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Abstract

There have long been concerns that federal crop insurance subsidies may significantly impact
land use decisions. It is well known that classical insurance market information asymmetry
problems can lead to a social excess of risky land entering crop production. We provide a
conceptual model to show that the problem will arise absent any information failures. This is
because the subsidy is (@) proportional to acres planted, and (b) greatest for the most
production risky land. Using field-level yield data, we follow this observation through to
establish the implications of subsidies for the extent of crop production, with particular
emphasis on the US Prairie Pothole Region, where cropland growth is likely to have marked
adverse environmental impacts. Simulation results show that up to 3% of land under federal
crop insurance would have not been converted from grassland if there had been no crop
insurance subsidies. Sodsaver, a provision that eliminates crop insurance and Supplemental
Revenue Assistance payments in the first five years of crop production on new breakings, will
reduce grassland conversion by 4.9% or less.
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The Effect of Crop Insurance Subsidies and Sodsaver
on Land Use Change

1. Introduction

The US government, via subsidies and direct payment programs, contributes to the farm sector
income and incentivizes land use behavior. Some of these programs are designed for
conservation and environmental protection (e.g., Conservation Reserve Program) but the
majority of programs are not. Among these programs, the subsidized crop insurance program has
attracted much attention because of its financial magnitude and potential land use effects. For
example, in 2011, aggregate crop insurance premiums amounted to $11.8 billion and the federal
government paid $7.4 billion in the form of premium subsidies (U.S. GAO 2012)."' There have
long been concerns that crop insurance and the large scale subsidies would have significant
impacts on land use decisions, which is of important environmental interests because land use
changes directly affect wildlife habitats, biodiversity, and water and air quality.

There are definite patterns in net crop insurance payments (Glauber 2004). Typical
insurance programs will pay out considerably less than $1 for each dollar paid in premium in
order to cover expenses. Over the period 20002007, crop growers in Montana, North Dakota,
and South Dakota received $2 or more in indemnity payouts per $1 premium paid by the
grower (Babcock 2008). The Central Corn Belt states (i.e., Indiana, Illinois and lowa) are less
drought-prone and have soils that are more fertile. Yet these states all had indemnity payouts of
between $0.7 and $0.9 per $1 premium paid by the grower (Babcock 2008). Crop insurance

rate setting is very involved, where we refer the reader to Coble et al. (2010). However,

' For growers who participate in the crop insurance program, the premium subsidy rate depends
on the coverage level selected by the growers. As the coverage level increases from 50% to
85%, the corresponding premium subsidy rate decreases from 67% to 38%. For more
information about subsidy rate we refer readers to Shields (2010).
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intuition would suggest that subsidizing production activities on risky land will encourage
more production on such land, and may provide a partial explanation for the geographic pattern
of actuarial outcomes outlined above.”

Many studies have examined the impacts of government payments on land use decisions,
and a few are specifically focused on federal crop insurance programs, such as Young,
Vandeveer, and Schnepf 2001; Goodwin, Vandeveer, and Deal 2004; Lubowski et al. 2006;
U.S. GAO 2007a; Claassen, Cooper, and Carriazo 2011 (CCC 2011 hereafter); Claassen et al.
2011. Goodwin, Vandeveer, and Deal (2004) represent the consensus that while crop insurance
subsidies do incentivize cropping, the effect is not large. Other evidence is not so sanguine—
Chen and Miranda (2007) conclude that crop insurance programs induce cotton crop
abandonments in the Central and Southern Plains regions.

To address concerns that crop insurance may cause grassland conversion, the Food,
Conservation, and Energy Act of 2008 (hereafter the 2008 Farm Act) incorporated a Sodsaver
provision to limit incentives that subsidies provide farmers to bring new, and often
environmentally sensitive, land into production. Sodsaver applies to the Prairie Pothole Region
(PPR) states only (Iowa, Minnesota, South Dakota, North Dakota, and Montana), and only if
the governor of the state requests an implementation. Specifically, if implemented, the
provision would render agricultural production on land that has been converted from native
grassland to cropland ineligible for crop insurance during the first five years of production.

Since Supplemental Revenue Assistance Payments (SURE) program, a disaster assistance

*To the extent that it has been studied, economic theory supports this intuition. LaFrance,
Shimshack, and Wu (2001) show that when land owners pay the same premium for a given
coverage level regardless of their land’s production risk, then subsidized crop insurance will
bring high risk land into production because of adverse selection. However, as to be
introduced, our theoretical model in this current study shows that subsidized crop insurance
may bring high risk land into production while leaving low risk land uncropped even if adverse
selection is absent (i.e., each land owner pays an actuarially fair premium based on her own
production risk).



program introduced in the 2008 Farm Act, requires crop insurance enrollment, the Sodsaver
provision implies that new breakings are not eligible for the SURE program during the first
five years of production. As of May 2012, no governor of a PPR state has requested
implementation of Sodsaver. The most comprehensive study to date of Sodsaver’s likely
effects on grassland conversion is CCC (2011). It concludes that Sodsaver would reduce
grassland loss by up to 9% in seven selected counties in North and South Dakota.

We discern large gaps in the literature about the land use effects of crop insurance. The
focus has been largely at the county-level of analysis. It has not focused on the region most
likely to be impacted (i.e., land at the cropping fringe in the arid Western Great Plains). The
measurement of extent of insurance subsidy has been very casual. Existing work has not been
able to distinguish between conversion from uncultivated rangeland to cropland or between
CRP and cropland. The policy context has changed markedly since the more analytic earlier
studies, culminating in Goodwin, Vandeveer, and Deal (2004), where the authors considered
data over the period 1985-1993. Biofuels policies, as well as increasing global demand for
food and feed, have led to a dramatic increase in corn, soybean, and wheat prices and an
expansion of land under crops during the period 2006-2010. Additional insurance subsidies
were provided under the Agriculture Risk Protection Act of 2000, while the 2008 farm bill
introduced further risk protection through the SURE program.

By utilizing field-level yield data up to 2006 and price data over 2005-2008 in this article,
we examine how crop insurance subsidies and the Sodsaver provision affect land conversion
decisions, with a focus on 17 counties in the Central and North Central South Dakota areas.
This area is of particular interest because (a) it is one of the primary duck nesting areas in
North America (U.S. GAO 2007b), and (b) grassland conversion has marked adverse
environmental impacts in this area (Stephens et al. 2008). Regarding the impacts of crop

insurance subsidies and Sodsaver on land conversion, two important policy-relevant questions



arise. To what extent do crop insurance subsidies and Sodsaver affect land conversion; and, are
the impacts similar across locations or are some locations particularly susceptible?

To address such questions, we first need to understand a typical farmer’s optimal decision
problem in the presence of crop insurance, so we develop a decision model of land use. The
problem here is one of comparing returns from different land uses: crop production versus non-
crop production. Returns include payments from government interventions, where simulations
are run over a variety of government program and market price scenarios. Second, we estimate
measures of crop insurance and related subsidies under the Revenue Protection (RP) policy.
We control for yield trends so as to correctly estimate the extent of risk within a given year
(Just and Weninger 1999). The approach taken is similar to that in Claassen and Just (2011),
who utilized US Department of Agriculture (USDA) Risk Management Agency (RMA) data at
the field level. Third, we calibrate the decision model and simulate the land use effects of crop
insurance subsidies and Sodsaver. Since crop yield data on grassland are not available, our
simulations are focused on cropland that has been covered by the federal crop insurance
program. This renders the simulation results, strictly speaking, unable to directly answer
questions such as “were crop insurance subsidies to be eliminated, then how much grassland
would be saved?” Instead, the simulation results answer a similar question, but from an ex post
perspective, which can be stated as “had crop insurance subsidies been absent, then how much
grassland would not have been converted?”

The only two works we are aware of that have taken a high-resolution look at the effects of
farm risk management programs on land use decisions in North and South Dakota are Claassen
et al. (2011) and CCC (2011). By fitting a mixed logic model, Claassen et al. (2011) estimated
the land use consequences of crop insurance and disaster payments in 77 selected counties of the
Dakotas. Focusing on seven selected counties in the Dakotas, CCC (2011) constructed

representative farms in the PPR and then simulated Sodsaver’s land use effects. However, the



studies in both Claassen et al. (2011) and CCC (2011) were (a) based on county-level yield data
that may not capture farm-level yield risk, and (b) did not include harvest price to determine
revenue guarantee, while in reality the most popular revenue insurance policy, RP, involves
harvest price when determining revenue guarantee.” As we have mentioned above, in this article
we utilize the field-level yield data to estimate production risk under RP policy. Moreover, we
study the land use effects of crop insurance subsidies that is absent in CCC (2011).

Our conceptual model shows that crop insurance subsidies, even without information
asymmetry problems, can drive a social excess of risky land entering crop production. This is
because the subsidy is () proportional to acres planted, and (b) greatest for the most
production-risky land. Using field-level yield data, we follow this observation through to
establish the implications of subsidies and Sodsaver for the extent of crop production.
Simulation results show that up to 3% of land under federal crop insurance would have not
been converted from grassland if there had been no crop insurance subsidies. Sodsaver, if
applied, would reduce grassland conversion by 4.9% or less.

The article proceeds as follows. In the second section we develop the theoretical model.
Section 3 studies utility effects of revenue insurance, SURE payments, and Sodsaver. Section 4
discusses the simulation methods and data. Section 5 presents simulation results and Section 6

presents conclusions.

2. Yield Risk and Distorted Planting Decisions
We consider the matter of how the extent of yield risk can affect planting decisions in the

presence of a crop insurance subsidy. The analysis pertains to many land units, each with a

* For example, in 2011 South Dakota had 79% of insured acres covered by RP (RMA 2011b).
When determining revenue guarantee, RP utilizes the higher of the projected price and the
harvest price. If the harvest price is excluded when determining the revenue guarantee then the
revenue guarantee, and hence the land use effect of crop insurance, may be biased downward
from their true values.



single owner. The land units are homogeneous in that all acres in a unit are the same. However,
there is heterogeneity across units. To explore the effect of yield variability on planting choice,
we assume that planting choice is discrete in that planting occurs in either all or none of the

acres in a land unit. Let U(-) denote land owner’s utility function of income, which is
increasing and concave (i.e., U'(-)>0>U "(-) ). We assume that the yield of one unit is

(D Y = U+ O,

where x>0 is mean yield, § € [0,1] is a risk parameter, and € is a random variable with
support [—u, 1], mean 0, and cumulative distribution function G(¢). We assume that G(e) is
continuous and has probability density function g(e) . Our interest is in yield variability only,
so u is held to be a constant while ¢ is heterogeneous across units with cumulative
distribution function F(9).

