

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Staff Paper Series

Optimal Cost-Benefit Analysis of Urban Transportation Systems: Its Use in Policy Implementation

by
Terry Roe and Mathew Shane

Department of Agricultural and Applied Economics

University of Minnesota
Institute of Agriculture
St. Paul, Minnesota 55101

OPTIMAL COST-BENEFIT ANALYSIS OF URBAN TRANSPORTATION SYSTEMS: ITS USE
 IN POLICY IMPLEMENTATION

Terry Roe and Mathew Shane

Staff Papers are published without formal review within the Department of Agricultural and Applied Economics.

OPTIMAL COST-BENEFIT ANALYSIS OF URBAN TRANSPORTATION SYSTEMS: ITS USE IN POLICY IHPLEMENTATION

Terry Roe and Mathew Shane
assisted by Swatantra Kachial*
University of Minnesota

Introduction

Determination of the benefits and costs associated with the introduction of a personalized rapid transit system into a metropolitan area is a complicated question which requires the integration of many separate pieces of analysis. Our objective is to present the relevant issues along with a preliminary framework for integrating these issues into a unified analysis. To simplify this, we will first consider the issues from the points-of-view of the user, nonuser and transit authority separately, and then see how they act jointly to determine the optimal transit configuration.

Several simplifying assumptions will be made. We will consider only three possible transit modes: (1) automobile, (2) bus, and (3) personalized rapid transit. The benefits and costs derived will be for a specific route which consists of two activity centers and two internal entry and exit points. Further, we will assume that the relevant
*The authors are assistant professors and research assistant of the Department of Agricultural and Applied Economics, the University of ikinnesota. We acknowledge the support of a grant from the Center for Urban and Regional Affairs, the University of Minnesota for the study of metropolitan transit systems. This paper was presented at the National Conference on Personalized Rapid Transit, Minneapolis, Minnesota, November 2, 1971.

This paper is to be published in The Conference Proceedings on Personalized Rapid Transit, University of Minnesota Press.
objective of transit implementation is to maximize net social product, a concept which will be clarified further in the paper. The use of this objective function and the assumption of linear supply and dermand functions for transportation will lead to the use of a quadratic integer programming framework.

We will now move into a discussion of the user, nonusor and transit authority problems followed by the derivation of supply and demand functions for the three transit modes,

The User Problem
In terms of the econonic feasibility of introducing a new transit innovation, it is extremely important to know that the system's use will generate adequate revenue. As Sommers states:

> If an innovation fulfills no real need and satisfies no predicted latent demand, it is unlikely to generate profitable volumes if introduced, and certainly offers no benefits to a society already overburdened with the irrelevant. Given transportation system, it is essentlal to predlet Its acceptance as part of the design evaluation process. [13, p.2]

For the user, the demand for alternative transit modes is considered to be a function of the following system characteristics:1/ (1) time, (2) convenience, (3) cost per ride, (4) comfort, (5) safety, (6) weather reliability, (7) mechanical reliability, and (3) noise. 2 / When choosing

1/Lancaster [6] followed by Quandt and Baunol [8] first introduce the concept of evaluating transit systems in terms of their characteristics compared to institutional arrangements.
$\underline{2}$ /Sommers [13] utilized these categories as a means of defining transit service. His problem, however, is quite different from the one we are considering, that of intercity transits compared with intra-city transit.
a particular transit alternative, each individual will subjectively quantify these characteristics and choose that system which for that occasion results in the lowest cost. It is obvious, for instance, that the choice of transit mode might be quite different on a clear spring day than on a snowy winter one.1/ In this case, the weight placed on the weatiner reliability factor would change dramatically. It is also clear that the evaluation of alternative systems will depend on the income of the individual and the nature of the trip. For example, the cost per ride might be considered less important if the success of a business trip depends on reducing the travel time to a minimum or if the company as distinct from the individual pays the fare. $2 /$ On the other hand, a low income individual using the system on his own time might consider the fare as the overriding factor in determining transit mode.

The problem is quantifying these different factors. The most easily quantifiable are time, convenience and cost, while the nost difficult are the demand implications of comfort, safety, weather, mechanical reliability, and noise. Tine, convenience and cost relate most directly to the problem of traveling between two points, while reliability and safety relate to the probability of completing the trip, i.e., risk factors. Given the characteristics of traveling between two points, one would choose that

1/1bid., p. 7.
2/ In the same paper by Sommers [13, p.5] businessmen rank the relative importance of these characteristics on the trips between Washington to New York and Washington to Philadelphia. The fare ranks sixth in order of importance behind time, convenience, comfort, safety, and weather reliability. Only noise and mechanical reliability were ranked lower.
system where the probability of arriving unimpeded is greatest. Although we can qualitatively determine the effects of increasing the risk factors, the quantitative results are much more difficult to measure. while using the direct cost factor to determine the optimal transit mix, we will consider the nature of the bias introduced by the risk facioris. In a similar manner we will consider noise and comfort characterisiics. Although die duration of the trip and the amount of the faris ara obviously quantifiable, the convenience factor is not so easily defined. However, the specification of the components of the convenience variable will assist in this definition. The nain factors of convenience are the distance of the station from the origin and destination of the trip, the frequency of service and the number of transfers involved. While these characteristics can all be partially reduced to a time variable, this does not take into account such additional factors as discomfort in winter. However, such factors could be included by weighting the conveniance time more heavily than the time spent on the system. Later in the paper, a model which handles the quantification of conveniance in this way will be introduced.

The Nonuser

We will now turn to a discussion of the factors involved in determining the cost and benefits to the nonuser. These costs and benefits are generated by the external effects (referred to as axternalities) of introducing an additional transit mode into the economic and physical
environment. 1/ They can be broken down into three different classes: pollution, economic development and induced transit effects. These externalities provide some with a basis for arguing in support of public subsidization of rapid transit. $2 /$ In the following pages we will discuss the three types of social benefits and costs and the issue of transit subsidization.

Perhaps the least desirable side effect of the current transit mix is pollution. The automobile contributes approximately 50 percent of the air pollution in major metropolitan areas [1] and there is considerable public pressure to reduce this source of pollution. This can be accomplished by reducing tine pollution content of auto emissions or by reducing the relative importance of the automobile on the urban transit scene. Given the gravity of the air pollution factor, along with the ever-increasing use of land for highways and the equally increasing congestion of major urban auto routes, one readily understands the urgent need for public transit.

Associated with excessive land use are the problems of noise pollution and aesthetic pollution. In addition to the loss in private housing, highway expansion programs frequently encroach further upon public park lands, the destruction of which dehumanizes the urban environment. Although

II In a paper by Manheim [7], it is argued that the basic problem with economic analysis is the exclusion of these external effects. See particularly, p. 8-y. In our analysis we try to overcome this criticism by explicitly including these external effects.

