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Introduction

Determination of the benefits and costs associated with the intro-

duction of a personalized rapid transit system into a metropolitan area

Is a complicated

pieces of analys

along with a pre

question which requires the integration of many separate

s. Our objective is to present the relevant issues

iminary framework for integrating these issues into a

unified analysis. TO simplify this, we will first consider the issues

from the points-of-view of tiw user, nonuser and transit authority separ-

ately, and then see how they act jointly to determine the optimal trans

configuration.

Several simplifying assumptioils wiil be made. We will consider on

three possib]e transit modes: (1) automobi Ie, (2) bus, and (3) person-

alized rapid transit. The benefits and costs derived will be for a

specific route which consists Qf two activity centers and two internal

entry and exit points. Furtiwr, we will assume that the relevant

t

Y

$~The auti]ors are assistant professors and research assistant of tiw Depart-
ment of ;\gricul tural and Appl icd Economics, the University of Minnesota.
We acknowledge tiw support of a grant from the Center for Urban and tiegional
Affairs, tile University of Minnesota for the study of metropolitan transit
systems. This paper was presented at the National Conference on Personalized
Rapid Transit, Minneapolis, Minnesota, NOVt?tTIber 2, 1971.

This paper is to be published in The Conference Proceedings on Personalized
Rapid Transit, University of Minnesota Press.
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objective of transit implementation is to maxil~ize net social product,

a concept \A)ici) wil I be clarified furthcar in the paper. .TiIe use of ti~is

objective function and the assumption of linear supply dnd demand func-

tions for transportation will iead to the use of a quadratic integer

programming framework,

We will now move into a discussion of the user? nonuser and transit

autilority problems followed by the

tions for the three transit modes,

The User Problem

In terms of the economic fess

derivqf.i~~ of supply and demand func-

bility ~f introducing a new transit

innovation, it is extremely important to know that the systemls usc will

generate adequate revenue. As Sommcrs state$i!

If an innovation fulfills no r~al nmd and satisfies
no predicted Iaten& demand~ it is unlikely to generate
profitable volumes if introduced, and certainly ~ffers
no benefits to a society already overburdened with the
irrelevant. Given a transportation system, it is
essential to predict its acceptance as part of tile
design evaluation process. [13, p.2]

For the user, ti}e demand for alternative transit modes is considered to

l/ (1) time, (2)be a function of the following system characteristics:-

convenience, (3) cost per ride, (k) comfort, (5) safety, (6) weatlwr

2/ When cnoosingreliability, (7) mechanical reliability~ and (~) noise.-

~’Lancaster [6] followed by Quandt and baumol [8] first introduce
the concept of evaluating transit systems in terms of their characteristics
compared to institutional arrangements.

~’Sommers [13] utilized these categories as a means of defining transit
service. Iiisproblem, however, is quite different from the one we are

considering, that of intercity transits compared with intra-city transit.
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a particular transit alternative, each individual will subjectively quantify

these characteristics and choose that system which for that occasion re-

sults in tile lowest cost, It is obvious, for instance, that the choice

of transit mode might be quite different on a clear spring day than on a

i/ [n this case,snowy winter one.- tlle weight placed on the weatiler re-

liability factor would change dramatically. It is also clear that the

evaluation of alternative systems willl depend on the income of the individual

and the nature of the trip. For example, the cost per ride might be con-

sidered less important if the success of a business trip depends on reduc-

ing the travel time to a minimum or ‘if the company as distinct from the

2/ On the other hand, a low income individualindividual pays tne fare.-

using the system on his own time might consider the fare as the over-

riding factor in determining transit mode.

The problem is quantifying theso different factors. The most easily

quantifiable are time, convenience and cost, wl]ile the mos~ difficuit are

the demand implications of comfort, safety, weatiler, mechanical rci iability,

and noise. Time, convenience and cost relate most directly to the problem

of traveling between two points , while reliability and safety relate to

the probability of completing the trip, i.e., risk factors. Given the

characteristics of traveling between two points, one would choose that

i’ibid. , p. 7.

Z’in the same paper by Sommers [13, p.5] businessmen rank the rela-
tive importance of these characteristics on the trips between Washington
to !~ew York and Washington to Philadelpilia. The fare ranks sixth in
order of importance bel~ind time, convenience, comfort, safety, and weather
reliability. Only noise and mechanical reliability were ranked lower.
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system where the probability of arriving unimpeded is greatest. Al tilough

we can qualitatively determine the effects of increasing the risk factors,

the quantitative results arc much mo)re difficult to measure. While using

the direct cost factor to determine the optimal transit mix, iw: ~,~ill col~-

sidcr the nature of the bi,as introduced by the risk f~ic.~ors, in d

sirililar inanncr wc will consider noise and comfort ci~~racteristics.