The alternative to cropping is to leave the land in some non-crop activities, such as pastoral
farming, hunting preserve or in a conservation program. The non-stochastic return from non-
crop activities is r per unit so that utility is U™ =U(r) whenever the land is not planted. In
short, three choices exist for the owner of a land unit with risk level §. The choices are as
follows:

A. Do not crop (label as nc) and receive a certain utility level U™ =U(r) :

B. Grow a crop but do not insure (label as gni) and face a yet-to-be-computed expected
utility level U®"(8) .

C. Grow a crop and do insure (label as gi), where the premium is subsidized at rate S
[0,1] , and the yet-to-be-computed expected utility level is U ¢ (5;s).

Thus, the overall problem is to identify

) V(8;5) = max[U™,U % (5),U%(5;9)].
6



In order to understand the decision-making process embodied in Eq. (2), it is useful to make

two comparisons. These are to compare choice A with B, and to compare choice A with C.*

2.1 Comparing choices A and B
To establish expected utility when the land is planted we need to build up the payoffs. With

output price P >0 and total cost ¢ >0, under choice B (i.c., grow but do not insure) the profit

is 79" = p(u + 8¢) — . Therefore, we have
ni “ ni
3) U®(s)= j U (7% )dG ().
—H

It is readily checked that U"(5) <0 ,and UZ'(5) <0 , given U '(-) > 0>U "(-). This means

that growers’ utility under choice B is decreasing in yield risk, and decreasing at an increasing

rate. Let the difference between expected utilities from choices B and A be

4) AT(5)=U(5)-U"™.

We seek to identify and understand the levels of & €[0,1] such that A®"(5) =0. We assume
that under choice B the least-risky land generates higher utility from cropping than from non-
cropping, and for the riskiest land the opposite is true. That is, U " (0) >U"™ >U % (1).
Therefore, there is a unique § € [0,1] that solves A9™(§) = 0. Let §9™ denote the solution.

As U (8) is decreasing in & , it follows that units with & €[0,5°"] will be planted, and so

the fraction of land that will be planted is F(5°"). Figure 1 provides a visual presentation of

this result. For future reference, we formalize this very obvious inference.
Remark 1: Absent insurance, only units with § € [0, §9™] are planted. That is, planting

occurs only in units with low yield risk.

* The setting we study will allow us to view choices B and C as just one choice, because risk
aversion together with a subsidy will mean that choice C is preferred over B whenever the crop
insurance contract is a meaningful choice. Therefore, we need not compare B with C.
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2.2 Comparing choices A and C
Now we introduce crop insurance to the model. Let ¢ denote coverage level. Then insured

yield is ¢pu and the indemnity payout on each unit is p max[@u — (u + o¢),0]. The matter is

only of interest whenever a payout occurs with strictly positive probability, so crop insurance
will only be taken up by unit owners having yield risk that satisfies ¢pu — (u — du) > 0 (i.e.,

0 >1-¢). The expected indemnity, and so the unsubsidized actuarially fair premium absent an

administration loading factor, is
7]
5) V(&) =] pmax{gu—(u+56).01dG(e).
In the presence of premium subsidy rate S >0 the grower paid premium is (1—-S)v(J) while

the subsidy is SV(0). The following remark is key to understanding incentives in what is to

follow. Its proof'is in Item A of Supplemental Materials (SM).

Remark 2: Subsidy sv(o)increases in yield risk, i.e., o[sv(5)]/ 65 > 0.

Remark 2 states that the subsidy is more extensive for riskier land. Given the subsidy, all

growers with ¢ >1— ¢ will insure in light of benefits from risk management and the subsidy.

For § < 1 — ¢ there is no benefit to insuring as the payout and premium would both equal zero,

so we assume that the growers with § <1- ¢ do not insure.
If the landowner plants and insures then profit becomes
(6) 7% = p(u+Se) + pmax[gu —(p+ 5¢),0]- ¢ ~ (1= 5)v(J).
Therefore, the expected utility from choosing option C (i.e., grow and insure) is
(7) U%(s5:s) = j ' u (z9)dG(e).
By Egs. (6) and (7) it is readily shown that 60U ¥ (5;s)/ds > 0, which implies that an

increase in subsidy rate, S, enhances the utility obtained from choosing choice C. That is, for a



given land unit, an increase in s may switch the relationship between U9 (5;s) and U"™(9)
from U%(5;5) <U™(J) to UY(5;5)>U™(5). Therefore, we can conclude:
Remark 3: An increase in crop insurance subsidy rate (i.e., s) expands, at least weakly, the

set of units cropped.

We define the difference between expected utility of choices C and A as
(8) AY(8;8)=U%(5;5)-U™.

Break-even risk levels, labeled as 69¢, solve A? (0;5) =0. Since we cannot be sure of the
sign of 0U ¥(8;8) /05 without further qualification, we cannot be sure that any solution to
A%(5;5) =0 is unique. For example, when s=1 and ¢ =0 then dU9(5;s)/ 05 < 0; but when
s=¢=1 then OUY(5;5)/05 >0 (see Item B of SM for the derivation). However, if there is
no subsidy (i.e., s =0) then we have U % (5;s)/ 0 < 0. Item C in SM proves this. Therefore,
whenever there is a solution 6% |_,€[0,1] to A%(5;s)|,,=0 then the solution is unique. It is

true that whenever §9™ > 1 — ¢ then §9°|,_, > 69™. This is because whenever §9™ > 1 — ¢
then U9%(8; s) > U9™(6). Figure 2 depicts the land use in the presence of unsubsidized crop

insurance when o

>1—¢. Therefore, we can conclude the following:
Proposition 1: Relative to no crop insurance, the presence of unsubsidized crop insurance
expands the set of land farmed from F(§9™) to F(89%|s—,) whenever 69" >1—¢. It remains

the case that cropping only occurs in units with low yield risk.
This unsurprising result should be viewed as a reference point, because the presence of an

insurance subsidy may reverse the relationship between land risk type and the decision to crop.

2.3 Distorted planting decisions in the presence of crop insurance subsidy



In this subsection, we study how the presence of crop insurance subsidies may distort the
decision to crop. By “distort” we mean that insurance subsidies bring units with high yield risk
instead of units with low yield risk into cropping. Recall that the level of subsidy increases in
yield risk (Remark 2). When subsidy rates are large enough, then high-risk units see additional
benefits from subsidies, because they may surpass the loss caused by high yield risk. Therefore,
high yield-risk units may enter cropping in the presence of crop insurance subsidies. We refer
to behavior in which high yield-risk units enter cropping with the specific intent of obtaining

subsidies as “subsidy chasing.” Subsidy chasing requires expected utility increases in yield risk

(i.e., OU9(5:5)/ 85 >0). As has been shown in Item B of SM, we cannot be sure that
U9 (5;8)/ 06 >0 without further qualification. In this article we do not intend to identify all
the necessary and sufficient conditions for dU9'(8; s)/98 > 0. We just present some sufficient

conditions under which 6U %(5;5) /05 > 0 to convey the message that subsidized crop

insurance may make expected utility increasing in yield risk. Specifically, we show that if crop

insurance subsidy rate and coverage level are greater than certain critical values then

U9 (8;s)/ 00 > 0. Item D of SM discusses these sufficient conditions.’

Depending on the sign of 0U ¥(5;5)/ 845 and the curvature of U%(5), the shape of V(8; s)
in Eq. (2) can have many possibilities. Figures 3 and 4 depict just two possible shapes, and so
leave much unstated. In Figure 3, cropping is still only in units with low yield. Specifically,
units with & €[0,1— ¢] are cropped but not insured, units with & € (1—¢,6%) are cropped and
insured, while units with § € [§9¢, 1] are not cropped.

It is also possible that the subsidized crop insurance can bring units with high yield risk

under cropping, but leave units with low yield risk uncropped. Figure 4 shows an example. In

° An example with constant absolute risk aversion utility function and a two-point yield
distribution is available from the authors upon request.
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Figure 4, units with § € [0, §9™] are cropped but not insured, units with § € [§9¢, 59 i’] are
cropped and insured, and units with § € (69ni, 69 i) U (6 g’ 1] are uncropped. Near § = 1, the
premium subsidies are high but the risk incurred is still too high to support cropping.

From the perspective of policy, Figures 3 and 4 capture some widely held concerns about
the land use implications of crop insurance in some parts of the United States. Bear in mind
that our analysis is not about adverse selection or moral hazard market failures as a result of
asymmetric information. Information asymmetry is not necessary for cropping of riskier land.
While information asymmetries may indeed be part of the story, the simplest and most direct
story is that a subsidy is most valuable on the riskiest land. As pointed out in Remark 2, the
effective subsidy is largest for the land with highest production risk. Figure 4 shows that the
subsidy can be so strong as to reverse the intuitive ordering on how land should enter
production (i.e., where demand is highest for the least risky land as a factor in production). We
summarize the analysis in this subsection as follows:

Proposition 2: Without any information failures, subsidized crop insurance can bring
high-risk land into cropping while leaving low-risk land uncropped. This is because the
subsidy is increasing in yield risk.

The theoretical model predicts that subsidized crop insurance expands the set of land
farmed. It also shows that there exist subsidy rates and coverage levels under which the
expected utility from cropping increases with yield risk. For simplicity in the theoretical
analysis, we focused on yield insurance. In our empirical investigation we incorporate revenue
insurance that covers risks from both yields and prices, given the fact that 60% of insured acres
are covered by Revenue Protection crop insurance plan in South Dakota in 2011 (RMA 2011b).
Our empirical investigation that follows will cast light on the extent to which the set of

cropland expands in response to insurance subsidies. Specifically, in the empirical part of this
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article we study how eliminating crop insurance subsidies or implementing Sodsaver affects

farmers’ land use decisions.

