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We propose procedures for testing statistically the significance of violations

of nonparametric tests of optimization axioms when observed behavior is

measured with error. The tests are robust against parametric specification of

the error distribution, thus are nonparametric in both the statistical and

economic senses, and are readily implemented numerically. An illustration

with demand data is presented.
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Testing the Significance of Deviations from Rational Behavior

Yacov Tsur

1. Introduction

Since their development by Afriat (1967, 1973), Hanoch and Rothchild

(1972) and Varian (1982, 1984), among others, nonparametric analyses of

consumer demand and producer input/output decisions continue to find useful

applications in a wide variety of areas. A crucial step in the analysis

entails testing whether an observed pattern of behavior is rational, in that

it is the outcome of consumers maximizing preferences or producers maximizing

profit (and minimizing cost). The term "nonparametric" signifies, in this

context, that no parametric structure is a priori imposed on preferences or on

the production technology. If the data pass the test, so that observed

behavior is rational, useful information on preferences or production

technologies can be recovered. A violation of the test indicates non-optimal

behavior of decision makers or that structural changes in preferences or

production technologies are present (or a combination of the two).

Data on observed decisions, however, generally are measured with errors.

A violation of an optimization axiom by the data, thus, raises the question of

how large the deviation is from optimal behavior and whether it is plausible

that the true (unobserved) behavior is rational. Clearly, a measure of the

significance of the deviation is required in order to answer this question.

Numerous authors have proposed statistical procedures which provide

precise meaning to the adjective "significant" (see Varian, 1985, and the

references he cites). These procedures are based on a particular parametric

specification of the error distribution, e.g., normality. The assumption of

normality (or any other specification) is bothersome since it is inconsistent,

in spirit, with nonparametric analyses; as argued by Hanoch and Rothchild

(1972, footnote, p. 264): "It does not seem sensible to make no assumption
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about the production process and then blithely impose a particular

specification on the error process."

Noting this limitation, Epstein and Yatchew (1985) develop a framework of

nonparametric (in the statistical sense) hypothesis testing and describe how

it can be applied to test violation of optimization axioms. In particular,

they show that the test proposed by Varian (1985) can be given an

asymptotically nonparametric interpretation. Empirical implementation of this

test, however, is computationally quite involved and rapidly looses

tractability as the sample size increases; thus, applications are limited.

Tsur (1989), in an attempt to mitigate the tractability problem, proposed a

test which is simple and fast, and therefore can be applied with large data

sets. Tsur's test, however, maintains an assumption of normally distributed

errors, and hence suffers from the deficiency mentioned above.

In this work we develop a framework for testing the significance of

violation of optimization axioms when the data contain measurement errors.

The tests are robust against the specification of the error distribution and

possess desirable computational properties. The analysis is similar in

approach to that of Epstein and Yatchew (1985) and builds on ideas developed

in Tsur (1989).

The hypothesis testing framework is developed in the context of consumer

demand decisions. It begins, in Section 2, with a description of the data

process and a summary of the relevant revealed preference concepts. The test

procedure is developed in Section 3, which also presents comparison with a

parametric test that maintains normally distributed errors. Section 4

discusses implementation issues. The production case is covered in Section 5,

where hypothesis testing of deviation from profit maximization and cost

minimization is described. A numerical illustration, presented in Section 6,

applies the procedure to test deviations from optimal consumption decisions.
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Concluding comments are offered in the closing section.

2. The data process and revealed preference concepts

Let X be k-vectors of observed quantities demanded at prices i,

i=1,2,..n. The observations contain errors; the corresponding true,

Si 'i
unobserved quantities and prices are denoted by X and P Let C(i,j) =

4. i j *
P iXJ represent the expenditure of consuming Xj at prices PJ, and C (i,j) =

P iX J be the corresponding true (unobserved) expenditure. The observed and

true expenditures are related according to C(i,j) = E(i,j)C (i,j), where the

E(i,J)'s represent measurement errors associated with the expenditure data.

Let c = log C(j,j), c = (c1,c2,.., ), c = log C (j,j), c _ (c ,c2 ,...c n )

and cj = log E(J,j). Then, for J=i:

cj = c + j, J=1,2,..,n. (1)

The test developed below involves (moments of) the errors on actual

expenditures, i.e., the ' s. Without imposing a particular parametric form

on their distribution, we require:

Assumption 1: cl,c 2,..,c n are lid with a zero mean and a finite fourth moment.

