
#13 Unrestricted OLS composite -noconstant - rolling window 3.69∗ 6.06 8.07
#14 Restricted OLS composite 3.72∗ 6.09 7.95
#15 Restricted OLS composite - rolling window 3.67∗ 6.10 7.97
#16 Projection on the equal-weight composite 4.05 6.12 7.62
#17 Projection on the equal-weight composite - rolling window 4.05 6.11 7.57
#18 Shrinkage - 0.25 composite 3.73∗ 6.08 7.93
#19 Shrinkage - 0.25 composite - rolling window 3.67∗ 6.09 7.96
#20 Shrinkage - 1 composite 3.73∗ 6.07 7.88
#21 Shrinkage - 1 composite - rolling window 3.67∗ 6.08 7.90
#22 Odds matrix composite 4.07 6.14∗ 7.50
#23 Odds matrix composite - rolling window 4.04 6.12∗ 7.51

Notes: All figures are reported as $/cwt. At each horizon, the three forecasts with the smallest RMSEs are in bold font. Single, double, and
triple asterisks (∗, ∗∗, ∗∗∗) represent significance in the RMSE differences between outlook forecast and the alternative forecast model at the
10%, 5% and 1% level based on the Modified Diebold-Mariano (MDM) test.

the trading signal Si
t+h|t for forecast i at t for h-period ahead forecast are defined as follows:

(18) Si
t+h|t =

{
1, | buy if p̂i

t+h|t > Ft+h|t

−1, | sell if p̂i
t+h|t ≤ Ft+h|t

,

where p̂i
t+h|t is defined as before and Ft+h|t is the futures forecast for quarter t + h made at t. If the

forecasted price exceeds the futures forecast, a long position in the nearby contract is established
at the opening price on the next trading day. The long position is liquidated at the closing price on
the last trading day of the forecast quarter. If the forecasted price is less than or equal to the futures
forecast, a short position is established on the next trading day and the position is later offset by
buying back the contract. The trading profit Ri

t|t+h for forecast i made at t for price at t + h is defined
as:

(19) Ri
t|t+h = Si

t|t+h[FPnt − FPmt ],

where Si
t|t+h is the trading signal defined as in equation (16), FPmt is the futures price on the first

trading day m for quarter t at the open, and FPnt is the futures price on the last trading day n at the
close.8

8 Here the April contract is used for the first quarter, the July, October, and February contracts are used for the second,
third, and fourth quarter.
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Table 4: Out-of-Sample RMSEs of Hog Price Forecasts, University of Illinois/Purdue,
1994.I-2007.IV

Forecast horizon
Forecast model 1-qtr.-ahead 2-qtr.-ahead 3-qtr.-ahead

#1 Illinois/Purdue 4.55 6.87 7.78
#2 Futures 3.76 5.78∗∗ 7.30
#3 VAR(5) 4.70 5.95 7.59
#4 ARMA(5,0) 5.07 6.81 7.37
#5 No change 6.15∗∗∗ 8.66∗∗ 9.28∗∗

#6 Best previous model 3.76 5.95 7.70
#7 equal-weight composite 3.89∗∗ 5.54∗∗∗ 6.65∗∗∗

#8 MSE-weight composite 3.75∗∗ 5.46∗∗∗ 6.65∗∗

#9 MSE-weight composite - rolling window 3.75∗∗ 5.45∗∗∗ 6.66∗∗∗

#10 Unrestricted OLS composite 3.69∗ 5.32∗ 6.96
#11 Unrestricted OLS composite - rolling window 3.75 5.32∗ 7.04
#12 Unrestricted OLS composite -noconstant 3.61∗∗ 5.29∗∗ 7.06∗

#13 Unrestricted OLS composite -noconstant - rolling window 3.65∗∗ 5.35∗∗ 7.28
#14 Restricted OLS composite 3.71∗∗ 5.45∗∗ 7.04
#15 Restricted OLS composite - rolling window 3.72∗ 5.49∗∗ 7.07
#16 Projection on the equal-weight composite 3.92∗ 5.66∗∗ 6.86∗∗