3. Modeling Revenue Insurance, SURE Payments, and Sodsaver

In this section, we specify the payoffs from revenue insurance, SURE payments, and Sodsaver
provision for the empirical investigation. Since we assume that growers are risk averse, the
action “grow and do not insure” is strictly dominated by the action “grow and insure”
whenever the crop insurance is actuarially fair. When crop insurance subsidies are present, then
“grow and insure” is even more preferable. Therefore, in our simulation we only compare
growers expected utility from the action “grow and insure” with the reservation utility (i.e.,
utility from non-cropping). According to data from the 2007 Census of Agriculture, corn,
soybeans, and wheat account for about 72% of acres harvested in South Dakota. Therefore, in
this study we only consider these three crops for “grow and insure.”

We design two sets of simulations. One is to study the land use effects of eliminating crop
insurance subsidies, and the other is to study the land use effects of Sodsaver. We omit SURE
payments when we study crop insurance subsidies’ effect on land use decisions. This is
because SURE payments became available to growers after 2008, but our yield and price data
(to be discussed in Section 4) are from 2008 or earlier. The second reason is that changing crop
insurance subsidies will not directly affect SURE payments.® Therefore, SURE payments will
cancel out when we compare the grower’s profits between status quo and no-subsidy scenarios.

We include SURE payments when studying Sodsaver’s effects.

% Here we implicitly assume that changing crop insurance subsidies will not affect growers’
choices on crop insurance policy or coverage level.
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3.1 Revenue Insurance and Effects of Crop Insurance Subsidies
Growers receive an indemnity whenever realized revenue from a crop is lower than target

revenue. Hence, the indemnity per acre for crop i1 € X = {corn, soybean, wheat} under a RP
policy can be written as

(9) Ii _ max[¢l yiAPH max[ piproj , piharv] _ piharv yi ’ 0] :

H

where ¢; is the coverage level chosen by the grower for crop i, y/*" is the grower’s actual

rv

production history (APH) yield, p”® and p™" are projected price and harvest price

established by RMA, and Y, is the grower’s realized yield for crop i. Note that under a RP
policy the target revenue is determined by the higher of projected price and harvest price. We
can see that |, is a convex function of the realized yield of crop i, which means that riskier

land receives higher payout. Since the federal government subsidizes crop insurance premiums,
the net indemnity can be written as

(10) NI, =1, —(1-9)E(l)),

where s is the subsidy rate, and E(-) is the expectation operator. Therefore, the farmer’s profit
from growing and insuring is

(11) 7 =DP+CCP+) a(p’y; + NI, + L —7),

ieX

where &, is payment acres for crop i € X, p; is the county-level cash price for crop i, L is
per-acre Loan Deficiency Payments (LDPs), t; is production cost per acre for crop i, DP is
farm-level direct payments (DPs), and CCP is farm-level counter-cyclical payments (CCPs).

Item E of SM discusses LDPs, DPs, and CCPs in detail. Once 7 is identified, then the expected

utility from growing and insuring is E(u(r)), where u(+) is assumed to be a constant absolute

risk aversion (CARA) utility function.
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If crop insurance subsidies are eliminated (i.e., S =0), then by Eq. (10) we know that the
net indemnity becomes NI, |_,= 1, — E(l;). By Eq. (11) we then obtain the profit from growing

and insuring without any crop insurance subsidies as

(12) 7| o= DP+CCP+Zai(picyi+Nli oo +Li = 7).

ieX
Therefore, the expected utility when setting S =0 becomes E(u(r |_,)). It is readily checked
that E(u(z |._,)) < E(u()). Recall that the reservation utility is U ™. If E(u(z))>U"™
> E(u(z|,)) , then eliminating crop insurance subsidies will induce the producer to switch
land use from cropping to non-cropping. However, if min[E(u(z)),E(u(z |_,))]=U™ , then
eliminating crop insurance subsidies will not cause this switch. For a certain area, let A denote
the total acreage of land whose owner has E(u(7))>U"™ > E(u(7|._,)), and let Q denote the

total land acreage in the area. Then the land use effects of crop insurance subsidies in this area

can be measured as:

(13) 100— %.

3.2 SURE Payments and Effects of Sodsaver

SURE was included in the 2008 Farm Act to replace previous ad hoc disaster assistance. To be
eligible for SURE payments, a producer must meet the following requirements. Their
production must (&) be covered by at least catastrophic risk protection (CAT) for all insurable
crops and by Noninsured Crop Disaster Assistance Program (NAP) for non-insurable crops;’ (b)

be located in a disaster county or a contiguous county, or suffer at least 50% production loss;"®

"CAT indemnifies losses in excess of 50% of APH yield at 55% of the RMA established price.
NAP offers financial assistance to producers of non-insurable crops when a natural disaster
occurs. For details about NAP, we refer readers to FSA (2011Db).

¥ The Secretary of Agriculture determines whether or not a county is a disaster county.
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and (c) suffer at least 10% production loss. The SURE payment equals 60% of the difference
between the SURE guarantee and SURE total farm revenue whenever the difference is positive.
If the difference is negative then the SURE payment is 0. That is, for a grower, the SURE
payment in year t can be written as

(14) D, = max[0.6(G, —R,),0],

where D,, G, and R, are SURE payment, SURE guarantee, and SURE total farm revenue in

year t € {1, ..., T}, respectively. Here T is the length of time horizon over which land is farmed.
The SURE guarantee is defined as the lesser of program guarantee and expected farm

revenue. Specifically,

(15) G, = min[l '22 ad P Yy O~9Z 8, Py max(y; Yol

ieX ieX
where 1.2 and 0.9 are statutory factors. SURE total farm revenue in year t, R;, is the sum of 15%

of DPs, CCPs, crop production revenue, crop insurance indemnity, and LDPs. That is,

(16) R =0.15DP, +CCP, + > a, (p™"y, + I + L),
ieX

NAMP - . . . .. .
where p," is the national average market price received for crop I in marketing year t. From

Egs. (14)—(16) we can see that the SURE payment, D,, is a convex function of realized yield,
Yy, This means that owners of riskier land should expect to receive higher SURE payments.

If the Sodsaver provision is implemented, then the first five years’ production on new
breakings will not be eligible for crop insurance and SURE payments, but will become eligible
starting in the sixth year.. If the Sodsaver provision is not implemented, then production on
new breakings is eligible for crop insurance and SURE payments start from the second year.’

During the first four years’ production on new breakings, the APH yields are calculated using a

’The first year’s production is not usually eligible for crop insurance because at least one year’s
APH is required to purchase crop insurance. Although a grower can petition for insurance for
the first year’s production, in this article we do not model this and assume that no crop
insurance is available for the first year’s production.
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specific procedure designed by RMA. Eq. (3) in CCC (2011) presents this procedure. Starting
from the fifth year, the APH yield in a year is the simple average of actual yields in the new
breaking’s production history. However, when the production history is longer than 10 years,
then only the closest 10 years history is utilized to calculate the APH yield.

Without Sodsaver, the grower’s profit in period t € {1,...,T} is

(17) 7% = DP, + CCP, + D, + Zan(p;yit +NI, +L, —7,),
ieX

where 1 € X, and NI;; = D; = 0 because the first year’s production is not covered by crop

insurance or SURE payments. With Sodsaver, the grower’s profit in period t is

DR, +CCP, + > a,(PgY, + Ly — 7)s whenever t e {1,...,5};
(18) 7z = <

DR, +CCPR, + D, + Y _a,(pgy, + NI, + L, —7,), wheneverte{6,..,T}.

ieX
Let US°4 and UNS°? denote the grower’s expected utility obtained from farming the new

breaking land with and without Sodsaver, respectively. Then US°¢ and UNS°? can be written as
T T

(19) U Sod — Zﬂt_l E[u(ﬂ_tsod )]; U NSod =z IBt—l E[u(ﬂ_tNSOd )],
t=1 t=1

where f €[0,1] is a discount factor. By construction we know that U >U %, If

U™ >U"™ >U®% then the implementation of Sodsaver will induce the grower to switch from

breaking the grassland to not breaking the grassland. If min[UVS°¢, JS°@] > U% then Sodsaver
will not induce the grower to switch land use. For an area, let A denote the total acreage of
native sod whose owners have U™ >U™ > U and let Q* denote the total native sod

acreage in this area. Then Sodsaver’s land use effect in this area can be measured as

(20) 100-——%.

So far, we have specified the payoffs to study the land use effects of crop insurance

subsidies and of Sodsaver. In the next section, we discuss the simulation methods and data.
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4. Simulation Methods and Data

In this section, we discuss the methods and data utilized to obtain the expected utility from
different land uses in the simulation. We then ask how farmers’ land use decisions are affected
when (a) eliminating crop insurance subsidies or (b) implementing Sodsaver. We first discuss
the simulation approach utilized in studying the land use effects due to eliminating subsidies.
Then we discuss the simulation approach for obtaining SURE payments and estimating

Sodsaver’s land use effects. Finally, we discuss the data.

4.1 Simulating Crop Insurance Subsidies’ Land Use Effects

The simulation is based on farm-level yield data. The key step in the simulation is to identify
farm-level yield-price joint distributions. Once these distributions are identified, then we can
calculate crop insurance premiums and hence premium subsidies for each farm. By calibrating
the CARA utility function, we can then compare expected utilities from “grow and insure”
with the reserve utility for each grower. We discuss how to identify the farm-level yield-price
joint distributions immediately.