;kl t;lollg;l Cllc duration of tllc trip and tile amqunt of t!le fat-c arc 01>-

viously quantifiable, the convenience factor is not so easily defined,

However-, tile specification of tile components of the convenience variable

will assist in this definition. TIIe main factors of convenience arc

the distance of the station from the origin and destii~ation of the trip,

the frequency of service and the number of transfers involved. While

these ci~aracteristics can all be partiaily reduced to a time variable,

this does not take into account such additional factors as discomfort in

winter. I h

vcniel~ce t

the paper,

this way w

The Nonuser

iwvc r, SUC!I f~ctors could be inciuded by weigi)ting

lilt:more Iwavi iy tl~an the time spent oIl tllc SyStt21il.

a model wilicll handics the quantification of conven

11 be introduced.

We will now turn to a discussion of t!~e factors invoived

mining the cost and benefits to the nonuser. Tilese costs and

in cleter-

benefits

are generated by the external effects (referred to as externalities) of

introducincj an additional transit mode into the economic and physical
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1/
envi ronment. - They can be broken down into three different classes:

pollution, economic development and induced transit effects. These

externalities provide some with a basis for arguing in support of public

2’ In the following pages we will dis-subsidization of rapid transi t---

cuss tile three types of social benefits and costs and the issue of transit

subsidization.

Perhaps the least des

is pollution. TIIe autumub

the air pollution in major

rable side effect of the current transi t mix

le contributes approximately 50 percent of

metropol itan areas [1] and there is con-

siderable public pressure to reduce this source of pollution. This can

be accomplisi~ed by reducing ti)e pollution content of auto emissions or

by reducing the relative importance of the automobile on the urban transit

scene. Given t!w gravity of tlIe air poilution factor, along witil tile

ever-increasing usc of land for

congestion of major urban auto

need for public transit.

Associated with excessive

highways and tile equally increasing

outes, one readily understands the urgent

and use are the problems of noise poliu-

tion and aesthetic pollution. In addition to the loss in private housing,

highway expansion programs frequently encroach further upon public park

lands, the destructioil of which dehumanizes the urban environment. Although

J-’In a paper by ttanheim [7], it is argued that the basic probiem
with economic analysis is the exclusion of these external effects. see
particularly, p. 8-2. In our analysis we try to overcome this criticism
by explicitly including these external effects.

Z’See for ins~ance ‘tTecl~nical Report )Io. 6, Financial Plan,tl [16]
prepared for the Twin Cities Metropolitan Transit Commission.



landowners might find parking lots and ramps financially rewarding al-

ternative uses for t!lis land would be desirable if the result were not

increased parking rates.

Al 1 transi t systems create some environmental effects. !{owever, i n

view of the excessive environmental effects caused by the automobile, ally

shift to otiler transit modes should lead to improved environment. If

tile economic mechanism is working correctly, the value of land adjacent

to a transit mode should reflect tile

system has on i ts environment. This

quantifying the aggregate subjective

effects which a particular

mechanism provides one way

evaluation of environments

confined to a limited area, SUCI1 as noise pollution. Air pollu

transi t

of

effects

ion,

i~owever$ is distributed across the entire community and would obviously

not be reflected in this measure.

Whereas the cnvircmmcntal effects are the major social cost i Lems

associated witl~ introducing a new system or expanding an existing system,

the economic effects are the major social benefi ts. “TIIe primary purpose

of transportation is to reduce the cost of space and thereby reduce the

cost of moving goods and services between different points. If a new

transit system is sufficiently successful in reducing spatial costs it

induces additional economic activity by increasing tile size of a given

market. Thus a major concern in the introduction of a new system is the

economic development effects of the areas involved. The problem is tilat

it will not effect cvcryoi7e equally. Suppose a particular PRT route is

built between downtown and a remote shopping area. The net effect will
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be to increase the access to these areas, thus increasing the level of

economic activity. Tile downtown and remote area bec~me more valuable

business property wilile the housing along the route is made less desir-

able. Let us assume that in this case the increase in value of the busi-

ness is greater than the loss in value of the i~ousing along the route,

that is, the social benefit to cost ratio is greater than one. tfowever,

the incidence

large benefit

nomists argue

of impact is also unequal. A few bus

while many home owners pay a relative

that in cases such as this, it should

nesses reap a very

y small cost. Eco-

be possible to tax

those who gain and to redistribute their excess gains among those who

lost. If we could determine with some accuracy who benefits and loses

and by what amounts, this redistribution process would be relatively easy.

Unfortunately, we rarely achieve that degree of accuracy. Consequently,

some parties will benefit at the expense of others. Thus to make a new

trai~sportation alternative politically feasible, it is necessary to com-

pare the incidence of impact on various groups. An aggregate cost-

benefit ratio is thus an inadequate measure of the social desirability

of a particular transit investment.

The third class of social externalities is the induced benefits to

other transit modes caused by increased expenditures on public transit.

if successful, tlw introduction of a new transit mode will cause a re-

distribution of transportation usage away from existing modes in favor

of the new mode. This will benefit not only those who make direct use

of the new mode, but also those who continue to use the now less crowded
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existing modes. This is particularly true of tile automobile. If anew

PRT route to the downtown area reduces the peak load of auto traffic,

then the efficiency of the auto mode is increased. This benefit will

subsequently be analyzed in our model.