#17 Projection on the equal-weight composite - rolling window 3.94∗ 5.72∗∗ 6.97∗∗

#18 Shrinkage - 0.25 composite 3.70∗∗ 5.44∗∗ 7.03
#19 Shrinkage - 0.25 composite - rolling window 3.71∗∗ 5.49∗∗ 7.06
#20 Shrinkage - 1 composite 3.69∗∗ 5.44∗∗ 6.99∗

#21 Shrinkage - 1 composite - rolling window 3.70∗∗ 5.48∗∗ 7.01∗

#22 Odds matrix composite 3.79∗∗ 5.49∗∗∗ 6.65∗∗∗

#23 Odds matrix composite - rolling window 3.79∗∗∗ 5.48∗∗∗ 6.67∗∗∗

Notes: All figures are reported as $/cwt. At each horizon, the three forecasts with the smallest RMSEs are in bold font. Single, double, and
triple asterisks (∗, ∗∗, ∗∗∗) represent significance in the RMSE differences between outlook forecast and the alternative forecast model at the
10%, 5% and 1% level based on the Modified Diebold-Mariano (MDM) test.

Table 7 presents the trading profits of outlook programs and equal-weighted composite forecasts,
as well as the maximum trading profits or “best” produced by the composite forecasts generated.9

The sample size ranges from 52 to 68 for different programs and different forecast horizons. On
average, using the Iowa forecast one would incur negative trading profits at all forecast horizons;
for the two-quarter-ahead forecast, the mean trading profit is significantly different from zero. The
equal-weighted composite forecast, on the other hand, consistently generates positive trading profits
in all cases except for Illinois/Purdue at the two-quarter horizon. Excluding the Illinois/Purdue
two-quarter horizon and the Missouri one-quarter horizon, the equal-weighted composite forecast
generates higher economic benefits than outlook forecasts. The trading profits generated by the
equal-weighted composite forecast are statistically significantly different from zero for the USDA at
both one- and two-quarter horizons and the Missouri at the two- and three-quarter horizons. Across
the outlook programs and forecast horizons, statistically significant positive economic benefits
can be generated using the “best” composite forecasting procedures, as evidenced by the largest
mean trading profits presented in table 8. Overall, the analysis of economic benefits highlights the
advantage of using equal-weighted composite forecast and other composite procedures over the
outlook forecasts, consistent with the results from RMSE analysis.

9 The maximum trading profits are the largest mean trading profit per contract by any of the forecasts assessed. The trading
profits for all forecast methods are available from the authors upon request.
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Table 5: Out-of-sample RMSEs of the hog price forecasts, USDA, 1994.I-2010.IV
Forecast horizon

Forecast model 1-qtr.-ahead 2-qtr.-ahead
#1 USDA 6.62 8.20
#2 Futures 5.26∗∗ 7.16
#3 VAR(5) 4.63∗∗∗ 6.10∗∗

#4 ARMA(5,0) 5.20∗∗ 7.10
#5 No change 6.23 9.13
#6 Best previous model 4.63∗∗∗ 6.38∗∗