2/See for instance "Technical Report Ho. 6, Financial Plan," [16] prepared for the Twin Cities Metropolitan Transit Commission.
landowners might find parking lots and ramps financially rewarding alternative uses for this land would be desirable if the result were not increased parking rates.

All transit systems create some environmental effects. However, in view of the excessive environmental effects caused by the automobile, any shift to other transit modes should lead to improved environment. If the economic mechanism is working correctly, the value of land adjacent to a transit mode should reflect the effects which a particular transit system has on its environment. This mechanism provides one way of quantifying the aggregate subjective evaluation of environmental effects confined to a limited area, such as noise pollution. Air pollution, however, is distributed across the entire community and would obviously not be reflected in this measure.

Whereas the enviromental effects are the major social cost i tens associated with introducing a new system or expanding an existing system, the economic effects are the major social benefits. The primary purpose of transportation is to reduce the cost of space and thereby reduce the cost of moving goods and services between different points. If a new transit system is sufficiently successful in reducing spatial costs it induces additional econonic activity by increasing the size of a given market. Thus a major concern in the introduction of a new system is the economic development effects of the areas involved. The problem is that it will not effect everyone equally. Suppose a particular PRT route is built between downtown and a remote shopping area. The net effect will
be to increasc the access to these areas, thus increasing the level of economic activity. The downtown and remote area become more valuable business property winle the housing along the route is made less desirable. Let us assume that in this case the increase in value of the business is greater than the loss in value of the housing along the route, that is, the social benefit to cost ratio is greater than one. However, the incidence of impact is also unequal. A few businesses reap a very large benefit while many home owners pay a relatively small cost. Economists argue that in cases such as this, it should be possible to tax those who gain and to redistribute their excess gains anong those who lost. If we could determine with some accuracy who benefits and loses and by what amounts, this redistribution process would be relatively easy. Unfortunately, we rarely achieve that degree of accuracy. Consequently, some parties will benefit at the expense of others. Thus to make a new transportation alternative politically feasible, it is necessary to compare the incidence of impact on various groups. An aggregate costbenefit ratio is thus an inadequate measure of the social desirability of a particular transit investment.

The third class of social externalities is the induced benefits to other transit modes caused by increased expenditures on public transit. If successful, the introduction of a new transit mode will cause a redistribution of transportation usage away from existing modes in favor of the new mode. This will benefit not only those who make direct use of the new mode, but also those who continue to use the now less crowded
existing nodes. This is particularly true of the automobile. If a new PRT route to the down town area reduces the peak load of auto traffic, then the efficiency of the auto mode is increased. This benefit will subsequently be analyzed in our model.

We have now arrived at the question of public subsidies for rapid transit. It is often argued that public transit must be subsidized in one form or another. For example, in a study by Aerospace Corporation [4], it is assumed that three-fourths of the capital cost of a new system will be paid by Federal funds. In a study for the Twin Cities Metropolitan Transit Commission [16], a similar assumption was made. The argument for such subsidization is that the social benefits exceed the private benefits and that therefore everyone should pay some of the cost. Although this may in fact be true, it should be possible to isolate those groups which benefit most from new metropolitan transit and to tax them in order to cover part of the operating cost.

Further, the idea that public transit should be subsidized implies that existing transit modes are incapable of generating adequate demand. Systems which require subsidization are not designed to provide competitive alternatives to private enterprise. Thus one test of the conomic viability of any new transit system is its ability to attraci ridership adequate to cover all expenses. If it is then felt that certain groups of individuals should be encouraged to use the system, such encouragement should be given directly to the consumer in the form of discriminant fares and not through a general subsidy of the system. The
losses incurred by existing public transit systems are just another sympton that such systems are no longer viable alternatives.

The Transit Commission

The objective of the transit commission is to minimize the cost of operation and investment for any level of transit service. This involves minimizing variable costs for any level of service in the developed system, but more importantly for our purposes, it requires choosing a system which will provide maximum service at minimum cost. Let us now consider what is involved in this decision.

It must first be decided what service characteristics the system should possess. In the sense that the auto mode is the main competitive alternative, the system should contain as many of the service features of the auto mode as possible, while remaining under public control and minimizing its major disadvantages. These disadvantages include the environmental factors discussed above. The service characteristics are tho-e noted under the user section, that is, time, convenience and cost. However, a competitive level of the risk factors snould also be maintained.

With these in mind, all potential alternatives should be evaluated in terms of cost, both private directly related to the system and other net social costs. The following direct cost factors should be included: (1) initial equipment and construction costs, (2) land usage, both direct purchase and indirect tax loss, (3) operating labor costs and (4) maintenance and repair costs.

Different individuals acting in different circumstances will evaluate a service differently. Similarly, different urban environments will require different evaluation of cost characteristics. For the downtown area land usage may be the critical variable, while construction costs may be more important in a suburban area. Thus it is conceivable that more than one systen could and should be developed even in the same metropolitan area.

It is obvious that based on this analysis one would reject any system which provides equivalent or inferior service at increased cost. Unfortunately, very little of the current debate on urban transit revolves around economic considerations. Technical feasibility and political concerns have dominated the debate. Studies show that rapid rail or other on-line station systems compete poorly with either the auto or PRT. PRT estimates indicate that construction and equipment will cost from $1 / 3$ to $1 / 5$ that of a comparable rapid rail system. ${ }^{1 /}$ In terms of land use, the ratio is approximately four to one. In terms of the number of stations, a similar ratio is derived. Labor costs would not be significantly different, since both would be computer-run. Thus based on this superficial an analysis, rail-type systems appear not to be a viable

[^0]economic alternative. The real issue for PRT systems is not whether they can compete with rail, which they obviously can, but whether or not they are aile to compete with the auto. Here we return to our initial point: the only viable alternative to the auto is a system which can generate sufficient usage to justify the investment of public funds.

Net Social Product

The user, nonuser and transit autority problems can now be integrated into a framework of net social product. 1/ Involved is finding those transit demands, supplies and externalities which represent an optimism in relation to the private and social costs of supplying transit service. The net social product function contains three elements: the total social product induced by transit supply and demand over transit modes and routes, plus the product from external benefits such as increased sales of goods and services, minus the external costs such as decreased land values or increased environmental contamination. Net social product is defined as the sum of the products for each route traveled by each mode, i.e., the area "under" the excess demand function associated with each route and mode. $2 /$

In the classic case developed by Samuelson [12] NSP (net social product) is maximized through the competitive forces of the market. In our

1/The concept of net social product utilized here is similar to that defined by Samuelson [12].