We have now arrived at the question of public subsidies for rapid

transit. It is often argued that public transit must be subsidized in

one form or another. For example, in a study by Aerospace C~rporation

[4], it is assumed that three-fourths of the capital cost of a new

system will be paid by Federal funds, In a study for the Twin Cities

Metropolitan Transit Commission [16], a similar assumption was rnactc.

The argument for such subsidization is that the social benefits exceed

tlw private benefits and that therefore everyone slIould pay some of the

cost. Although this may in fact be true, it should be possible to iso-

late those groups which benefit most from new metropolitan transit and

to tax them in order to cover part of the operating cost.

Further, the idea that

plies that existing transit

demand. Systems which requ

vide competitive a

the economic viabi

ridersiiip ad~quat,~

public transit should be subsidized lrn-

mocks are incapable of generating adequate

re subsidization are not designed to pro-

ternatives to private enterprise. Thus one ttist of

ity of any nw transit system is its abiiity to dttr-act

to wver all 3XPWISCS0 if it is t!lei? felt that cer-

tain groups of individuals silould I.m encouraged to use the system, sucil

el}couragerncnt siioulcl be given directly to the cansumer- in t!le form of

discriminant fares and not ti~rough a general subsidy of the system. TIIU
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losses incurred by existing public transit systems ar~ just another

symptom that such systems are no longer viable alternatives.

Tile Transit Commission

The objet

operation and

minimizing var

ive of the transit

nvestment for any

able costs for any

commission is to minimize the cost of

evel of transit service. This involves

level of service in the developed

system, but more importantly for our purposes, it requires cimosing a

system which will provide maximum service at minimum cost. Let US llOW

consider what is involved in this decision.

It must First be decided what service characteristics the system

should possess. in the sense that ti]e auto mode is the main competitive

alternative, tile system should contain as many of tile service features

of the auto mode as possible , wilile remaining under public control”’ al~d

minimizing its major disadvantages. These disadvantages include the

environmerrtal fac

the-c noted ul~dcr

Howevcr,a compet

ors discussed above. TIIe service cl~aracteristics arc

tile user section, tilat is, time, convenience and cost,

tive level of tile risk factors snould also be maintained.

With these in mind, ail potential alternatives should be evaluated

in terms of cost, both private directly related to the system and other

net social costs. The fol iowing direct cost factors shouid be inciuded:

(1) initial equipment and construction costs, (2) land usage, botil direct

purchase and indirect tax ioss, (3) operating labor costs and (4) main-

tenance and repair costs.
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Different individuals acting in different circumstances will evalu-

ate a service differently. Similarly, different urban environments will

require different evaluation of cost characteristics. For the downtown

area land usage may be the critical variable, while construction costs

may be more important in a suburban area. Thus it

more than one system could and should be developed

metropol itan area.

It is obvious ti~at based on this analysis one

is conceivable that

even in the same

would reject any system

which provides equivalent or inferior service at increased cost. Un-

fortunately, very little of the current debate on urban transit revolves

around economic considerations. Technical feasibility and political

concerns have dominated the debate. Studies show that rapid rail or

other on-line station systems compete poorly with either tl]e auto ~r PRT.

PRT estimates indicate that construction and equipment will cost frcwl

1/3 to l/5 that of a comparable rapid rail system.~’ In terms of land

use, tile ratio is approximately four to one. in terms of the number

of stations, a similar ratio is derived. Labor costs would not be sig-

nificantly different, since both would be computer-run. Thus based on

this superficial an analysis, rail-type systems appear not to be a viable

“The i.lart system is costing 17 million/mile while the Washington,
D.C. system is estimated at 33million/mile [16]. in a system designed
for Las Vegas by Aerial Transit Systems of Nevada inc., it is cstimattxl
that 16 miles of one-way PRTwill cost 50 to 60 million doilars or 3.1
to 3.75 miilion per one-way nlile. This is 1/5 of the cost of the
Washington, D.C. system on a two-way mile basis. Aithaugh this result
overstates the difference because of fund evaluation and tunneling,
the result is predictable just from the relative structure sizes. Esti-
mate obtained directly from Aerial Transit Systems.
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economic alternative. The real issue for PRT systems is not whether they

can compete wit!l rail , whic!~ they obviously can, but whether or not they

are able to compete with the auto. Here we return to our initial point:

the only viable alternative to the auto is a system which can generate

sufficient usage to justify the

IJet Social Product

The user, nonuser and trans

nvestment of public funds.

t autority problems can now be integrated

“ involved is finding thoseinto a framework of net social product.-

transit demands, supplies and externalities which represent an optimism

in relation to the private and social costs of supplying transit service.