#7 equal-weight composite 4.67∗∗∗ 6.23∗∗∗

#8 MSE-weight composite 4.55∗∗∗ 6.08∗∗∗

#9 MSE-weight composite - rolling window 4.58∗∗∗ 6.09∗∗∗

#10 Unrestricted OLS composite 4.53∗∗∗ 6.09∗∗

#11 Unrestricted OLS composite - rolling window 4.58∗∗∗ 6.10∗∗

#12 Unrestricted OLS composite -noconstant 4.51∗∗∗ 6.02∗∗

#13 Unrestricted OLS composite -noconstant - rolling window 4.56∗∗∗ 6.06∗∗

#14 Restricted OLS composite 4.52∗∗∗ 6.06∗∗

#15 Restricted OLS composite - rolling window 4.62∗∗∗ 6.18∗∗

#16 Projection on the equal-weight composite 4.75∗∗∗ 6.36∗∗∗

#17 Projection on the equal-weight composite - rolling window 4.76∗∗∗ 6.33∗∗∗

#18 Shrinkage - 0.25 composite 4.52∗∗∗ 6.06∗∗

#19 Shrinkage - 0.25 composite - rolling window 4.61∗∗∗ 6.17∗∗

#20 Shrinkage - 1 composite 4.50∗∗∗ 6.05∗∗

#21 Shrinkage - 1 composite - rolling window 4.59∗∗∗ 6.15∗∗

#22 Odds matrix composite 4.56∗∗∗ 6.08∗∗∗

#23 Odds matrix composite - rolling window 4.56∗∗∗ 6.09∗∗∗

Notes: All figures are reported as $/cwt. At each horizon, the three forecasts with the smallest RMSEs are in bold font. Single, double, and
triple asterisks (∗, ∗∗, ∗∗∗) represent significance in the RMSE differences between outlook forecast and the alternative forecast model at the
10%, 5% and 1% level based on the Modified Diebold-Mariano (MDM) test.

Summary and Conclusions

This study analyzes whether the accuracy of outlook hog price forecasts can be improved through
composite forecasts in a realistic out-of-sample context. Data are divided into three periods for
individual model fitting, composite forecast training, and final evaluation. Price forecasts from four
well-recognized outlook programs are combined with futures-based forecasts, an ARMA model,
and an unrestricted VAR model using different combining techniques.

For the out-of-sample 1994.I-2010.IV period (1994.I-2007.IV for Illinois/Purdue), futures
outperform outlook forecasts at most horizons. Based on the MDM test of significance in RMSE
differences, futures are statistically significantly superior to outlook in five out of eleven cases. The
naïve no-change forecast is inferior to the outlook forecasts except for the USDA one-quarter ahead
horizon. A variety of composite procedures also provide smaller RMSEs than outlook forecasts,
with numerous statistically significant differences. Performance of futures and composite forecasts
decreases at longer horizons, with the exception of the equal-weighted composite. The equal-
weighted composite always has a smaller RMSE than outlook forecasts and is significantly superior
in eight out of eleven cases. On average, the equal-weighted composite forecast reduces outlook
RMSEs by -13.73%, -16.44%, and -14.67% at first, second, and third horizon. While it is difficult
for the equal-weighted composite forecast to outperform futures at the first horizon, it reduces futures
forecast errors by an average of -9.79% at the second and third horizons and is statistically smaller
in two of the seven cases. Finally, methods including the equal-weighted approach, the odds matrix,
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and the composite based on the historical MSE that do not require estimation of OLS regressions to
generate the weights are significantly superior at the most distant horizon.

The forecast evaluations based on the simulated trading activities provide evidence of the
economic importance of the forecast information. The equal-weighted forecasts generally produce
larger trading profits (all positive) than the forecasts generated by outlook programs. The statistically
significant positive trading profits generated by using the best composite procedures across all
horizons for all outlook programs may be indicative of further untapped economic opportunities
for use of the forecast information.

Overall, results favor the use of composite forecasting methods to reduce outlook programs’
forecast errors. For short-term forecasting, it is difficult to outperform futures forecasts, but
composite procedures perform well at more distant horizons in terms of forecast-error reduction.
Our evidence on the trade-off between bias and efficiency in estimating composite weights suggests
that losses from inefficiency outweigh potential bias. At most distant horizons, where predictive
accuracy is more problematic, forecasts generated by OLS regressions do not perform as well as
composite forecasts generated by other, less-statistical procedures. These results are of value to
decision-makers in agricultural markets. In contrast to much of the previous research in agricultural
markets, and particularly within the context of outlook forecasts, our findings solidly establish the
effectiveness of futures and composite methods in a more realistic context. Further, the forecast
and composite methods used are easy to implement and require only minimal upkeep to provide
reductions in forecast errors.

[Received June 2009; final revision received March 2012.]
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