2/ The excess demand function is defined to be the difference between demand and supply, i.e., positive if demand exceeds supply and negative if supply exceeds demand.
model these forces do not lead to its maximization since the transit market induces externalities. However, the framework used here includes these externalities in the maximization process. This is similar to including shipment costs in the transfer of goods and services between regions as illustrated by Samusison [12] and Judge and Takayana [5]. It differs fron their framwork in that the external costs induced ioy transit implementation are compensated either by transit autiority profits or external gains. This will becone clear in later sections of the paper.

The thodel

The model presented here is based on a hypothetical transportation problem. Although the franework is simplified, the strategy developed can be directly transferable to an urban transit problem. Thus this framework provides a basis for transit policy formulation and public decision making.

The model can be categorized into four parts: (1) the demand for transit services, (2) the supply of transit services, (3) the determination of modal splits, and (4) the.inducement of social externalities.

Transit Route Example. To demonstrate this framework, the following route is assumed (Figure 1).

Access Nodes

Access B Nodes

Figure 1: Depiction of Transit Routes Between Growth Centers A and C With External Access Nodes and Internal Entry-Exit Routes

Two growth centers exist (denoted as A and B) each having external access nodes and internal entry-exit routes. These generate possible route configurations (depicted in Figure 2), where a star (\%) indicates an

	A	B	(1)	(2)
A	0	$*$	$*$	$*$
B	$*$	0	$*$	$*$
(1)	$*$	$*$	0	0
(2)	$*$	$*$	0	0

Figure 2: Depiction of Possible Route Configurations
acceptable route while a zero (0) indicates a non-acceptable route.I! In addition, suppose that the only current form of transit over the routes indicated in Figure 1 is private automobiles. Thus, the problem is two fold:
(1) To determine the current level of auto transit efficiency and major restraints and costs to increase efficiency ignoring alternative transit technologies.
(2) To determine the selection of the "best" transit system mix (automobile, bus and PRT) from a given set of transit technologies and route applications (such as number of stops, capacity).

The following assumptions define the nature of the problem. A potential transit demand is assumed to be associated with each of the possible routes and modes. This is a potential demand since it need not

1/Thus it is clear that for purposes of simplification, we are not allowing transit between internal stops.
be satisfied. For example, while it is assumed that a demand exists for express bus transit between A and B, it is not assumed that the demand must be met. - liwo types of transit technology are considered as partial substitutes for the private auto: personalize rapid transit and bus. Bus transit is of two types: (1) express from A to B and B to A with no stops, and (2) from A to B and B to A with stops at entry-exit points (1) and (2). A PRT system is also assumed with identical routing to that of the bus.

Interaction between automobile, bus and PRT modes takes place as they compete for the transit users. It is possible, for instance, that a decrease in fare or travel time by bus or PRT may induce less auto traffic and congestion and thus might make the auto mode more competitive. Similarly, there will be induced responses from any change in the transit mix.

Finally, four types of externalities are assumed. Increased traffic at either growth center A or B is assumed to increase the sales of goods and services of the respective center. A decrease in traffic is assumed to decrease these sales. It is also assumed that the expansion of existing auto and bus routes or the construction of a route for a PRT system causes a loss in tax base and future income tax stream from the property utilized for the transit route. Lastly, it is also assumed that the value of property paralleling the transit routes suffer a depreciation in

I/obviously, the demand might not be sufficient to warrant express bus service.
value with an increase in traffic flows.I/
llathenatical formulation. The following notation is used to define the specific mathermatical programming problem.
$T R_{k i j}=c_{k i j}^{*} T_{k i j}^{d}$ denotes the total revenue from passenger
trips demanded $\left(T_{k i j}^{d}\right)$ at price $c_{k i j}^{*}$ per trip over routes i,
j per unit of time on transit mode k where,
$i, j=A, B, 1,2$
$k=b_{1}, b_{2}, c, r_{1}, r_{2}$ and where
b_{1}, b_{2} denote an express bus and a bus with tivo stops re-
spectively,
c denotes transit by private auto,
r_{1}, r_{2} denote a PRT system with no stops and two stops re-
spectively,
$T C_{k i j}=c_{k i j} T_{k i j}^{s}$ denotes the total cost from supplying passenger trips ($T_{k i j}^{s}$) at unit cost $c_{k i j}$ per trip over routes i, j per unit of time on transit mode $k, \underline{2}$
$H_{k i j}$ denotes the weighted average of time in transit and inconvenience time per trip to go from i to j on transit mode k,

1/If land values appreciate in value as potential industrial sights the character of the framework considered here does not change.

2/In the case of the auto, this cost includes variable auto costs plus the variable costs of roadway maintenance.
F_{k} denotes the fixed cost of land, equipment and support facilities incurred in supplying the $k-$ til mode of transit equipment plus the loss in tax base of private property condemned and utilized for the k-th transit system,
$L_{A 1}, L_{12}, L_{2 B}$ denotes the change in value of private property paralleling the transit routes between A and (1), (1) and (2) and (2) and 3,
$i A_{A}^{R}, M_{B}^{R}$ denote the increase in sales of goods and services of growtin centers A and B respectively,
M_{A}^{c}, M_{D}^{c} denotes the decrease in sales of goods and services at growth centers A and B respectively,
H_{A}, H_{B} are assumed constant in this problem and denote the level of traffic flow from nodes servicing centers A and B. Passenter trip deriand is assumed to be a linear function of $c_{k i \cdot j}^{*}$, $H_{k i j}, N_{A}, N_{B}$ and some base level of economic activity (M_{A}, M_{B}) at centers A and B and user income (Y) and population density (D). These base levels of activity are augmented by $M_{A}^{K}, M_{B}^{R}, M_{A}^{C}$, M_{B}^{C}. Thus, for example, the demand for trips on the $k-t h$ mode (say. b_{2}) from A to B is the linear function!/

[^1]\[

$$
\begin{aligned}
T_{D_{2} A B}^{d}= & \gamma+\beta_{1} H_{b_{2} A E}+\beta_{2} c_{b_{2} A B}^{*}+\beta_{3} H_{b_{1} A B}+\beta_{4} C_{b_{1} A B}^{*}+\beta_{5} H_{r_{1} A B} \\
& +\beta_{6} C_{r_{1 A B}^{*}}^{*}+\beta_{7} H_{r_{2} A B}+\beta_{3} C_{r_{2} A B}^{*}+\beta_{9} H_{C A B}+\beta_{10} C_{C A B}^{*} \\
& +\beta_{11} H_{A}^{R}+\beta_{12} M_{A}^{C}+\beta_{13} M_{B}^{R}+\beta_{14} H_{B}^{c}+\beta_{15} H_{A}+\beta_{16} H_{B}+\beta_{17} M_{A} \\
& +\beta_{18} M_{3}+\beta_{19} Y+\beta_{20} D
\end{aligned}
$$
\]

The total revenue function $\left(c_{k i j} T_{k i j}^{d}\right)$ for each k, i, j is therefore a quadratic.