The net social product function contains three elements: the total social

product induced by transit supply and demand over transit modes and

routes, plus the product from external benefits such as increased sales

of goods and services , minus the external costs such as decreased land

values or increased environmental contamination. Net social product is

defined as the sum of the products for each route traveied by each mode,

i.e., the area llunderll the excess demand function associated with each

2/
route and mode.-

in the classic case developed by Samuelson [12] NSP (net social pro-

duct) is maximized through the competitive forces of the market. in our

!-’The concept of net social product utilized !~ere is similar to that
defined by Samueison [12].

~’The excess demand function is defined to be the difference between
demand and supply, i.e., positive if demand exceeds supply and negative
if suppiy exceeds demand.
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model tl]ese forces do ncJt lead to its maximization since the transi t

market induces external i ties. However, the framework used here includes

these external i tics in tile maximization process. This is similar to

including shipment costs in the transfer of goods and services between

regions as illustrated by Samunison [12] and .Judgc and Takayama [5].

It differs from tilcir fraraawork il) that the external costs indlJccd i~y

~rdlliii ~ il!l~)l~lll~ntilti~tl are ccxfipeilsdted either Dy transit authority pro-

fits or external gains. Tilis ~fill become clear in later sections of

tiw paper,

TiIe !tOdC]

The model pr~serrted i~ere is based on a hypothetical transportatlcxl

problem, Although the framework is simplified, the strategy developed can

be directly trFinSferab~(3 to ail urban transit problem. Thus this framework

provides a basis for transit policy formulation and public ~lecision making.

The model can be categorized into four parts: (1) the demand for

transit services, (2) the supply of transit services,

tion of modal splits, and (4) the. inducement of social

Transit Route Example. To demonstrate this framework,

is asswned (Figure 1).

Access

(3) the determina-

externalities.

the following route

_ Access

Nodes A 4 > B Nodes

f!
(1) (2)
En try - Exit

Figure 1: Depiction of Transit Routes Between Growth Centers A and G
i~itll External Access Nodes and Internal Entry-Exit Routes
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Two growth centers exist (denoted as A and B) each having external access

nodes and internal entry-exit routes. These generate possible route con-

figurations (depicted in Figure 2), where a star (*) indicates an

F gut-e 2: Ilepiction of Possible Route Configurations

1!acceptable route while a zero (G) indicates a non-acceptable route.-

In addition, suppose that the only current form of transit over the routes

indicated in Figure 1 is private automobiles. Thus, the problem is two

fold:

(1) To determine the current level of auto transit
efficiency and major restraints and costs to increase
efficiency ignoring alternative transit technologies.

(2) To determine the selection of the “best” transit
system mix (automobile, bus and PRT) from a given set
of transit technologies and route applications (such
as number of stops, capacity).

The following assumptions define the nature of the problem. A

potential transit demand is assumed to be associated with each of the

possible routes and modes. Tilis is a potential demand since it need not

l’Thus it is clear that for purposes of simplification, we are not
allowing transit between internal stops.



k satisfied. For exmplc, ~~ili Ie it is assumed that a demand exists for

express bus transit between A and B, it is not assumed that the demand

must be met,~/
Two types of transit technology are considered as partial

substitutes for tile private auto: personalize rapid transit and bus.

Bus transit is of two types: (1) expruss fromA to B and b toAwith no

stops, and (2) from A to B and El to A witi~ stops at entry-exit points (1)

and (2). A PRT system is also assumed with ‘identical routing to that of

the bus.

Interaction between automobile, bus and PRT modes takes place as

they compete for the transit users. it is possible, for instance, that

a decrease

traffic and

Similarly,

mix.

n fare or travel time by bus or PRT may

congestion and thus migl~t make the auto

here wilI be induced responses from any

induce less auto

mode nnre competitive.

change in the transit

Finally, four types of externalities are assumed. lncrea5ed traffic

at either grotiJth center A or B is assumed to increase the. sales of goods

and services of the respective center. A decrease in traffic is assumed

to decrease these sales. lt is also assumed that the expansion of exist-

ing auto and bus routes or the construction of a route for a PRT sjstm

causes a loss in tax base and future income tax stream from ti]e property

utilized for the transit route. Lastly, it is also assumed that the

value of property paralleling the transit routes suffer a depreciation in

l/Obviously, the” demand might not be sufficient to warrant express

bus service.



val~Je wi tl] an incrcasc ill

ftathematical Formulation.

1/traffic flows .-

Ti)e following notation is used to dcfin~ the

specific mathematical programming problem.

TR ‘ T~ij
kij = C;ij

denotes the total revenue from passenger

trips demanded (T
[ij)

j per unit of time on

i,j =A, B,I,2

Ii= bl~ b2s c? ‘1$ r~

at Price Ckij per trip over routes

transit mode k wilere,

and where

i,

b denote an express bus and a bus with two stops re-+s 2

spectively,

c denotes transit by private auto,

r,, r2 denote a PRT system with no stops and two stops re-

spectively,

TC Ts.. denotes the total cost from suppiying passenger
kij = C!<ij klJ

trips (Ts..) at unit cost c
klJ ~ij Per trip over routes i, j per

unit of time on transit mode k,??

d denotes the weighted average of time in transit and in-
kij

convenience time per trip to go from i to j on transit mode k,

~/if land values appreciate in vaiuc as potential industrial sights
the cilaracter of tile framework considered here does not ci~ange.