Because of its flexibility, copula approaches are becoming increasingly popular when
modeling joint distributions (Yan 2007). Examples of modeling yield-price joint distributions
using a copula approach include Du and Hennessy (2012) and Zhu, Ghosh, and Goodwin
(2008). Sklar (1959) showed that any continuous m-dimensional joint distribution,

F (x4, ..., Xpy), can be uniquely expressed by two components. The first comprises of m
marginal distributions obtained from the m-dimensional joint distribution. The second is an m-
dimensional copula, which is an m-dimensional joint distribution with standard uniform

marginal distributions. Mathematically, we have

21 F (X0 Xn) = COR (X)), o B (X)),
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where F(+) is the joint distribution function of random variables Xj, ..., X;,; C(-) is the copula
function; and F;(x;) is the marginal distribution of random variable X;, i € {1, ..., m}. Define

ni = F;(x;),i € {1, ..., m}. Then the copula function in Eq. (21) can be written as
(22) C(nla"-nnm) = F(Fl_l(nl)a SN Fm_l(nm))a

where F;1(+) is the inverse marginal distribution function of random variable X;. In our
simulation, we utilize the Multivariate Gaussian Copula (MGC) because it is one of the most
commonly used copulas in risk management (Zhu, Ghosh, and Goodwin 2008).'° The MGC

can be expressed as

(23) C(Wysens s ) = @ (@7 (1), ... ., DT (17,,); ),

where p is a dependence matrix that captures dependence between the marginal distributions;

®,, () is the m-dimensional multivariate standard normal distribution with mean zero and
correlation matrix as p, and ®'(-) is the inverse distribution function of the standard one-

dimensional normal distribution.

Based on the MGC, once we identify the marginal distributions, F;(x;), i € {1, ..., m}, and
the dependence matrix, p, then we can obtain the joint distribution, F(-), by Egs. (21) and (23).
A common method used to estimate the marginals and the correlation matrix is the Inference
Function for Margins (IFM) method proposed by Joe (2005). The basic idea of the IFM
method can be expressed in a two-step procedure. The first step fits parameters of the marginal
distributions using maximum likelihood estimation (MLE). In the second step, the dependence
parameters in matrix p are estimated using MLE by taking the marginal distributions’
parameter estimated in the first step as given. We refer readers to Joe (2005) for details about

the IFM method. In our simulation, instead of obtaining parametric estimations of marginals in

' For farm revenue modeling, Zhu, Ghosh, and Goodwin (2008) find that simulation outcomes
are robust to replacing MGC with related distributions such as the Multivariate Student’s t
Copula (MTC).
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the first step, we apply the kernel density estimation method to estimate the marginals. By
doing this we do not need to identify specific parametric distributions for the marginals. Item F
of SM presents the specific procedure for estimating kernel density functions of marginals.
Once we obtain draws of m-dimensional random variables we can calculate (a) the
actuarially fair premium for revenue insurance under different coverage levels, and (b)
expected utility from growing each crop with insurance. Therefore, the land-use change effects

of crop insurance subsidies can be calculated as we have discussed in Section 3.1.

4.2 Simulating SURE Payments and Sodsaver’s Effects

The critical step when simulating SURE payments is determining under what conditions a
disaster occurs in a simulation. In our simulation, following CCC (2011), we assume that a
county is declared as a disaster county whenever the county-level average yield is less than the
county-level trend yield by 35% or more for at least one crop. In the simulation, we obtain the
county-level average yield and determine whether or not a disaster occurs in a county in a
given year using the following procedure.

Procedure 1. Step 1: In a given year, t, for each county among the 17 counties that are in
the Central and North Central South Dakota area and among their 15 neighboring counties that
are not in the area (Figure SM1 in SM), obtain N (N = 2,000 in this study) draws with
replacement from units that have actual yield in year t. Then obtain the unit-level detrended
yield in year t of these drawn units.'' Step 2: Calculate county-level average yield for each
county using the unit-level yield residuals from Step 1 to ascertain whether a disaster occurs
under the 35% county average-loss criterion. By doing so, we can identify, among the 32
counties (17 counties in the Central and North Central South Dakota area and their 15

neighboring counties), the disaster counties and their contiguous counties.

"' The yield detrending method is to be introduced when we discuss yield data in Section 4.3.1.
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Regarding Sodsaver’s land use effects, we study a T-year horizon (T = 50 in this study). If
the Sodsaver provision is implemented then during the first five year’s production the producer
will not receive crop insurance indemnity or SURE payment. In order to obtain county-level
yield-conditioned prices for growers’ profit calculation, we also need to estimate a county-level
joint yield-price distribution for each county. Again, we apply the copula method when
estimating this joint yield-price distribution. The estimations of county-level yield and price

marginals and the dependence matrix, p, are discussed in Item G of the SM. Procedure 2

below describes the key steps to simulate Sodsaver’s land use effects.

Procedure 2. Step 1: Draw a year randomly from a discrete uniform distribution among
{1990, ..., 2006}. We do so because the majority of our unit-level yield data are dated in
period 1990-2006. Suppose the year drawn is t. Step 2: For year t, run Procedure 1 to obtain
N (N = 2,000 in this study) unit-level yield residuals, and then calculate county-level average
yield for each county among the 17 counties in year t. Step 3: Based on the county-level
average yield calculated in Step 2 and on the county-level yield-price joint distribution, we
obtain the county-level yield-conditioned price distribution. Step 4: We obtain N joint price
draws from the yield-conditioned price distribution in Step 3. We then utilize these joint price
draws and yield draws obtained in Step 2 to calculate a producer’s net revenue and SURE
payment. We restrict our calculation to the 15% of least productive units among units drawn in
Step 2 for each county. A unit’s productivity is measured by the weighted average of its 10
actual yield observations. We do so because the intent of Sodsaver is to protect native
grassland and we believe that the 15% of least productive units are closest to currently
available grassland in terms of crop productivity. Step 5: Repeat Steps 14 for T times. During
the first five repetitions crop insurance indemnity and SURE payments are not available to the
grower whenever Sodsaver is implemented. Step 6: Based on results in Step 5, calculate

producer’s utility from cropping under scenarios both with and without the Sodsaver provision.
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In this step, units are matched across years by their productivity. For example, the least
productive unit in year t and the least productive unit in year t+1 are viewed as the same unit,
and the second-least productive units in year t and t+1, respectively, are viewed as the same
unit, and so on. Step 7: Repeat Steps 1-6 for M (M = 1,000 in this study) times to obtain
expected utility from cropping under scenarios both with and without the Sodsaver provision.
That is, we obtain U > and U ™ in Eq. (19) for each unit among the 15% of least productive
units. Step 8: For each county, take the summation of acreage of units that would switch from
cropping to non-cropping were Sodsaver implemented and then divide this sum by the total

acreage of the 15% of least productive units to obtain the land use effect of Sodsaver.

4.3 Data

In our simulation, we focus on the 17 counties in the Central and North Central South Dakota
area and three major crops (corn, soybeans, and wheat) in this area. In this sub-section, we
discuss county-level yields, unit-level yields, projected prices, harvest prices, harvest-time cash
prices, production cost, and pasture land cash rent. Other data and parameters used in the
simulation, such as DP yields, DP rates, LDP rates, absolute risk averse coefficient, etc., are

described in Item H of SM.

4.3.1 Crop Yields

County-level yields and harvested acres data for corn, soybeans, and wheat from 1960— 2009
are obtained from National Agricultural Statistics Service (NASS) of US Department of
Agriculture (USDA)."? Unit-level yields for these three crops are obtained from the USDA
Risk Management Agency (RMA). RMA yield data contains actual yield for each insured unit

under the federal crop insurance program. An insured unit can be a single field or several fields

2 For wheat, the time range is from 1960 to 2008.
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depending on the physical characteristics of the farm and the grower’s preferences. The yield
history has up to 10 years yield records for each insured unit. In our simulation, a unit is
selected only if it has 10 years of actual yield observations. However, the 10 years are not
necessarily continuous. For example, a unit’s first actual yield observation may be in 1990 but
the second may be in 1995.

In our simulation, we use RMA yield data associated with crop insurance policy year 2007,
which includes field-level actual yield up to 2006 for each insured unit. Then we further

restrict these RMA field-level yield data to be within period 1987-2006. We do so to better

accommodate the detrending method we apply, in which we incorporate the county-level yield
trend—estimated using a nonparametric method of weighted local regression (Claassen and
Just 2011)—to determine the unit-level yield trend. This nonparametric method estimates the
county-level yield trend in a given year by using yield observations in neighboring years and
by assigning a weight for each of these yield observations according to their distance from the
given year. We select timeframe 1987-2006 for field-level yield, and 1984-2009 for county-
level yield. We do this so that the county-level yield trend to be incorporated in the unit-level
yield trend (i.e., 1987-2006) has neighboring years both before and after a year in 1987-2009.
For estimating yield trend in a given year, having neighboring years both before and after this
given year provides more trend information than does only having neighboring years before or
after this given year. Item I of the SM provides an illustration of the detrending procedure.
Since our RMA yield data sets for corn, soybeans, and wheat are separate data sets and the
location information within a county is not released by RMA, we cannot link these three data
sets by units. That is, for example, in the RMA corn yield data set, we have corn yield
observations for unit A, but we cannot identify unit A in the RMA soybean or wheat data sets.
One approach to establish a link across datasets is to quantile match unit-yields. The basic idea

is straightforward— we match units having high corn yield with units having high soybean
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yield or wheat yield, based on the assumption that high quality land tends to have high yield

for corn, soybeans, and wheat. Item J of SM describes the specific matching procedure.

4.3.2 Crop Prices

The simulation utilizes three types of crop prices. They are projected prices, harvest prices, and
cash prices. Projected prices and harvest prices have two uses in our simulation: (a) to
determine crop insurance indemnity and SURE guarantee (see Egs. (9) and (15)); and (b) to
estimate joint yield-price distributions (see Items F and G in the SM). According to RMA
(2011a), the projected prices and harvest prices for the three crops in South Dakota are
determined as follows. For corn, a year’s projected price (harvest price) is the average daily
settlement price in February (October) for the Chicago Board of Trade (CBOT) December corn
futures contract. For soybean, the projected price (harvest price) is the average daily settlement
price in February (October) for the CBOT November soybean futures contract. For spring
wheat, the projected price (harvest price) is the average daily settlement price in February
(August) for the Minneapolis Grain Exchange (MGE) September wheat futures contract.