The total cost function for each transit mode k on routes i, j can be expressed as

$$
C_{k i j} T_{k i j}^{s}=g_{k i j}\left(C_{k i j}, H_{k i j} ; F_{k}\right)
$$

The derivation of tilis cost function may have been obtained through engineering or simulation studies, or actual observation. It should be understood tiat it represents the supply of trips $T_{k i j}^{S}$ such that unit cost, time and fixed costs are a minimum. For the mathematical programing problem considered here, this total cost function for any k, i, j can be linear and/or quadratic. In this paper, it is assumed to be quadratic.

Finally, we assume that the number of trips ($T_{k i j}$) actually taken is obtained when

$$
T_{k i j}=T_{k i j}^{s}=T_{k i j}^{d}
$$

The mathenatical programing problem that is consistent with the maximization of $A S P$ of the transit problem can now be stated. The
problem is to find the number of trips for all k, i, j and therefore transit mode technology, and the level of externalities to maximize the total net return of transit over all k, i, j and the corresponding external economies and diseconomies. That is, find the values of the vector $\left\{C_{k i j}^{*}, H_{k i j}, L_{A 1}, L_{A 2}, L_{2 B}, M_{A}^{R}, M_{A}^{c}, A_{B}^{R}, M_{B}^{C}\right\}$ which maximizes ${ }^{1 /}$

$$
\begin{align*}
Z= & \sum_{k} \sum_{i} \sum_{j}\left(T R_{k i j}-T C_{k i j}\right)-d_{1} L_{A l}-d_{2} L_{12}-d_{3} L_{2 B}+d_{4} H_{A}^{R}-d_{j} H_{A}^{C} \tag{1}\\
& d_{G} H_{3}^{R}-d_{7} M_{B}^{C} .
\end{align*}
$$

Restated in matrix notation, this is:

$$
Z=\underline{E} \underline{\delta}^{\prime}+\underline{a} \underline{C}^{\prime}+\underline{C, H} B \underline{C, H^{\prime}}+\underline{d} \underline{L_{,}} H^{\underline{2} /}
$$

where the bar denotes a vector, ' denotes transpose, and bold face letters denote a matrix. The elements of and the quadratic form 3 are constants and are obtained from the subtraction of the total revenue and total cost functions corresponding to like modes and routes. The elements of d are also constants. The maximization of (1) is subject to the following restraints:
(i) $m=1,2, \ldots, 34$ restraints (Appendix B, Table B-1) which state that the number of trips ($T_{k i j}$) transacted from i to j on mode k is.

[^2]dependent on the time $\left(H_{k i j}\right)$ and price $C_{k i j}^{*}$ of the $i j$ route and on corresponding times and prices of other alternative transit modes over the same route (s), i.e., the number of trips from A to B (B to A),
(1.1) $T_{k i j}=t_{k i j}^{*}+\sum_{k} Q_{k i j} H_{k i j}+\sum_{k} R_{k i j} C_{k i j}^{*}+\sum_{j} D_{j} H_{j}^{R}+\sum_{j} D_{j}^{*}{ }^{c}{ }_{j}^{c}$
for $k=b_{1}, b_{2}, c, r_{1}, r_{2}, i=A, E$ and $j=A, B$, and the number of trips from A to $1, A$ to $2, \dot{Q}$ to 1 and L to 2 ,
(1.2) $\quad T_{k i j}=b_{k i j}^{*}+\sum_{k}^{*} Q_{k i j} H_{k i j}+\sum_{k} R_{k i j} C_{k i j}^{*}+\sum_{e} D_{e j} M_{e j}^{R}+\sum_{e} D_{e j}^{*} M_{e j}^{C}$
where $k=b_{2}, c, r_{2}, i=A, B, c=A, b, j=1,2, e=A, B$, and the number of trips from 1 to $A, 1$ to $B, 2$ to A and 2 to B,
 where $i=1,2, j=A, b$ and $k=b_{2}, c, r 2$.
(ii) $m=35,36, \ldots, 68$ restraints (Appendix is, Table b-11) stating that an inverse relationship exists between transit time and cost for any mode k and route $i j$,
\[

$$
\begin{equation*}
c_{k i j}=b_{k i j}^{*}-Q_{k i j} \|_{k i j} \tag{1.4}
\end{equation*}
$$

\]

(iii) $n=52,70, \ldots, 30$ restraints (Appendix B, Taible m -111) relating to traffic congestion and stating that the time associated with the i, j-t's route for auts and bus modes is a positive linear function of tio numer r of trips on these modes, $\therefore . g$. , from A to \dot{B},

$$
\begin{equation*}
H_{k A L}=\sum_{e} a A B T_{e n d}+\sum_{m}\left[\sum_{i m A i} T_{m A i}+\sum_{j m j b} T_{m j u} 1\right. \tag{1.5}
\end{equation*}
$$

wher: $e=u_{1}, w_{2}, c, a=i_{2}, c, i=1,2$ and $j=1,2$.
(iv) $i n=01,92, \ldots, 98$ restraints (Appendix 3 , Table $0-10$) stating that the time on mode b_{2} (ous wi th two s tops) or r_{2} (PRT with two stups) on route $A,-(i, A)$ is the sum of times on routes A to 1 and 1 to i (o to 2 and 2 to A) plus stopage the,

$$
\begin{align*}
& H_{k A B}=H_{k N 1}+H_{k 1 B}+b_{k}^{*} \tag{1.6}\\
& A_{K B A}=H_{k G 2}+H_{k 2 A}+b_{k}^{*}, k=b_{2}, r_{2}
\end{align*}
$$

where b_{k} is the mean stopage time.
(v) $m=9,100 \ldots, 102$ restraints (Appendix 3, Taile $\mathrm{b}-\mathrm{V}$) stating that the sales of goods and services at A and B is dependent on modal traffic flows,

$$
\begin{equation*}
A_{i}^{R}=\sum_{k} \sum_{j} \delta_{k j i} T_{k j i}, \text { for } i=A, B, \neq j=A, t, 1,2 \text { and } \tag{1.7}
\end{equation*}
$$

$$
m_{i}^{c}=\sum_{k} \sum_{j} S_{i, i j} T_{k i j}, \text { for } i=\Lambda, j \neq j=1,2, \Lambda, B
$$

(vi) $m=103,104,105$ restraints (Appendix E, Table $i-V$) stating that the change in value of private property paralleling the transit routes is inversely related to the traffic on the route,

$$
L_{A l}=\sum_{k}\left[\sum_{j} \delta_{k A j} T_{k A j}+\sum_{i} \beta_{k i A} T_{k i A}\right] \forall k \text { and } j=1,2, i 3 \neq i=1,2, B
$$