?/in the case of the auto, tilis cost includes variable auto costs
plus the variable costs of roadway maintenance.
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‘Ii
denotes the fixed cost of land, equipment and support

facilities incurred in supplying the k-ti~ mode of transit

equipment plus the loss in tax base of priva~e property

condemned and utilized for the k-th transit system,

L
Al$ ’12$ ‘Zb

denotes the change in value of private property

paralleling the transit routes between A and (1), (1) and

(2) and (2) and B,

ill, Ml denote the increase in sales of goods and services

of growtil centers A and U respectively,

Mc*, M; denotes tile decrease in sales of goods and services

at growth centers A and J respectively,

‘4A’ 1+
are assumed constant in this problem and denote the

level of traffic flow from nodes servicing centers A and B.

Passenter trip demand *+is assumed to be a linear function of ~
kij’

level of economic activity OIA, MB) at centers

and population density (D). “Tnese base levels

H
kij’ “4A) % and ‘ome base

A and B and user income (Y)

K R MC ~~,of activity are augmented by MA, M,B~ AY Thus, for example, the

demand for trips on the k-th mode (say, b2) from A to B is the linear

funct ionl/

~’This demand function is expressed in Ildisaggrerja ted}’ form since

these variables are expressed in the objective function (l). The agcjre-
gate form of the function could be derived from the estimation of a func-
tion containing t!~e variables suggested by Quandt and Baumol [8].
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TIIe total revenue fu[~ctioll (ckij T~i j) for each k,i ,j is therefore a

quadratic.

TIIe total cost function for each transit mode k on routes i , j can

be expressed as

c
s

kij ‘kij = ‘kij
(C Iikij; Fk).

kij’

The derivation of tilis cost function may have been obtained through

engineering or simulation studies, or actual observation. It should be

understood that it represents t!Ie supply of trips T?. , such that unit
KIJ

cost * time and fixed costs are a minimum. For the mathematical prc~-

gramming problem considered here, this total cost Function for any k, i,

j can be linear and/or quadratic. In tilis paper, it is assumed to be

quadratic.

Finally, we assume that the number of trips (T ~ij) actually taken is

obtained when

T
kij

=Ts ‘
kij = ‘;ij”

The mathematical programming problem that is consistwlt with the

maximization of ilSP of tile transit problem can now be stated, T!N~



problem is to find tile number of trips for all k, i, j and ttierefore

transit mode technology, and tl]e level of externalities to maximize the

total net return of transit over all k, i, j and the corresponding external

economies and diseconomies. Tl~at is, find the values of the vector

Restated in matrix notation, this is:

where the bar denotes a vector, ‘ denotes transpose, and bold face letters

denote a matrix. The elements of a and the quadratic form H are constants

and are obtained from the subtraction of the total revenue and total cost

functions corresponding to like modes and routes. The elements of ~are

also constants. The max

restraints:

(i) m= 1,2,...,34

that the number of trips

mization of (1) is subject to the fol

restraints (Appendix B, Table B-1) wh

(Tkij) transacted from i to j on nmde

owing

cl] state

i< is

~/This objective function is specified sucil that tim solution values

are ‘rices C;ij and ‘im ‘~kij’
The tableau specified below also includes

triPs Tkij. tiowever, the coefficients associated witi~ each T
i<ij

is zero.

~’See Appendix A for a solution procedure to this type of integer
quadratic programming problem.
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dependent on the time (Hkij) and price C:r. . of the i j route anJ onklj

correspond ii~g times and prices of other alternative transi t morks over

the same route(s), i.e. , the number of trips from A to B (U to A),

for k= ~,, bo, c,rl, r~, i ‘A, u and -i = A,IJ, and the number of trips from

Atol,AtoZ, S to 1 aI\d L to 2,

where k = D ,c, r2, i
2

=A,b, c = A,b, j = 1,2, c = A,I), and the number

of trips from 1 to A, 1 to d, 2 tO A and 2 to [I,

where i = 1,2, j = A,k and 9 = b2, c,r2.

(ii) m= 35,36,...,66 restraints (Appendix d, Table i~-11) stating

that an inverse relationship exists between transi t time and cost for

any mode k and route i j,

(l*L,)
>’:

c b - Q
kij = kij kij !Ikij”

(iii) m= L~,70 ,...,30 restraints (Appendix B, Table U-III} r~]atin:j



(iv) m = jl, j?,... ,JuC~” restraints (Appenclix U, Table G-l’J) statir~g

that ti~e time on mode b ~ (OUS with two stops) or r2 (PRT with two stups)

on route ;I,b (b,A) is t,i~e SUI!I of times on routes A to 1 and 1 to b (J to

2 ilild 2 to A) pl us Stopage time,

(1.6)

“t’e‘e +< is tile mean stopagc time.