For corn and soybeans, we obtain CBOT futures prices between 1960 and 2011 from
Barchart.com. For wheat, we obtain MGE futures prices between 1973 and 2011 from the same
source. During 1973-1978, February price data for the MGE September wheat futures contract
are not available. Therefore, to project wheat prices during 1973—-1978 we utilize the average
daily settlement price in March, instead of February, for MGE September wheat futures contract.

Cash prices are utilized in calculating growers’ profit from cropping (see Egs. (11), (12),
(17), and (18)). Cash prices are obtained by adding county-level basis to harvest prices drawn
from the estimated yield-price joint distribution. For a given year, county-level basis is
obtained by subtracting the harvest price from the simple average of posted county prices (PCP)

in the harvest month. For corn and soybeans we let October be the harvest month, while for
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spring wheat the harvest month is assumed to be August. The PCP data is obtained from

USDA'’s Farm Service Agency (FSA).

4.3.3 Production Costs

Janssen and Hamda (2009) report a spring crop budget in the Central and North Central South
Dakota area in 2008. Excluding crop insurance premium and land charge, their per acre
production costs for corn, soybeans, and wheat are $205, $145, and $180, respectively. The
production costs excluding crop insurance premium and land charge are labeled as basic
production costs. We assume that each farm in the area has the same basic production cost in a
given year. The crop insurance premium (to be calculated) and land charge (i.e., the opportunity
cost of farming the land, which we assume to be pasture land cash rent) may differ across farms.
Since we do not have production cost information in the Central and North Central South Dakota
area in years earlier than 2008, we use a ratio to scale the 2008 basic production costs to obtain
production costs in earlier years. The ratio is defined as production costs in this earlier year in the
South Central North Dakota area divided by costs in 2008 in the same area.13 For example, we
use the ratios of 2005 costs over 2008 costs from South Central North Dakota budgets to scale up
or down the aforementioned amounts $205, $145, and $180, to obtain 2005 production costs in

the Central and North Central South Dakota area for our simulation.

4.3.4 Pasture Land Cash Rent
Pasture land cash rent is the assumed opportunity cost of cropping in our simulation. County
level pasture land cash rents in 2008 for the 17 counties are obtained from NASS. The NASS

pasture land cash rent data does not differentiate between high quality and low quality pasture

" Production costs in the South Central North Dakota area over 2004—2012 are available online
at: http://www.ag.ndsu.edu/farmmanagement/crop-budget-archive (accessed on 5/1/2012). The
South Central North Dakota area is selected because it is contiguous to the Central and North
Central South Dakota area.
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land, but it is reasonable to assume that higher quality fields should have higher opportunity
costs (here pasture land cash rent). Therefore, in our simulation we use the ratio of RMA unit
average yield over county average yield to multiply the county-level cash rent when estimating
unit-level cash rent. Since county-level pasture land cash rents for years earlier than 2008 are
not available, we use the state-level increase in the rate of pasture land cash rent over years in
South Dakota to derive the cash rents in years previous to 2008."* Data on annual changes in
pasture land cash rents are calculated using state-level cash rent data from the USDA’s

Agricultural Statistics Board (2008).

5. Simulation Results

We simulate the land use consequences of crop insurance subsidies and of Sodsaver under four
scenarios in which projected crop prices during planting seasons are from years 2005-2008.
Table 1 shows these projected prices. We can see that when compared with 2005 prices, 2008

prices had increased by approximately 150%.

5.1 Land Use Consequences of Crop Insurance Subsidies

Table 2 presents the simulation results for crop insurance subsidies’ land use consequences.
Bearing in mind that the data pertain to land that is already cropped and insured, the results in
Table 2 should be explained as the percentage of land covered under crop insurance that would
have not been converted from grassland if there had been no crop insurance subsidies. Since the
units included in our data have already been enrolled in the federal crop insurance program, ideal

simulation results would be that for each unit the expected utility from cropping and insuring is

greater than the reserve utility, i.e., ue>ur. However, our simulation results do not reach,

" For instance, suppose county A’s pasture land cash rent in 2008 was $40/acre and the state-
level pasture land cash rent increased by 20% from 2007 to 2008. Then the derived pasture
land cash rent for county A in 2007 is 40/(1 + 0.2) = $33.3/acre.
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although they are very close to, this ideal situation. That is, for some units in our simulation

U <U™ holds.15 The reasons for this curiosity may be as follows. First, we have very limited
information regarding land owners’ heterogeneity, and hence we assume that they have the same
utility function and basic production costs. Second, there may be scope economies in production,
such that some units in the data might have been converted because they are near land that is
profitable to crop, so the marginal costs of planting on these units are low.

The results show that if projected crop prices had been as those in 2005 or 2006, and if
there had not been crop insurance subsidies, then about 2.7% of acres under crop insurance in
the 17 counties would have provided more economic surplus to the owner under grassland than
under cropland. If projected crop prices had been as high as those in 2008, and if there had not
been subsidies however, then about 0.03% of acres in the same area covered by crop insurance
would not have been converted. This is intuitive because when crop prices are very high then
planting crops becomes so profitable that growers prefer planting even without insurance
subsidies. Of course, it warrants emphasis that when commonly held expectations regarding
long-run equilibrium price levels adjust upwards then the marginal land will be grassland and
not land that is presently under cropping. For such grassland, crop insurance may be the
decisive factor.

When crop prices are relatively low, then the availability of crop insurance subsidies may
become a critical factor that influences growers’ land use decisions. Therefore, we see that
under 2005 and 2006 price scenarios the land use consequences of subsidies are large, but in
2008 the land use consequences are small. The average of crop insurance subsidies’ land use
effect over the four price scenarios is 1.6%. If we exclude results from 2008, then the average

effect is 2.2%. Based on data between 1998 and 2007, Claassen et al. (2011) found that the

" In our simulation, when crop insurance is subsidized at current rates (see Table 1 in Shields

(2010)), then for the 17 counties in total the percentage of units that have U% <U"™ under price
scenarios from 2005 to 2008 are 6.1%, 6.4%, 1.5%, and 0.1%, respectively.
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average effect of crop insurance, including subsidies, is 1%. Although we do not directly
simulate the land use effect of eliminating subsidies and crop insurance, Proposition 1 suggests
that such effect will be larger than that of only eliminating subsidies. Given that expected net
indemnities over 1998-2007 were stable (Figure 24 in Claassen et al. (2011)), we can conclude
that land use consequences of crop insurance in our study are larger than those in Claassen et al.
(2011), but still small.

The relationship between the magnitude of insurance subsidies’ land use consequences and
projected crop prices is not necessarily monotonically decreasing. From Table 2 we see that for
12 of 17 counties the land use consequences of subsidies reach the highest levels under the
2006 price scenario, and decrease over the 2007-2008 price scenarios. For four counties (Faulk,
McPherson, Potter, and Sully), the land use consequences reach the highest levels under 2005
price scenario and then decrease as projected prices increase. Therefore, we propose that
generally the magnitude of subsidies’ land use consequences and projected crop prices have an
inverse U-shaped relationship, which can be justified as follows. In our simulation, were crop
prices very low (an extreme example would be 0), then regardless of whether there are crop
insurance subsidies the land owners would prefer to keep their land uncropped (i.e., no land
owners would switch their land uses due to the change in subsidies’ availability). Therefore,
the simulated land use effect of subsidies is zero. Similarly, were crop prices extremely high,
then all land owners would prefer to put their land under cropping, even if crop insurance
subsidies are eliminated; therefore, the subsidies’ land use effect is also zero.

The results also show that, among the 17 counties included in our simulation, subsidies’
land use consequences in counties close to the Missouri River are generally larger than those in
the other counties (Figure 5). One explanation is that counties near the Missouri River have

higher yield risks than do the other counties. As we have shown in Remark 3 and Proposition 2,
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subsidized crop insurance brings risky land into cropping, which implies that owners of risky

land are more sensitive to crop insurance subsidies.

5.2 Effects of Sodsaver

As we have mentioned in Procedure 2, in the simulation for Sodsaver’s effects we restrict our
analysis to the 15% of least productive units among units in each county.'® We then identify
units whose growers would regret having converted were Sodsaver implemented. We then
calculate the percentage of such units among the 15% of least productive units for each county
(see Procedure 2).

Table 3 provides simulation results for Sodsaver’s land use effects. We can see that,
comparing the 2005 price scenario with the 2008 price scenario, the 5-year expected NPV of
SURE payments increases from about $5/acre to $9/acre. Similarly, the 5-year NPV of net
indemnity payments increases from about $34/acre to $74/acre. Under a given price scenario,
the variation of 5-year NPV of SURE payments or net indemnity is large across counties. For
example, under the 2008 price scenario the county average SURE payments range from
$7/acre (Brule County) to $45/acre (Buffalo County and McPherson County). Counties in the
western part of the studied area (e.g., Buffalo, Campbell, Hughes, and Hyde) have higher
SURE payments and net indemnity per acre than do the counties in the eastern part (e.g.,
Beadle, Brown, and Spink).