(1.8)

$$
L_{12}=\sum_{k}\left[\sum_{j} \delta_{k A j} T_{k A j}+\sum_{i} \beta_{k i B} T_{k i i s}+\sum_{e} \gamma_{k B e} T_{k B e}+\sum_{n} \rho_{k n A} T_{k n A}\right]
$$

where $i=A, l, j=2, B, e=1, A$ and $n=2, L$, and where the expression for L_{23} is identical to $L_{A l}$.
(vii) $m=106,107, \ldots, 113$ restraints (Appendix B, Table B-V1) state
that the number of passenger trips per unit of tine on the express bus mode over the $i, j-t h$ route must not exceed its capacity

$$
\delta_{b_{1}} T_{b_{1} A B} \leq b_{b_{1}}^{*}
$$

(1.9)

$$
\delta_{b_{1}} r_{b_{1} B A} \leq b_{b_{1}}^{*}
$$

 A. 11111 (1)
(1.10)

$$
\sum_{i} \delta_{b_{2} A i} T_{b_{2} A i} \leq b_{b_{2}}^{*}, i=1,2, B
$$

between (1) and (2)
(1.11)

$$
\sum_{i} \delta_{b_{2} A i} T_{b_{2} A i}+\beta_{b_{2} \mid B} T_{b_{2} \mid B} \leq b_{b_{2}}^{*}, i=2, B
$$

and between (2) and B
(1.12)

$$
\sum_{j} \delta_{b_{2} j B} T_{b_{2} j B} \leq b_{b_{2}}^{*}, j=A, 1,2
$$

Similar expressions exist between routes B to A and likewise for PRT (restraints $m=120,121, \ldots, 127$).
(vii) $m=114,115, \ldots, 119$ restraints (Appendix B, Table B-VI) stating that auto and bus trips must not exceed road capacity between A and (1)

$$
\begin{equation*}
\sum_{k} \sum_{i} \delta_{k A_{i}} T_{k A_{i}} \leq b_{k}^{*}, k=b_{1}, b_{2}, c \text { and } i=1,2, B \tag{1.13}
\end{equation*}
$$

between (1) and (2)

$$
\begin{equation*}
\sum_{k}\left[\sum_{i} \delta_{k A i} T_{k A i}+B_{k \mid B} T_{k 1 B}\right] \leq D_{k}^{*}, k=b_{1}, b_{2}, c \text { and } i=2, B \tag{1.14}
\end{equation*}
$$

and between (2) and B

$$
\begin{equation*}
\sum_{k} \sum_{i} \delta_{k i B} T_{k i B} \leq b_{k}^{; k}, k=b_{1}, b_{2}, c \text { and } i=A, 1,2 \tag{1.15}
\end{equation*}
$$

where similar expressions exist between B to A.
(viii) All variables are equal to or greater than zero and

$$
\begin{equation*}
\delta_{k}=1 \text { if } C_{k i j}^{*}, H_{k i j}>0 \tag{1.16}
\end{equation*}
$$

$$
\delta_{k}=0 \text { if } C_{k i j}^{*}, H_{k i j}=0, \forall, k, i \text { and } j .
$$

The tableau containing the above restraints is summarized in Table 1.
taule 1: taileau of restralint matrix corresponding to restraints (1.1) TO (1.15)

$\underline{a} /{ }_{11}$	${ }^{1} 12$	A_{13}	$=$	\underline{b}_{1}^{1}
\underline{L} / A_{21}	A_{22}	A_{23}	$=$	b_{2}^{1}
$\mathrm{c}^{\text {/ }} \mathrm{A}_{31}$	λ_{32}	A_{33}	$=$	O'g/
d / A_{41}	A_{42}	${ }_{4} 43$	$=$	b_{4}^{1}
$\mathrm{e}^{\prime} \mathrm{A}_{51}$	A_{52}	A_{53}	$=$	$\underline{0}^{\prime}$
$\underline{f} A_{61}$	A_{62}	${ }^{4} 63$	\leq	$\mathrm{b}_{6} \mathrm{~g} /$
a/Appendix Table B-1		b/Appendix Table B-11		
c/Appendix Table i-111		d/Appendix Table b-IV		
e/Appendix Table $3-V$		f/Appendix Table B-VI		
g/isull vector				

Analysis

Step 1. There are at least two approaches that can be used in arriving at the "iest" transit mix. First, the programming model suggested above can be specified such that auto traffic flows are "forced" int the optimal solution at levels actually observed.

The approach suggested here however, is to specify the model such that all bus and PRT modes are excluded from appearing in the optimal solution, i.e., bounded from consideration. The model is then solved to determine the optimal auto traffic flow pattern.

This analysis will yield three categories of information. First, the solution will yield information on the isomorpinic characteristics of the programing model and the "real world" problem it depicts. Second, parametric analysis can be performed to determine the level of sensitivity in the optimal solution to the estimated variance levels of the parameter estimates of demand, resource restrictions and transformation coefficients.

Finally, this analysis will yield information on the degree of efficiency of current auto-traffic flows, where bottlenecks (resource restrictions) exist, the benefits and cost of relaxing these restrictions, as well as providing insight into the means of improving over-all efficiency of auto traffic flows at minimum cost.

Step 11. Given that in the first step of the analysis above the model is judged satisfactory, the next step is to consider the costs and benefits from the introduction of additional transit techmology. In terms of the programing model presented above, this is accomplished by specifying the model such that bus and PRT modes can be included in the optimal solution, i.e., by relaxing the bounds that prevented their consideration in Step 1.

The solution of (1) subject to the restraints (1.1) througn (1.15) yields values of

$$
\begin{equation*}
\left\{T_{k i j}, C_{k i j}^{*}, H_{k i j}, L_{A 1}, L_{A 2}, L_{2 B}, M_{A}^{R}, M_{A}^{c}, M_{B}^{R}, M_{B}^{c}\right\} \tag{2}
\end{equation*}
$$

for all k, i and j from which modal splits, route configurations, corresponding time and fare costs, and associated externalities are obtained.

From the dual of the solution to (1), insight is obtained into those resources (such as bus capacity) that are binding or limiting, whe cos: of these limitations or the benefit occurring from their relaxation. In addition, the sensitivity of the solution to prices and time (H_{ki}) can be obtained.

Benefits and Costs

Computation. Solution (2) provides all of the essential information relating to cosis and ieenefits required for each mode of transit. llowever, this information snould be disaggregated in order to draw insights into the magnitude of the "gainers and losers" of our nypothetical situation (Figure 1).

Benefits accuring to the k-th transit mode over the $i, j-t h$ route $i s$ the total revenue $T R_{k i j}$ evaluated at the corresponding k, i, j solution values (2). The total costs $T C_{k i j}$ are also obtained from these corresponding solution valucs. Thus, for each mode and route a cost to benefit ratio can be obtained. The benefits accruing to the change in land values in this hypothecical situation is obviously zero and the costs are positive wnile the wenefits accuring at the growtin centers depends on the net change in business activity or $d_{4} \|_{A}^{R} / d_{g} M_{A}^{c}$ where these values are obtained from (2).