(v) m = jj,lOO. .,,l O2 restraints (Appendix U, Table O-V) stating

that the sales of goods and services at A and E is dependent on modal

traffic fluws,

A,B, + j“;=~~6kji ‘kji
,fori= = J4, b,1,2 anJ

(1.7)

i$ = ~ ~S . . Tl,ij, for i = A,J ~ j = l,2,A,b.
k j ‘“J ‘

103,(vi) m= 04,105 restraints (Appendix U, Table &V) stating that

the change in value of private property paralleling the transit icjutes

is inversely relate{ to the traffic on the route,



(1.8)

whet-e i = A,l, j =2,B, e=l,Aandn= 2,11, and where tile expression for

L~$ ‘s ‘dentica’ ‘“ ‘Al”

(vii) m= 106,107,..., 113 restraints (Appendix 8, Table ti-Vl) state

that the number of passenger trips per u-it of tine on tile express bus

mode over the i,j-th route must not exceed its capacity

%]
*

‘blAB ~bb,’

(1.j)
;.:

%1 -rt)pM %,’

;’;
(1.10) 16~/\i ‘~2~i ~ q2, i = 1,2, B

i2

between (1) and (2)

(1.11)

and bebween (2) and B

(1.12)



Similar .cxprcssicms exist between routes B to A and likewise for PRT

(restraints m = 120,121,..,,127).

(vii) m= 114,115, ..., 119 restraints (Appendix B, Table 8-VI) stating

tilat auto and bus trips must not exceed road capacity between A and (1)

(1.13)

between (1) and (2)

and between (2) and B

(1.15) “: k = b1,b2,c~ ~6kiB ‘kj# ~ bk~ and i = A,I,2
ki

where similar expressions exist between U to A,

(viii) All variables are equal to or greater than zero and

‘h = I ifC’i
kij’

tif<ij > (),

(1.16)

%
= O if C;+

kij’ ‘ikij = 0, V, !i, J and j.

The tableau containing tlIc above restraints is summarized in Table 1.



TAi.$LE 1: TAULEAU OF RESTRAI;4T NATRIX CORRESPOdDliiG TCI RESTRAINTS (1.1)
TO (1.15)

a/Appendix Table B-1 b/Appendix Table B-II

~/Appendix Table ti-111 cl_/Appendix Table ti-lV

~/Appendix Table U-V ~/Appendix Table D-VI

#1’4ull vector

Analysis

&)L!& There are at least two approaches that can be used in arriving

at the “best” transit mix. First, the programming moclel suggested above

can be specified such that auto traffic flows are “forced” int the optimal

solution

The

I that all

‘ solution,

at levels actually observed.

approach suggested here Ilowever, is to specify the model SUCII

bus and PRT modes are excluded from appearing in the optimal

i.e., bounded from consideration. The model is then solved to

determine the optimal auto traffic flow pattern.
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This analysis will yield three categories of ii~format’ion. First,

the solution will yield information on the isornorpnic Cllaracti:ristics

of the programming model and the “real world” problem it depicts, Second,

parametric analysis can be performed to determine tile level of sensitivity

in the optimal solution to the estimated variance levels of the parameter

estimates of dcrnand, resource restrictions and transformation coefficients.

Finally, this analysis will yield information on tl]e degree of ef-

ficiency of current auto-traffic flows, where bottlenecks (resource re-

strictions) exist, the benefits and cost of reiaxi~~g these restrictions,

as well as providing insight into the means of improving over-all effi-

ciency of auto traffic flows at minimum cost.

step il. Given that in the first step of the analysis above tile modei

is judged satisfactory, &he next step is to consider tho costs and benefits

froni tlw introduction of adc]itional transit techuoiogy. III terms of the

I)rogriullinit}gtiiodcl prcsclltu:d ‘llx~ve, lilis is accowpi ishcd by specifying tiIu

Im.kl SUCII tl)(]t bus and I’RT nu)rk!s call be included in tlw f~ptirnal soiution,

i.e., by relaxing the bounds that prevented their consideratiorl in Step i.

TIIe soiution of (1) subject to the restraints (i.1) through (i.i5)

yields values of

(2) {Tkij, C:ij, Hkij, R N:, H:,LAi, LA2~ L2U, i~A, N;}

for all k, i and j from which modal splits, route configurations, cor-

responding time and fare costs , and associated external i ties arc o~taine{J,



From tile dual of tlu: solution to (l), insigh~ is obtained into tilrjsc

resources (suci~ aS ~US capacity) that are binding or limiting, LIIC cost

of these I imitations or tile benefit occurring from Llwir relaxation. i n

addition8 tl]e sensitivity of the solution to prices and time (H ~ij) can

be obtained,

Benefits and Costs

Computation. Solution (2) provides all of tile essential information re-

latil~g to costs aIIcl Lcnefits required for each mode of transit. Iiowever,

this information sIIould be disaggregatcd in order to draw insights into

t mode over tile i,j-th route is

corresponding k,i,j solution

so obtained from tt~ese correspond-

tlw magni tudc of tlw “gainers and losers” of our ilypothetical situation

(Figure l).

denefits accuring to the k-th trans

the total revenue TR
kij

evaluated at tlie

values (2). TIIe total costs TC
kij

are a’

ing solution values. Thus, for each mode and route a

can be obtained. The benefits accruing to tile change

this Ilypothetical situatioi] is obviously zero and tiw

wni le ti]e ocnefi Ls accur ng dt Llle growtil centers depends O!I the net

cimngc ii~ business activ

tained from (2).