Regarding Sodsaver’s land use consequences, the same pattern as insurance subsidies’ land
use consequences holds. That is, (&) the consequences are significantly affected by projected

crop prices, (D) the relationship between the magnitude of Sodsaver’s land use consequences

'* This is one reason why we observe negative market profit in the simulation results for some
counties, especially under 2005-2006 price scenarios (see Table 3). The second reason for the
negative profit is that, as mentioned before, these 15% of least productive units might have
been converted only because they are contiguous to fertile land so that these units induce a
lower production cost that is not reflected in the simulation.
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and projected crop prices is also inverse U-shaped, and (C) the consequences are larger in
western counties of the studied area (Figure 6). Table SM1 contains simulated probabilities
that a county becomes a disaster county or is contiguous to a disaster county in a typical year.'’
Under the 2007 price scenario, Sodsaver’s land use consequences reach the highest value,
4.9%, among the four scenarios. Here the value 4.9% should be interpreted as follows: if in
each year the projected crop prices had been the same as those in 2007 over 50 years, and if the
Sodsaver provision had been implemented, then about 4.9% of acres among the 15% of least
productive insured cropland would not have been converted from grassland to cropland. Under
the 2008 (or 2005) price scenario Sodsaver’s land use consequence is 1.2% (or 1.7%), which is
smaller than that under the 2007 price scenario. The same reason for the relationship between
the magnitude of insurance subsidies’ land use consequences and projected crop prices applies
here. The average of Sodsaver’s land use consequences over the four price scenarios is 2.6%.
Six counties in our study are included in CCC (2011). These six counties are Beadle,
Edmunds, Faulk, Hand, Hyde, and Sully. By constructing representative farms and utilizing
2008 crop prices, CCC (2011) conclude that in the six counties the sum of expected 5-year
NPV of net indemnity and SURE payments, as a percentage of expected 5-year NPV of net
return, ranges from 6.4% to 14%. Then the authors further calculate Sodsaver’s land use effect
by using land conversion elasticities surveyed from the literature. Their results show that
Sodsaver’s land use consequences in the six counties range from 1% to 9%, depending on the
values of land conversion elasticity selected. Since they utilize the sum of expected 5-year
NPV of net indemnity and SURE payments as a percentage of expected 5-year (instead of a

longer period that reflects cropland tenure) NPV of net return to measure Sodsaver’s impact on

" From Table SM1 we can see that on average the probability that a county becomes a disaster
county or is contiguous to a disaster county in a typical year is about 0.55. This value is close
to the probability in reality calculated according to FSA’s reports about SURE disaster
incidents over 2009-2011 (available online at

http://www.fsa.usda.gov/Internet/FSA_File/2011 sure gis ytd.pdf), which is 0.61.
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farmers’ expected net revenue, Sodsaver’s land use consequences may be enlarged. In our
simulation, we assume that once it is converted from grassland to cropland the converted land
will be farmed for 50 years. Although the results from CCC (2011) and from this study are
close, the results from these two studies are not directly comparable because the methodology
and data are different. Table SM2 in the SM presents a comparison of the expected 5-year NPV
of SURE payments and net indemnities calculated by CCC (2011) and by this study. We can
see that on average the sum of SURE payments and net indemnities as a percentage of market
profit in CCC (2011) is very close to that in this study (9.89 in CCC (2011) and 10.37 in this
study under the 2008 price scenario). Therefore, once their results are adjusted by considering
a much longer time horizon, the adjusted results would be significantly smaller than this
study’s results concerning Sodsaver’s land use consequences. Specifically, were the 50-year
horizon considered in CCC (2011) then a rough calculation would show that instead of up to
9%, Sodsaver’s effect in their simulation would be only up to 2.7%."® In our simulation,

Sodsaver’s effect is up to 7.9% under the same price scenario (i.e., 2008) as in CCC (2011).

6. Conclusions

To understand how the availability of federal crop insurance subsidies influences land use
decisions, we first develop a conceptual model of optimal land allocation in the presence of
crop insurance subsidies. Our conceptual model shows that crop insurance subsidies can induce
land with higher yield risk into crop production while land with identical mean productivity but

lower yield risk is left uncropped. This is because the subsidy is (a) proportional to acres

'8 The calculation here is conducted as follows. If interest rate is 0.07 (utilized in CCC (2011)),
then a constant annual payment’s 5-year NPV is about 29.7% of its 50-year NPV. Therefore,
the 9% land use consequence should be scaled down by multiplying 29.7%, which is about
2.7%.
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planted, and (b) greatest for the most production risky land, which usually includes newly
converted grassland.

Using farm-level data, we follow the conceptual results through to establish the
implications of subsidies for land use. We simulate the expected utility to be derived from
putting land of a given production capability into crop production as subsidy rates change. Our
simulation results show that risky land is more sensitive to the changes in crop insurance
subsidy rates. Sodsaver’s impacts on land use are also simulated. Our results indicate that crop
prices are a significant determinant in the magnitudes of crop insurance subsidies and
Sodsaver’s land use effects. When crop prices are extremely high (e.g., the 2008 prices) or very
low (e.g., the 2005 prices), then the land use effects of insurance subsidies and Sodsaver are
small. When crop prices are moderate, however, then the land use effects are large.

The findings in this paper should be placed in context, as there are other channels through
which crop insurance could conceivably affect land use choices. Our model is static, though
dynamic features of the conversion decision are likely to be economically significant. For
example, land conversion costs are not insignificant. Barnhart and Duffy (2012) estimate that it
would cost about $200/acre to establish a pasture from cropland in lowa. For converting
Conservation Reserve Program land into cropping in North Dakota, Ransom et al. (2008)
indicate a cost of about $50/acre, where costs might include the removal of heavy scrub and
gopher mounds as well as chemical treatment. Converting native sod would be more
expensive, and especially so if rocks need to be removed. A crop revenue safety net provides
the owner with the assurance that subsequent conversion costs back to former uses are

unlikely, and so would increase the likelihood of conversion.
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Table 1. Projected Prices in Planting Season of Corn, Soybean, and
Wheat 2005-2008 ($/bushel)

2005 2006 2007 2008
corn 2.32 2.59 4.06 5.40
soybean 5.53 6.18 8.09 13.36
wheat 3.35 422 5.23 11.11

Table 2. Percentage of Land under Federal Crop Insurance that
Would Have Not Been Converted from Grassland Had There
Been No Crop Insurance Subsidies (%)

under 2005  under 2006 under 2007 under 2008

County prices prices prices prices
Aurora 1.7 2.2 0.4 0.0
Beadle 0.2 0.2 0.0 0.0
Brown 0.2 0.2 0.0 0.0
Brule 2.0 2.6 0.7 0.0
Buffalo 2.6 3.5 5.1 0.0
Campbell 4.0 4.0 2.4 0.0
Edmunds 2.2 3.0 0.3 0.5
Faulk 1.5 1.1 0.1 0.0
Hand 1.6 2.1 0.5 0.0
Hughes 4.7 7.5 1.5 0.0
Hyde 3.4 8.5 1.9 0.0
Jerauld 0.9 3.2 1.1 0.0
McPherson 3.2 2.3 0.0 0.0
Potter 3.4 2.8 1.0 0.0
Spink 0.2 0.3 0.0 0.0
Sully 5.5 5.1 3.0 0.0
Walworth 2.8 2.9 0.0 0.0
average 2.36 3.04 1.06 0.03
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Table 3. Sodsaver's Land Use Consequences and Expected 5-year NPV of SURE Payments, Net Indemnities,
Revenue, and Profit under Crop Prices 2005-2008

LE

under Crop Prices in 2005 under Crop Prices in 2006
Land Use SURE Net Market Market Land Use SURE Net Market  Market
Change Payment Indemnity Profit Revenue Change Payment Indemnity Profit Revenue
County (%0) (©) $) %) $) (%0) $) (©) $) $)
Aurora 0.9 2 40 1 563 2.4 5 40 8 610
Beadle 6.8 2 25 111 673 3.5 4 25 158 757
Brown 0.9 1 16 268 829 1.0 3 19 273 868
Brule 1.3 2 39 -32 530 5.5 4 37 8 619
Buffalo 0.0 12 52 -126 447 0.0 19 59 -125 504
Campbell 0.0 8 41 -236 332 0.0 13 48 -246 379
Edmunds 0.5 2 31 -28 528 2.6 4 36 -10 586
Faulk 7.1 2 23 75 622 7.0 4 25 104 694
Hand 1.1 3 30 -49 507 2.4 6 32 -10 596
Hughes 0.5 4 47 -79 468 4.3 7 55 -46 563
Hyde 0.0 8 34 -175 380 0.0 13 38 -172 446
Jerauld 1.1 3 30 -8 558 4.1 5 32 14 627
McPherson 0.0 10 63 -360 215 0.0 15 75 -381 249
Potter 1.3 6 25 -40 519 3.2 9 28 -18 602
Spink 5.2 2 22 133 686 3.7 4 23 165 756
Sully 0.0 4 33 -95 453 0.5 7 37 -56 555
Walworth 1.3 4 28 -68 484 2.0 6 30 -47 556
average 1.7 5 34 -42 517 2.5 8 38 -22 586

Note: Market profit and market revenue in this table do not include SURE payment and net indemnity. Also, as we have mentioned in
Procedure 2, only the 15% of least productive units are considered in the simulation.
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Table 3 (continued). Sodsaver's Land Use Consequences and Expected 5-year NPV of SURE Payments, Net
Indemnities, Revenue, and Profit under Crop Prices 2005-2008

under Crop Prices in 2007 under Crop Prices in 2008
Land Use SURE Net Market Market Land Use SURE Net Market Market
Change Payment Indemnity Profit Revenue Change Payment Indemnity Profit Revenue

County (%0) (©) $) (%) %) (%0) (©) $) (©) %)

Aurora 3.5 7 49 191 867 0.0 9 62 824 1619
Beadle 0.2 7 31 473 1147 0.0 9 39 1220 2009
Brown 0.1 6 26 593 1263 0.0 9 40 1249 2027
Brule 1.6 6 42 254 936 0.0 7 50 1052 1866
Buffalo 19.8 31 86 35 740 7.9 45 127 493 1344
Campbell 3.2 19 66 -153 543 6.4 35 103 190 1034
Edmunds 4.5 6 49 163 827 0.2 11 72 716 1498
Faulk 0.2 5 32 324 976 0.0 8 44 1093 1863
Hand 2.8 8 39 204 877 0.0 12 54 916 1721
Hughes 10.3 9 70 106 770 0.0 18 119 810 1623
Hyde 6.4 18 48 -49 628 53 32 78 448 1278
Jerauld 4.3 8 42 229 916 0.0 11 60 856 1674
McPherson 0.0 23 114 -384 323 0.9 45 175 -200 654
Potter 5.2 11 35 189 873 0.0 20 59 886 1720
Spink 0.6 7 31 434 1092 0.0 9 44 1133 1904
Sully 14.4 8 44 106 773 0.2 15 72 863 1678
Walworth 6.6 8 37 136 801 0.0 14 55 761 1559
average 4.9 11 50 168 844 1.2 18 74 783 1592

Note: Market profit and market revenue in this table do not include SURE payment and net indemnity. Also, as we have mentioned in
Procedure 2, only the 15% of least productive units are considered in the simulation.
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Supplemental Materials

To tidy up equations, we define w = u(¢—1)/ 5 throughout the Supplemental Materials. Here
w can be viewed as a threshold of the yield disturbance term, e, because once e< iy then an
indemnity payout will occur. It is readily checked that <0 since ¢ €[0,1], >0, and

o €[0,1].