Finally, it should be noted that from the dual of the solution to (1), values (referred to as weights or multipliers) are obtained which relate to the restrictions on restraints (1.1) through (1.15). The nultipliers
provide insight into the extent to which benefits andor costs will change with a relaxation of constraint restrictions.

Use in Policy Decision Making. To demonstrate the use of this framework as a tool in policy decision making, we advance two suppositions on solution (2). First, suppose that a transit mode mix of auto, bus and PRT are among the basic variables of this solution. Also, suppose that the benefit-cost ratio for each liode is slightly greater than one. Finally, suppose that the benefit-cost ratio computed for the growth centers A, is is substantially greater than one.

Now, given a welfare condition that essentially states: welfare is increased if a combination of goods and services can be produced and consumed such that if a set of producers or consumers are made better off no producers or consumers are made worse-off,I/ i.e., we must compensate the "losers" (benefit-cost ratio less than one) of our hypothetical situation by taxing the gainers (benefit-cost ratio greater than one) and distributing this tax revenue to the losers either directly or indirectly, say by lowering the "losers" taxes.

In terns of our hypothetical situation, this implies taxing A and i either directly or by requiring that they pay a portion of the transit costs and compensate the land owners paralleling the routes from A to (1), (1) to (2) and (2) to B (Figure 1).2/ If this type of reallocation is not

1/This welfare criteria is referred to as Pareto Optimality.
2/It can be shown that this reallocation of revenue does not change tie value of z in (1).
politically feasible, tien considerable doubt must be cast on implomenting the type of transit systen 1 in ix suggested by (2).I/

For the second supposition, suppose that the solution (2) is unchanged from the solution in step I where the "optimal" auto traffic flow pattern was derived. This implies that the introduction of a bus or PRT system is not consistent with our overall welfare criteria. $2 /$ The question then becomes: to what extent must either the bus or PRT systen da suwsidized to induce its use? There are at least two alternative ways to analyze this question. Cae being the subsidization of fares; the other the subsidization of fixed costs (F_{k}).

We shall only consider the latter. In this case a parametric analysis may we undertaken wime the fixed costs associated with bus andor pilt are reduced until these modes of transit appar in solution at positive trip levels. The anount by which the fixed costs of these modes is reduced becomes the anount of subsidization that must we secured from "outside" sources.

Within the framework of the model present here, this subsidization cannot be justified on an equitable basis. In order to justify it on an

I/ It may we well to note here that the benefit to cost ratio of suy the bus and PRT can be less than one and the solution (2) uncianged. If this is the case, then the revenue from the increase in sales and services at growth center A and/or B is sufficiently large to overcome the "loss" suffered by the transit authority. In this case, A and/or B should be taxed to overcome this loss.

2/ This leads us back to the subsidization issue and it is obvious that at least in terms of the variables included in the model, public transit is not a visble alternative.
equitable basis, it should be argued that the use of these systens generates beneficial externalitios that are not considered in our framework. It may also be argued that we are concerned with the depreciable life of a transit systen winich may be greater than $20-50$ years in case of PRT. Therefore we are concerned with demand, business activity and externalities over this entire period. However, it is extremely difficult to derive meaningful estimates of these variables $20-50$ years in the future, al though the directional change in these variables may be argued on a "heuristic" basis. If these directional changes appear to induce future demand, business activity, etc., then an "external" subsidization may be feasible.

Finally, the following rather short-run type of question may be considered within this franework. The solution (2) derives different fares ($c_{k i j}^{*}$) for each route i, j. A policy question may be: is the operator savings of charging for all i, j an average fare (based on the weighted average $\sum_{i} \sum_{j} C_{r 2, i j}^{*} T_{r 2, i j} / \sum_{i} \sum_{j} T_{r 2, i j}$) worth its cost? That is, to use an average fare simplifies the mechanics of fare collection and reduces associated costs. However, in this case, the short trip is subsidizing the longer trip. This may induce a decrease in "short" trip demand and an increase in "long" trip demand. This can be analyzed by not permitting the appropriate fare $\left(C_{r^{2}, i j}^{*}\right)$ to vary and deriving a solution to (1) with this restriction. This solution can then be compared to the former where all $c_{k i j}^{*}$ are variables.

This same type of analysis may be used to differentiate between demanders. For exampla, it may be socially desirable to provide lower fares to ghetto residents or the elderly. The effect of this decision could be analyzed in a manner similar to the above case.

Wile various other types of situations could be considered, the situations presented above should provide insight into the flexibility of this approach.

Other Methodological Considerations

It was pointed out that the introduction of fixed costs into (1) complicates the derivation of (2). In constructing a model of this type, consideration must be given to the trade-offs between the isomorphic properties of a model and the precision aspects of the model. If the level of error induced by approximating true quadratic functions by a linear function is "small", the isomorphic sacrifice may be small and the gain in precision large. However, this depends on the judgenent of the "model builders" and the particular problem under consideration.

The problems of peak loads can also be partially considered by replicating the model presented here for say morning, mid-day and evening conditions. These three replications could then be "attached" by a series of row equations where dependence between the replications existed. A second method would be to estinate variance and co-variance of daily demands and incorporate this into quadratic form (b). This analysis would then proceed similarly by solving the nodel for various levels of accepted variance.

Finally, it is apparent from Table 1 that while the consideration of additional corridors, entry-exit routes and alternative transit mixes is possible, the nodel readily expands such that a point is soon reached were it can no longer ve handled by any computer available. If in this case, and a model of the form presented here is still appealing, then the approach to consider is simulation. The simulation would be conducted on (1) subject to the specified restraints. The objective would be to derive values of (2) such that these values are feasible (do not violate any constraints) and are "in the direction" of maximizing (1).

APPENDIX A

Problem (1) is of the following form:
(A.1)

$$
z=\underline{a} \underline{x}^{\prime}+\underline{x} \underline{E} \underline{x}^{\prime}+\underline{f} \underline{\delta}^{\prime} \quad a \max .
$$

sulbject to
(A.1.1)

$$
\begin{gathered}
A \leq \leq \underline{b}^{\prime}, \\
x \geq 0,
\end{gathered}
$$

where
a is a n component row vector of constants
\underline{x}^{\prime} is a n component colurn vector of variables
i is a nxn symmetric definite or semi-definite matrix of constants
f is a n component row vector of constants
\underline{Q}^{\prime} is a n component column vector of constants
A is a mxn matrix of constants
δ^{\prime} is a n component column vector such that

$$
\delta=\quad \begin{aligned}
& 0 \text { if } x_{i}=0 \\
& 1 \text { if } x_{i}>0 .
\end{aligned}
$$

The fixed charges f introduce discontinuities at the origin thus violating the convexity assumptions of quadratic programming even though B is a definite or semi-definite quadratic form. This problem is related to the linear integer fixed charge problem for which several computationally
efficient approximate solution methods $[2,10,14]$ and less computationally efficient though exact solution methods [15] exist.