Finally, it should be noted that from the dual of the solution to (l,),

values (referred to as weights or multipliers) are obtained which relate’

to the restrictions on restraints (1.1) ti~rougl~ (1.15). The multipliers

cost to benefit ratio

in land values in

costs are positivle



provide insight into the extent to which benefits and/or costs ,~ill

change with a relaxation of constraint restrictions.

Use in Policy Decision Nakin% To demonstrate the use of this framework

as a tool in policy decision making, we advance two suppositions on solu-

tion (2)0 First, suppose that a transit mode mix of auto, bus and PRT

are among the basic variables of this solution. Also, Suppose that the

suppose tilat tile benefit-cost ratio computed for tlw growth centers A, i3

is substantially greater than one.

;46w, given a welfare condition that essentially states: welfare is

increased if a combination of goods and services can be produced and con-

sumed such that if a set of producers or consumers arc made better off no

producers or consumers are made worse-off,~’ i.e., we must compensate tlve

“losers” (benefi t-cost ratio less tilan one) of our hypotiletical situation

by taxing tiw gainer-s (benefit-cost ratio greater tlm one) and dis-

tributing this tax revenue to the losers either directly or indirectly,

say by lowering the “losers” taxes.

In terms of our Ilypotlwtical situation, this implies taxing A aIld J

either directly or by requiring that they pay a portion of the transit

costs and compensate tlw land owners paralleling the routes from A to (1),

2/ If this type of reallocation is not(1) to (2) and (2) to E (Figure l)---

~/This welfare criteria is referred to as Pareto Optimal ity.

?.’It can be showrl tililt tilis reallocation of revenue does not change
tw. value of Z in (l).



‘7..

tire, Sup f)ose that tile solution (2) is UII -

n step 1 wlmre the “optimal” auto traffic flw

impl ies that the introduction of a 6LIS or PRT
,.,

system is not consistent with our overall ~’mlfdre criteria.+’
,

T!Ie [{LI’l S-

Iloutsidel’ sources.

i~itllin tile framework of thd model present here, t;~is subsidization

cannot be justified on an equitable basis. In order to justify it on an

1/. .It nlc)/ be W!ll Lo note here t!mt ttle Ixm2fit tu COSL ratio of sdy
tile bus and PRT can be Iess than onc and the solution (2) uncimnged.
If this is the. CCISC, then t!le revenue from the increase in sales ancl

services at growtl~ center A and/or D is sufficiently Iorge to overcome
the “loss” suffered by t!ie transit authority. In this case, ~\ arwi/or U
SIIOU ICI be taxed to overcome this loss.

2/ Tl]is leads us back to tile subsidization issue and it is obvious tildt

at least in terms of tllc variables included in the morJ131, pub] ic transit
is not a vfabie alternative.



e basis, i t shou Li be

tics,ates beneficial external

I t may al so be argued t!~at wc

a transi t Systcfil which may be

argued that the use of these systems ge;ler-

that are not considered in our framework.

are concerned with the depreciable 1 ife of

greater than 20-50 years in case of ?I?T.

Tlwrefore wc are concerned with demand, business activity anc~ external-

ities over this entire period. However, it is extremely difficuit to

derive meaningful estimates of these variables 20-50 years in the future,

although the directional change in these

“heuristic” basis. If these directional

demand, business activity, etc., then an

feasible.

variables may be argued on a

changes appear to induce future

“external” subsidization may be

Finally, the following ratiwr short-run type of question may be CXWI-

sidered within tiIis framework. The solution (2) derives different fares

(c~ij) for eaci~ route i,j. A P~~icy qucsti~n may be: is the operator

savings of charging for all i,j an average fare (based on the weighted

r ,ij) worth its cost? That is, to useaverage ~ ~ Cr2 ij Tr2,ij/ ~ ~ T2

ij
P

ij
an average fare simplifies the mechanics of fare collection and reduces

associated costs. ilowever, in this case, tile short trip is subsidizing

tlw longer tri~. This may induce a decrease in “short” trip demand wd

tin increase in “lotlg” trip demand. This can be analyswd by not per-

mitting the apljropriatc fare (C::2 ) tp vary and derivinga soiution to
r ,ij

(1) witi~ this restriction. This solution can then be compared to the

former where all C’;ij are variables.



Tnis same type of analysis may be used to differentiate between

demanders. For example, it IWIy be socially desirable to provide lower

fares to ghetto residents or the elderly. The effect of this decision

could be analyzed in a manner similar to the above case.