Item A

In this item we prove Remark 2 which states that subsidy, sv (&), increases in yield risk

parameter, 8. That is, J[sv(5)]/ 06 > 0.
Proof. By Eq. (5) we know that
V(@)= [" pmax[gu~(u+5e).01dG(e)
(SM-A1) - j'”ﬂ Pldu — (1 +5¢)]dG(e) + j: 0dG(e)
= [, plou—(u+ 56))dG(e).

Therefore,

NE) _

4 v
— = Plgu—(u+oy)lg(w)—| pedG(e)
(SM-A2) 96 o / -

=— pj.i edG(e).

Since ¥ <0 and dG(e) > 0, we have

(SM-A3) -p j" dG(e) > 0,

which finishes the proof. O

Item B



In this item we show that (a) when s=1 and ¢ = 0 then dU%(5;s)/05 < 0; and (b) when
s=¢=1 then OU%(5;s)/05 > 0.

Proof. By Egs. (6) and (7) we have

U (5:s) = KU (pu—c—(1-s)V(5))dG(e)

(SM-B1)
+_[:U ( p(u+de)—c—(1- S)V(5))dG(€)-

To save notation we define
(SM-B2) m=popu—c— (1 —-s)v(d),and n(e) =p(u + 6e) —c — (1 —s)v(6).
Therefore, we have

U % (5;5)
08

L@ -1-sU" (:r)av@

G(y)

(SM-B3) av(a)
+2U@aw)+ [ e [pe-1-59 % a0

8V(5)]

(-0 @ e+ | U'm(e»[pe—a $) 24 460

When s =1 then from Eq. (SM-B3) we have

U Y (5;3)

SM-B4
( ) Y

=p j:u \(72(€))edG(e).

s=l1

When coverage level is zero (i.e., ¢ =0) then w = —u /6 < —pu. Therefore,



oU Y (5;9)

— = p[,U'(2(e)edG ()

s=1,¢=0
=p|" U'(z(e)edG(e)
(SM-BS) =pl[ U'(r(@)edG(e)+ [ U (m(e)edG(e)]
<PpIJ U (x(0)edG(e) + [V (x(0)edG(e)]
— pU '(z(0))] jOﬂ edG(e) + [ edG(e)]

=pU'(z(0)|" dG(e) =0,
where the second equality holds because the support of € is [—, u]; the last equality holds
because the mean of € is zero; and the inequality holds because (a) whenever € <0 then
7(e) < 7(0), U'(z(€))>U"(x(0)), and U '(z(¢))e <U '(z(0))e; and (b) whenever € >0 then
7(€)>7(0), U'(z(e)) <U'(7(0)), and U '(z(e))e <U (7 (0))e.
When coverage level is 100% (i.e., ¢ =1) then w = 0. Therefore,

U ¥(5;9)

SM-B6
( ) Y-

= p[ U '(z(e)edG(e) > 0,

s=1,4=1

where the inequality holds because U '(-) > 0 and dG(¢) > 0. This finishes the proof. [

Item C
In this item we show that when subsidy rate s = 0 then dU9(5;5)/35 < 0.

Proof. We define

(SM-C1) é= —j"’ﬂ dG(e).

By Eq. (SM-A3) we know that ¢ > 0 > . Therefore, from Eq. (SM-B3) we have



oU Y (5;9)
08

=VU'@)——

s=0

() N ()

05
N(S)
08

G+ |V (r(eNlpe-—=1dG()

(SM-C2) 8v(5)

G+ [ U '(z(e)lpe~ = 21dG(©)

aV()

=-U'(n)——
U () pe - = TG (o).
Since U"(+) <0 and dz(e)/de>0, we have U '(z(¢)) >U '(z(€)) if, and only if, € <é.

Moreover, by Eq. (SM-A2) it is readily checked that pe — dv(§)/95 < 0 if, and only if, € < €.

So, we can continue Eq. (SM-C2) as

(SM-C3)
U %(5;s)
o5
- U@ 6()+ [[U ((elpe - 1460
+J/ UG pe- 2506 6

<-U '(z)%ca(w) +J U Epe - 226 )

av(é)

U (@) pe—==21dG(e)

v(9)

U@ )G(w)+U'(n(é))jW[pe— D6 ()

- U@ 6()+U ()] pecBe)

—U '(z(é)) J:%dG(e).

Because random variable €’s mean is 0, we have

(SM-C4) P jf’ﬂede(e) =p jiede(e)Jr D j:ede(e) =0.
So,
(SM-C5) p[edG(e)=—p[” edG(e) = a"?)



Also, from Eq. (SM-B2) we know that z is defined when e < . Therefore, by ¢ >y we
know that z(é) > z and hence U '(z(¢)) <U '(z). So, from expression (SM-C6) we have

U9 (5;9)
k)

U0 25 260)+U (0] ped6(e)-U (x| Zas d6 (o

=0

av( ) \ ov(9) 6V(5)
swce =Y @TL60) U ) D U () A 1-6(w)
- Uz )8“5)6(«//) +U'(x ())av(5)e<w>
ag(é)e(zm(u (2(€)-U (2))
<0 (byV'(8)> 0 and U '(x(é)) <U '(x)).
This finishes the proof. U

Item D

In this item, we discuss some sufficient conditions under which U9 (5;5)/ 06 > 0. We do not
intend to identify all the necessary and sufficient conditions for U ¥ (5;5) /05 > 0. We just

present some sufficient conditions under which dU ¥(5;s) /6 > 0 to convey the message that

subsidized crop insurance may make the expected utility increasing in yield risk.

From Eq. (SM-B4) we know that

GRUA (0;9) y7,
SM-D1 — =-2U'(x > 0.
( ) g | o (Z) Py 9(y)
Moreover, Item B in the SM has shown that
gif . girg.
(SM-D2) U7 (s:s) <0 and U7 (s:s) > 0.
9o s=1,4=0 9o s=1,¢=1




Therefore, according to the intermediate value theorem we can conclude that there exists a
unique ¢* € (0,1) , such that whenever ¢p > ¢* and s = 1 then dU9'(5;s)/d5 > 0. Since
oU%(5;8) /05 |,_,<0 and 6U¥(5;s)/ 04 is continuous in s, we can conclude that there is a
critical value of subsidy rate, § € (0,1), such that if s > § and if ¢ > ¢* then
oU%(5;s)/ 06 > 0.
Item E
In this item, we discuss how to calculate Loan Deficiency Payments (LDPs), Direct Payments
(DPs), and Counter-Cyclical Payments (CCPs). LDPs provide growers with payments when
the county-level cash price is lower than the county loan rate. DPs pay a fixed per bushel rate
to a grower based on a fixed base acre and a fixed crop yield that both are predetermined by
USDA. CCPs are paid whenever the sum of (a) Direct Payment rate and (b) the higher of
national marketing loan rate and the national average market price is lower than the
predetermined CCP rate. For detailed explanations of these three commodity program
payments, we refer readers to Vedenov and Power (2008). In what follows, we present
formulas to calculate these payments.

We include a time subscript, t, for variables that may vary over time. Since our simulation
for crop insurance subsidies’ effect is static, the time subscript is not necessary. However,

when simulating Sodsaver’s effect the time subscript becomes necessary because we consider

planting payoffs over cropland tenure. Let y>* and y*~" denote a grower’s Direct Payment

yield, and Counter-Cyclical Payment yield, respectively, of crop i € X. Since Y and y~

are based on a farm’s historical yields as determined by USDA, they do not change over time



and there is no t in the subscripts. In addition, let L;; be per-acre LDPs, DP; be farm-level

direct payments, and CCP, be farm-level counter-cyclical payments. Then, we have
L, = max]( pilt_DP = Pi) Vi, 01,
(SM-E1) DR =0.85> by p™,

ieX

CCP, = 0.852 bi inCP max[ piCCP _ piDP — max( pilt\lAMP, p#Dp)]’
ieX
where p™" is the crop i county-level loan rate in year t, p; is the county-level cash price for

crop i inyear t, p* is direct payment rate, p°~" is counter-cyclical payment rate, b, is basic

NAMP

acres, P, is the national average market price received for crop i in year t, and 0.85 is a

statutory factor.

Item F

In this item we present (I) the procedure to estimate kernel density functions for marginals of
unit-level yield-price joint distributions, and (b) the procedure to estimate the dependence

matrix, p, for the MGC.

Let €; denote the detrended unit-level yield for crop i’s jth observation. The kernel density

estimate of this unit’s crop i marginal yield density, f,(X), can be written as

~ 1< 1 X—6.
SM-F1 f(x)=—)» —K 4
( ) i(X) n;& { P ]

where n is the number of yield observations of the unit; A; is the bandwidth for crop i, i € X;

and K () is the kernel function. Then crop i’s marginal yield distribution function can be

Jas

Similarly, we can obtain crop i’s marginal price distribution function as

written as

(SM-F2) F(x)= %Z jw K [

s—éij
A

7



(SM-F3) H,(x) = %Z [" K (S_z,—pjj ds,

where P is define as P =log pi?a"’ —log pifmj, and subscript j denotes the jth observation. In

this study, we set K(+) as the Normal Kernel because it is one of the most commonly used
kernel functions, and the choice of kernel function is not critical (Greene 2003, p. 455). In the
simulation, the kernel density estimation is performed by using MATLAB function “ksdensity.”