A solution procedure to the integer quadratic problem stated above is being developed and will be available shortly. The procedure saggested here utilizes an efficient quadratic programing algorithm. The first step of this solution procedure is stated below.

The true optimal value of the objective function (Z) can be bounded after one solution to the above problem (A.1) (with a slight modification) by a traditional quadratic algorithm. This is accomplished by defining the new problem

$$
\begin{equation*}
z_{L}=\underline{f}^{*} \underline{x}^{\prime}+\underline{x} B \underline{x}^{\prime} \tag{A.2.0}
\end{equation*}
$$

subject to

$$
\begin{align*}
& A x^{\prime} \leq b, \tag{A.2.1}\\
& x^{\prime} \geq 0,
\end{align*}
$$

where the vector of constants of f are:

$$
f_{i}^{*}=\frac{f_{i}}{b_{j}}+b_{j},
$$

and where b_{j} is the upper bound (capacity restraint) associated with tire x_{i} component of $\underline{\underline{x}}$.

It can be shown that the solution to (A.2.0) will yield a value of Z_{u} such that
(A.3.0)
$z_{U} \geq z$.

How, let \underline{x}^{0} denote the untimal solution to (A.2.0). The derivation of the upper bound to (A.1.0) is then obtained by substituting the values \underline{x}^{0} into (A.1.0) and computing the resulting value of the objective function. Denoting this value as Z_{L}, it can be shown that
(A.4.3)

$$
z_{L} \leq z
$$

Condition (A. 3, 0) and (A.4.0) bound the true optimal value of (A.1.0) thus permitting the maximum error of this approximate solution procedure to be determined.

APPENDIX B

The matrix tableay of linear restraints corresponding to (1.1) through (1.15) is depicted in Table B-1 through Table e-VI. The tableau contains a total of 127 row equations and 109 column equations where each column variable appears in the objective function (1). The tableau is subdivided into six submatrices, $A_{o p}, 0=1,2, \ldots, 6$ and $p=1,2,3$ where the sumatrices $A_{0,2}$ also contains the right hand side restrictions (\underline{b}^{\prime}) for each row equation. The constants (coefficients) in the tableau are denoted by " $\%$ " where a negative coefficient is denoted by " $\#$ ".

To demonstrate the correspondence between the tableau and the restraints (1.1) through (1.14) consider restraint (1.4) for $k=b_{1}$ and $m=09$. The equation for this restraint is found in Table $\mathrm{s}-111$, row :1o. 69. The
stars * associated with $T_{i, N B}, T_{b_{2} A B}, T_{c A B}$ corresponds to the coefficients $\sum_{e} \delta_{\text {eat }}$. The stars associated with $T_{b_{2} A l}, T_{b_{2} A 2}, T_{C A 1}, T_{c A 2}$ correspon: co the coefficionts $\sum_{i} B_{m A}$ and the stars associated with $T_{\omega_{2}} l j, T_{L_{2}} 2 \mathrm{E}, T_{\mathrm{c}} \mathrm{L}$, $T_{c 2 i}$ correspond to the coefficients $\sum_{j} \beta_{m j} j^{\text {. }}$. The star $\underset{-}{ }$ assuciated with $i_{b} A_{i}$ corresponds to the coafficient of $H_{k \cap B}$ which, when moved to the right of the equal sign, is a negative one. In this case, the corresponding right hand side element (0_{3}) of submatrix A_{33} is zero.

```
TABLE B-1a: SUBNTRIX A
    A,d COLUMad, Througli }3
```


TAELE B-1b: SUEAATRIX A 12 CORRESPONDI:G To RESTRA:TTS (1.1) TO (1.3) AND COLUMS 32 THROLG: 70

$\begin{aligned} & 290_{2} \\ & 100 \\ & 970 \\ & 910 y \\ & \hline \end{aligned}$		$\begin{gathered} * \\ * \\ \hline \end{gathered}$	\%	$\because 1$	± 1		\because
	$\begin{array}{r}* \\ \% \% \\ \hline\end{array}$			$\because 1^{* 1}$	*		-
	**	**		*1*	$: 1$		*
	:	\therefore	* $* * 1$	$\pm{ }^{1} \times 1$		$\begin{array}{lll} * & & \\ & \% \\ \hline \end{array}$	**
$\begin{aligned} & 89_{9}^{11} \\ & 2 \mathrm{azq} \\ & 1989 \\ & 9299 \\ & 7179 \\ & \hline \end{aligned}$	**	$\because * 1^{* 1}$		**			$*$
	$\because 1$ $\div \because 1$	$\begin{aligned} & 1 \\ & * 1 \end{aligned}$	$\because \%$		\square		:
	\% $* 1 * 1$ $* 1:$	$\begin{array}{r} * \\ * 1 \end{array}$	*	*	\% *	\because	\%
$\begin{aligned} & \because z^{2} q_{H} \\ & G 1 Z q_{H} \\ & z \forall Z q_{H} \\ & 1 \forall q_{H} \\ & \forall z q_{H} \end{aligned}$	* 1	$* *$ $* 1$ $* 1$	$\begin{array}{\|l\|} \hline * 1 \\ * 1 \\ \\ \hline \end{array}$	$*$	*	* $\%$	*
$\mathrm{Vg} \mathrm{Zq}_{4}$ $\forall g \mathrm{Vg}_{4}$ $\mathrm{avZa}_{\mathrm{H}}$ ath $\lim _{1}$	$\begin{aligned} & \quad * * 1 \\ & *: 1: \\ & *: 1: \\ & - \text { wman } \end{aligned}$	$\begin{array}{\|cc\|} \hline * 1 \\ & \\ \\ \text { oncoso } \end{array}$	$\begin{gathered} * \\ * \\ * \\ * \\ \simeq m \pm \simeq n \end{gathered}$	$*$ $10-909$		10930	- Mm

TABLE B-ic: SUBHATRIX A_{13} CORRESPG:ding to RESTRAIHTS (1.1) TO (1.3) Aild COLUHAS 79 THROUGH 109 AHO RHS

TABLE B-11b: SUBMTRI: A2, CORRESPOHDIAG TO RESTRAHTS (1.4) AND COLUHS 79 througil loy Aido rils