While various other types of situations could be considered, the

situations presented above should provide insight into the flexibility

of this approach.

Other Methodological Considerations

It was pointed out that the introduction of fixed costs into (1) com-

plicates the derivation of (2). In constructing a model of this type,

consitJeration must be given to the trade-offs between the isomorphic

properties of a model and the precision aspects of the model. if the

of error induced by approxink~ting true quadratic functions lJy a lineal

function is “small”. the isomorphic sacrifice may be small and the ga

in precision Iargc. However, ti~is depends on the judgcment of the

level

n

“model builders” and the particular problem under consideration.

The problems of peak loads can also be partially ccmsiderwl by replicat-

ing tile nmdei presented here for say morning, mid-day and evening con-

ditions. These three replications could then be “attached” by a series

of row equations where dependence between the repl ications existed. A

second method would be to estimte variance and co-variance of dai Iy

demands and incori>orate this into quadratic form (d). This analysis would

then proceed simiiarly by solving tile model for various levels of accepted

variance.



Finally, it is apparent from Table that while tnu consideration of

additional corridors$ entry-exi t routes and alternative tr(lnsi t mixes is

possible, t~le moc!cl r:~adily expands such that a point is SOOII reaclcd w:lt~rt:

it can no longer ~c ;~andled by any computer avai Itiilli:. If in t!lis case,

and a model of tiw forril prescntec.1 Iwrc is still appeal ing, then tile ap-

proach to ux}sidcr is simulation. TIIC simulation would iJc conducted on

(1) suiijcct to tiIe “ “speclfled restraints. The o!]jective would be to

derive values of (2) such that these values are feasible (do not violate

any constraints) and are “in t!w direction” of maximizing (1).



APPEi4DlX A

Problem (1) is of the following form:

(Al) z =ax’+xf.lx’+f6’---- ---

subject to

(A.1.1) Ax<bl,---

X>o,
.-

where

a is a n component row vector of constants

x’ is a n component column vector of variables

5 is a nxn symmetric definite or semi-definite

~ is a n component rod vector of constants

g is a n component column vector of constants

A is a mxn matrix of constants

&’ is a n component column vector such that

Oif Xi=()
6 =

lifXi>O.

The fixed charges f introduce discontinue ties

a max.

matrix of constants

at the origin thus

violating the convexity assumptions of quadratic programming even though

B is a definite or semi-definite quadratic form. This problem is related

to the linear integer fixed ci~arge problem for which several cornputationally



efficient approximate solution methods [2,10,1h] and less computation-

ally efficient though exact solution methodq [151 exist.

A solution procedure to the integer quadratic pr@len~ stakd ahcwe

is king developed and will be available shortly. The proccdurc sug-

gested here utilizes an efficient quadratic prograuwning algorl~lun. Tiw

first step of this solution procedure is stated below.

Tile tr*ue Qptilnal value of tile objective function {2) Cal} he uounded

after one soiution go tl]e above probiem (Al) (witi~ a siight modification)

by a traditional quadratic aigorithm. This is acccxnpiishcd i~y defifling

the new problem

(A.2.0)

subject to

{A.2.1) Ax’ < ~,-.

where tile vector of constants of fit are:

.,, ‘1
f’.’ ~ — + b,,

I
bj J

and wkrc b. is the upper bound (capacity restraint) associated witil the
J

Xi component of ~.

it can be shawn that the Soiution to (A,2.0) wi]l yield a vaiue of

ZU such that

(A.3.0) z“ : z.



;Iow, let lo denote the optima] so)ution to (A,2.9), The derivation of

tlw upper lm.md to (A.I.0) is tlwn obtained by substituting t!le values

lo into (A.1.!l) and computing tile resulting value of the objective func-

tion. Denoting this value as ZL, it can be simm that

(A.4,0) ~
LL2”

Condition (A.3,o) and (A.4.0) bou~wi the true optimal value of (AOI.O)

thus permitting the maximum

to be determined.

Tile matrix tableau of

through (1.15) is depicted

contains a total of 127 row

error of this approximate solution procedure

APPENDIX B

incar restraints corresponding to (Ii)

n Table 13-1 througl~ Table B-VI. The tableau

equations and 109 column equations where each

column variable appears in the objective function (l). The tableau is

subdivided into six submatrices, A O= 1,2,.. ,,6and p= 1,2,3 where
Op ‘

the sumatrices A(),2 also contains the right hand side restrictions (b_’)

for eacil row equation. The constants (coefficients) in the tableau arc

denotod by “~s” where a negative coefficient is denoted by “~”.

To demonstrate the correspondence between the tableau and tlw restraints

(1.1) through (1.14) consider restraint (1. h) for k = b, and m= 69.

The equation for this restraint is found in Table 0-111, row ~Jo. 69. The



right of t!w equal sign, is a negative one. In this case, the correspond-

ing rig!l L hand side elemct~t (bjJ) of submatrix A33 is zero.
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