Regarding the estimation for dependence matrix, p, the procedure is as follows. The

density function of the copula function in Eq. (23) can be written as

O"C(1yyees My
(SM-F4) sty p) = Oz i P).
on--on,

Then taking Ifi(-) and I-Ali(-) in Eqs. (SM-F3) and (SM-F4) as given, the dependence matrix,

p, can be estimated by

(SM-FS) p\ = arg maXZ log C( 'fc (éc] )5 Ifs(ésj )J 'fw(éwj )’ |:| c( pcj )J |:| s( r)sj )’ |:|W( ﬁWJ ))’

p j=1
where the subscripts C, S, and W stand for corn, soybean, and wheat, respectively. In the
simulation the estimation is performed by using MATLAB function “copulafit.”
Item G
In this item, we discuss the estimations of county-level yield and price marginals and the

dependence matrix, p, for the county-level yield-price joint distribution.

Regarding the county-level yield marginal distributions to be used in simulating SURE
payments and Sodsaver’s land use effects, we follow the same estimation method as in Du and
Hennessy (2012), except that in this article we apply a locally weighted regression method to

obtain county-level yield trend and residuals. The locally weighted regression method is a



nonparametric method that estimates the trend in a given year by using yield observations in
neighboring years and by assigning a weight for each of these yield observations according to
their distance from the given year. In what follows, we present the procedure for obtaining

county-level yield and price marginals and for estimating the copula.

Let y;, and )75t denote the county-level yield and trend yield for crop i in year t. The

procedure to obtain county-level yield marginals is as follows.

Step 1: Apply the locally weighted regression method to obtain yield trend in each year,

¥i: (e.g., Claassen and Just 2011). Then we define the normalized residual as €= Y7,/ ¥;,.

Step 2: Let g and ¢ denote the upper bound and lower bound of ¢;, respectively. We

it>

assume that § = . +30, and ¢ =0, where £ is the sample mean of €, and o, is the

standard deviation of €.
Step 3: The normalized yield residual ¢, can be transformed to a standard beta random
variable & by letting & = (&, —¢)/(§ —¢), i € X. We then estimate the beta distribution

parameters using MLE.
Step 4: Repeating Steps 1-3 for each county we obtain all counties’ yield marginals for
corn, soybean, and wheat.

When estimating the county-level crop price marginals, we follow Zhu, Ghosh, and
Goodwin (2008) by assuming that the difference between the logarithms of harvest price and

projected price is normally distributed. That is, for crop i € X,

(SM-G1) P, =log pt" —log p/i°



has a normal distribution. The parameters for this normal distribution are estimated by using
MLE. Then we obtain the marginal distribution for corn prices, soybean prices, and wheat
prices, respectively.

Once we obtain the yield and price marginals, then the MGC dependence matrix, p, can

be estimated by following Eqgs. (SM-F4) and (SM-F5) in Item F of the SM.

Item H
In this item, we describe data for DP yields, DP rates, CCP yields, CCP rates, LDP rates, farm
size, and the determination of the chosen absolute risk averse (ARA) coefficient.

County-level DP yields and CCP yields are obtained from Farm Service Agency (FSA) of
the USDA. We use the ratio of unit-level average yield over county-level average yield to
multiply the county-level DP yields and CCP yields to obtain the unit-level DP yields and CCP
yields, respectively. DP rate and CCP rate are obtained from “2008 Farm Bill Side-By-Side”
provided by USDA, available at
http://www.ers.usda.gov/FarmBill/2008/Titles/Titlelcommodities.htm#direct (accessed on
5/8/2012).

DP rates for corn, soybeans, and wheat are $0.28, $0.44, and $0.52 per bushel, respectively.
CCP rates for corn, soybeans, and wheat are $2.63, $5.80, and $3.92 per bushel, respectively.
LDP rates are downloaded from “Archived LDP/PCP” webpage available at the FSA web
site."” The county-level average farm sizes of the 17 counties are obtained from Census of
Agriculture 2007.

Regarding the ARA coefficient, we follow the approach proposed by Babcock, Choi, and

Feinerman (1993) that utilizes risk premium and probability premium to determine the

" http://www.fsa.usda.gov/FSA/displayPCPData?area=home&subject=prsu&topic=ldp-pcp
(accessed on 5/8/2012).
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appropriate range of ARA coefficients. They showed that the reasonable range of ARA
coefficients is determined by the standard deviation of net returns (i.e., gamble size) and risk
premium. In our simulation, we assume that a farmer’s risk premium is 10%. That is, farmers
are willing to pay 10% of the gamble size to eliminate the risk. We further assume that each
farmer’s gamble size is $65,000. Then by applying the approach in Babcock, Choi, and
Feinerman (1993) we obtain the ARA coefficient as 3.1x107".

Item |

In this item, we briefly introduce the procedure to obtain the unit-level detrended yield. Since
the approach taken follows that in Claassen and Just (2011), we refer readers to that article for
a more detailed discussion.

First, we need to obtain the county-level yield trend, which is estimated using the weighted
local regression method described in Item G of the SM. Specifically, for a given county, let y:

denote the county-level yield in year 7 € {1,...,T}, and let 2| denote the length of a subset of

{1,...,T}. Then the county level yield trend ; for r € {l +1,...,T —1} can be predicted by

C
r—l+12°"

using results from a weighted regression of y; |,y SYegont—lLz—l+1L.,7+] witha

constant term, where the weights for the independent variable are defined by the tricube
weighting function. The tricube weighting function can be written as

T—7 T—7

’)’, whenever —1< <1

(-]

(SM-I1) W(U(7)) = .

0, whenever | >1,
where 7 € {1,...,T}.

Second, we construct a productivity measure for each unit by incorporating the county-

level yield trend. That is,

11
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(SM-12) O =% T

;qiktyickt /;qikt

where a;,, and Y, are the unit acreage and yield for crop i of unit j in county k and in the tth

year, t e {1,...,10}, respectively; while g,, and ¥;, are acres harvested and trend yield for crop

i of county k and in the tth year, respectively.

Third, the detrended unit-level yield for crop i of unit j in county k and in the tth year,
tedl,..,10!, is
(SM-13) éijkt = Yij — eijk yﬁq
Item J
In this item, we discuss the procedure for quantile matching units to obtain soybean and wheat
yields for a unit in the RMA corn yield data set. The basic idea is that we match a corn
productivity unit at the zth quantile with zth quantile soybean and wheat productivity units. We
follow Claassen and Just (2011) to measure a unit’s crop productivity. That is, the unit-specific
productivity for a crop equals the ratio between the average unit-level yield and the average
county yield trend (see Eq. (SM-12)). The matching procedure can be presented as follows.

Step 1: Calculate the productivity measure &, in Eq. (SM-12). Data for g, and yj,, are
included in the RMA yield data sets. Data for ¢, are obtained from USDA NASS. Values of

V.. are obtained by using a locally weighted regression method (see Item I).

Step 2: Based on the unit-level productivity measure obtained in Step 1, for each county
and each crop estimate an empirical distribution of this productivity measure. The empirical

distributions are estimated using kernel density estimation which is implemented by MATLAB

12



function “ksdensity.” Let G;(*), G, (*), and G,'(*) denote the county k estimated cumulative

distribution functions for corn, soybean, and wheat, respectively.

Step 3: Suppose a corn unit  in county K has productivity measure 6, . Then this corn
unit’s first-best soybean unit match is a soybean unit whose productivity measure is the closest
to GTI (G} (6,,)), where GTI(') is the inverse function of G;(-). This corn unit’s first-best

wheat unit match is a wheat unit in county k whose productivity measure is the closest to

G}’V_I(G]?(chk )). Similarly, this corn unit’s second-best soybean and wheat unit matches are

units whose productivity measures are second closest to G?_I(Gf(ﬁcjk)) and G}V_I(Gf(ﬁcjk ),

respectively. For each corn unit, we identify the n (n = 15 in this study) closest matched
soybean units and the n closest matched wheat units.

Step 4: Recall that each unit has a 10-year yield record. For a given year, say year 7, and
for a corn unit we utilize the soybean yield in year T from the first best matched soybean unit.
If the closest matched soybean unit does not include a year 7 yield, then we utilize the year t
yield from the second closest match, and so on. If none of the top n matches has a 2005 yield,
then this corn unit is left unmatched for year . We do the same to identify wheat yield for this
corn unit. In the simulation, we only keep corn units that have five or more successfully

matched years, by which 61 out of 9,872 units are excluded.
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Table SML1. Probability of A County Becomes A Disaster County or Is
Contiguous to A Disaster County in A Typical Year®

County Aurora  Beadle Brown Brule  Buffalo Campbell
Probability 0.51 0.41 0.50 0.71 0.79 0.52
County Edmunds Faulk Hand Hughes  Hyde Jerauld
Probability 0.50 0.45 0.61 0.64 0.79 0.67
17-county

County McPherson Potter Spink  Sully Walworth
average

Probability 0.56 0.47 0.35 0.47 0.38 0.55
Note: * The values in this table are obtained as follows. When conducting Procedure
2, we count the frequency that a disaster occurs in a county within the 50 years
period. Then we divide the frequency by 50 to obtain the probability values in this
table.

Table SM2. Expected 5-year NPV of SURE Payments and Net Crop Insurance Indemnities
(unit: $/acre) from CCC (2011) and from This Study

CCC (2011)* This Study”
Percent Percent of
SURE Net of Market SURE Net Market
County Payment Indemnity  Profit’ Payment Indemnity Profit*
Beadle 9.43 40.08 8.06 8.68 39.05 391
Edmunds 11.49 35.04 7.70 10.51 71.80 11.49
Faulk 10.59 31.73 6.39 8.26 44.39 4.82
Hand 11.29 40.52 10.64 11.89 54.49 7.25
Hyde 15.49 42.67 12.54 32.04 78.16 24.58
Sully 17.41 41.02 13.99 15.38 72.25 10.15
average 12.62 38.51 9.89 14.46 60.02 10.37

Note: ? Data from Table 4’s “New Land Rules” panel in CCC (2011). " Data based on the projected
prices in the 2008 price scenario. Recall that study in CCC (2011) is based on 2008 prices.  Here
“Percent of Market Profit” stands for the sum of SURE payment and net indemnity as a percent of
market profit.
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Figure SM1. The 17 Counties in the Central and North Central Area of South
Dakota and Their 15 Contiguous Counties
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