 1 Tiirough 34

-				$\sum_{u}^{N} \underset{U}{4} \underset{y}{u}=0$	
69	$\therefore * *$	*	* $* * *$	*	$* *$
70	$\star * *$	\therefore	****	\%	* *
71	* *	$\therefore * * *$	*	* \therefore * $*$	
72	* *	* * * *	*	* $* * * *$	
73	$\therefore *$	$\therefore *$	\therefore	水 $*$	
74	**	* *	*	\% \%	
75	$\therefore \therefore \quad \therefore$	*	* $*$		
76	$\therefore * *$	\cdots	$\therefore \quad \therefore \quad *$	*	
77	$\pm *$	*	$\therefore * *$	\div	* $\%$
78	$\therefore \therefore$		$\therefore * *$		* \% $\%$
72	**	\% \% \%			
80	* *	* $*$	*		
81	$\therefore \therefore \quad *$	$\%$	* $\%$ * $*$		* *
82	$\cdots *$	$\therefore * * *$	*	$\therefore * * *$	
83	* $\dot{*}$	$\therefore *$	*	\cdots *	
34	* $\%$	* $* *$		***	
85	$\therefore * *$	*	* *	\cdots	
06	$\therefore \therefore \quad \therefore$	*	$\therefore \quad * \quad \therefore$	\%	*
87	$\therefore \%$	$\%$	$\therefore \therefore \%$	\therefore	$\therefore \dot{*}$
33	$\therefore *$		$\therefore \therefore *$		$\therefore \%$
39	\% *	* \% \%	\%	* \% x^{\prime}	

\therefore Subactrio i 3 ; i s a hall matrix-
TABLE B-IVa: SUBAATRIX A_{42} CORRESPOADIIG TO RESTRAIITS (1.6) AID COLUMAS 35 THROUGH $73 *$

$\begin{aligned} & 2020 \\ & 1070 \\ & 820^{3} \\ & 810 y \end{aligned}$		
$\begin{aligned} & z v^{c} q_{9} \\ & 1 v^{2} q_{0} \\ & v z^{Z} q_{0} \\ & \forall i^{z} q_{j} \\ & \forall q^{2} q_{9} \end{aligned}$		
	*	
$\begin{aligned} & a^{2} q_{1} \\ & a q_{11} \\ & z q_{1} \\ & z q_{H} \\ & 1 \forall 2 q_{H} \\ & \forall z^{2} q_{H} \end{aligned}$		
VाC9H $\forall \mathrm{VBC}_{\mathrm{H}}$ vala! avzalı 		1

*itatrix A_{41} is a null matrix.

		Ag	Eask		为	\%	-
等						$\stackrel{\square}{\square}$	*
	***					"	
${ }_{30}{ }^{\text {c }}$		*				$\stackrel{ }{*}$	*

 COLUMiAS (1) THROUGi (34)

 COLU:AIS 79 TinRolgan 109 AAD RHS*

*latrix A; 2 is a mull matrix.

> TABLE b-VIa: SUBGATRIX A_{61} CORRESPONDING TO RESTRAINTS (1.9) TO (1.15) Aiso colurins through 34

TABLE B-VID: SUB:ATRIX A_{63} CORRESPOHDING TO RESTRAINTS (1.9) TO (1.15) AID COLUMAS 99 THROUGII 109 AIID RHS*

*Matrix A_{62} is a null matrix.

references

1. Envirommental Quality, First Annual Environmental Zuality Report, Presidents Council on Environmental Quality, Washington, U.C., July 1970.
2. Gorry, Anthony and Shapiro, Heremy. "An Adaptive Grou; Theoretic Algorithm for Integer Programing Problems," Management Science, January 1971.
3. Gronau, Reuven and Alcaly, Roger. "The Demand for Abstract Transport Modes: Some Misgivings," Journal of Regional Science, April 1006.
4. "Higin-Capacity Personalized Transit Systems" unpublished, The Aerospace Corporation, July 1971.
5. Takayana, T., and G. Judye, "Spatial Equilibrium and Quadratic Programining," Journal of American Agricultural Economics, Vol. 46, Ho. 1, February 1904, pp. 67-93.
6. Lancaster, Karl. "A Nav Approach to Consumer Theory," Journal of Political Economy, February 1966.
7. Bnineim, llarvin. "Social Values in Transportation," presented at National Meeting on Transportation Engineering, American Society of Civil Engineers, July 1970.
8. Quandt, Richard and Baumol, William. "The Demand for Abstract Transport Modes: Theory and Measurement," Journal of Regional Science, August 196́.
9. Quandt, Richard and Baumol, William, "The Demand for Abstract Transport Modes: Some Hopes," Journal of Regional Science, April 1969.
10. Roe, Terry. "The Derivation of Bounds to the Integer Fixed Charge Problem," Staff Paper P 70-25, Department of Agricultural and Applied Economics, University of Minnesota, December 1970.
11. Ross, Howard and Hamilton, Robert. "A Look at the Market for Advanced Public Transportation Systems," presented at the Heeting of tine American Association for the Advancement of Science, December 1970.
12. Samuelson, Paul. "Spatial Price Equilibrium and Linear Progranming," American Economic Review, June 1952.
13. Somers, Alan. "Hode Choice Prediction in Transportation Analysis," presented at the Joint Transportation Engineering Conference, Octoder 1970.
14. Spielberg, Karl. "Algorithms for the Simple Plant-Location Problem With Sone Side Conditions," Management Science, August 1363.
15. Steinberg, David. "The Fixed Charge Problem," Naval Research Logistic Quarterly, June 1970.
16. "1970 Transit Planning Program Technical Reports 1-7," Twin Cities Area Metropolitan Transit Commission, November 1970.
17. "The Urban Transportation Planning Process: In Search of Inproved Strategy," Organization for Economic Co-operation and Development, December 1969.
18. Wacis, Hartin. "Fostering Tecinological Innovations in Urban Transportation systems," presented at the 1970 Joint Transportation Conference of the American Society of Mechanical Engineers, October 1970.

[^0]: 1/The Bart system is costing $17 \mathrm{million} / \mathrm{mile}$ while the Washington, D.C. system is estinated at 33 million/mile [16]. In a system designed for Las Vegas by Aerial Transit Systems of Nevada Inc., it is estimated that 16 miles of one-way PRT will cost 50 to 60 million dollars or 3.1 to 3.75 million per one-way mile. This is $1 / 5$ of the cost of the Washington, D.C. system on a two-way mile basis. Although this result overstates the difference because of fund evaluation and tunnelling, the result is predictable just from the relative structure sizes. Estimate obtained directly from Aerial Transit Systems.

[^1]: 1/This demand function is expressed in "disaggregateu" form since these variables are expressed in the objective function (1). The aggregate form of the function could be derived from the estimation of a function containing the variables suggested by Quandt and Baumol [8].

[^2]: 1/This objective function is specified such that the solution values are prices $C_{k i j}^{*}$ and time $H_{k i j}$. The tableau specified below also includes trips $T_{k i j}$. However, the coefficients associated with each $T_{k i j}$ is zero.

 2/See Appendix A for a solution procedure to this type of integer quadratic progranming problem.