A zero mean is not essential; if E(e ) * 0 then Eq. (1) can be redefined as cj

'* -_' - **

= cj+cj with cj = cj-c, cj = cj-c and j = c-e such that E(c ) = 0, where

the bar indicates sample mean.

The revealed preferred relation is represented by R. A taxonomy of

revealed preference concepts can be found in Richter (1966, p. 638); here we

use the "narrow sense" definition, as described in Varian (1982, p. 947),

which under nonsatiation coincides with the "wide sense" concept. The

equivalent concept for the true structure is indicated by R ; thus X iR X J is

interpreted as "X is preferred to X*' " according to the unobserved quantities

*1 *1
and prices (the term "revealed" is dropped since X J and P are unobserved).

The starred variables P , X , or C (i,j), are referred to as the true
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structure.

The data {XJ,P j, j=1,2,..,n} satisfy the Generalized Axiom of Revealed

Preference, or GARP (Varian, 1982, p. 947), if XiRX J implies C(j,j) s C(j,i)

for all i,j. The true structure satisfies the GARP if X iR X J implies

C (j,j) s C j,i) for all i,j. The data {XJ,PJej, j=l,2,..,n} satisfy the

GARPe if XiReXj implies eJPJ.X j S PJ.X i , where Re is defined as XJReX if and

only if eJPJXJ 2 PJX, Re is the transitive closure of Re (i.e., the smallest

transitive relation containing Re) and the ej are n scalars satisfying

0 s ej s 1 (see Varian, 1990, pp. 130-131).

Let Ce(j,i) = eJC(j,i) if j=i and Ce(J,i) = C(j,i) if j*i. The set

{XJ,PJ,e j, j=1,2,..,n}, or simply Ce(J,i), is denoted the perturbed structure

and (e ,e2 ,..,e ) is the perturbation vector. The perturbed structure

generated by the perturbation vector ej = exp(-cj), J=1,2,..,n, will be

denoted the perturbed-true structure (this corresponds to the expenditure

matrix whose diagonal and off-diagonal elements equal the true and observed

expenditures, respectively).

The perturbation indices ej, j=1,2,..,n, proposed by Varian (1990),

present an extension of Afriat's (1973, p. 463) single efficiency index and

have a counterpart in the production context-- the A defined by Hanoch and

Rothchild (1972, p. 263). These indices are used to produce a goodness-of-fit

measure of how well the data fit a particular optimization axiom (in addition

to Varian [1990], see Chalfant and Alston [1988] p. 406, for a demand example,

and Chavas and Cox [1990] p. 455, in the production context). Here we also

follow this practice, by generating a goodness-of-fit index based on the

perturbation indices (represented below by pn ), but carry the analysis a few

steps further by developing a measuring device, in terms of a statistical

test, to evaluate the magnitude (significance) of the lack-of-fit (violation)

of the data with an optimization axiom.
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3. Testing the Significance of GARP Violation

Our test is motivated by a simple idea. We perturb the data until they

satisfy the GARP and then assess the plausibility that the perturbed structure

is the true one which generated the data. Put differently, we observe the set

of all structures that satisfy the GARP and ask whether it is plausible that

the observed data were generated by a member of this set. The formulation of

the test entails (i) defining a notion of distance between the observed

structure and a perturbed one, (ii) determining the minimum distance between

the observed structure and a perturbed structure that satisfies the GARP, and

(iii) providing statistical meaning to the plausibility that the data were

generated by this particular structure.

We begin with the notion of distance between the observed structure and a

perturbed structure. Any vector v e Rn generates the expenditure matrix given

by C(i,j) if iwj and exp(vj) if i=j; this is equivalent to the perturbed

structure generated by the perturbation vector ej = exp(vj-c), J=1,2,..,n.

In particular, v = c and v = c correspond to the observed structure and the

perturbed-true structure, respectively. The terms v-vector and v-structure

will be used interchangeably.

The distance between the observed structure and a perturbed v-structure

is represented by d (v,c) = E{ i(ci-vi) }/n and is estimated by d (v,c) =
n 1=111ic n

Zn(ci-vi) 2}/n, where E{*} is the expectation operator. In particular,

d (c ,c) = E{ Z E2}/n r2 is the distance between the observed structure and
n 1=1 i

the perturbed-true structure and d (c ,c) = iEc2/n E s is its (unobserved)
n 1=1 n

estimate.

Next, we define the set

r (p) = {v E Rn: d (v,c) O p},
n n

containing all the perturbed structures which are at most p away from the

observed structure; the corresponding estimate is given by
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r (p) = {v E R : d (v,c) n p}.
n n

A vector (or structure) v satisfies the GARPe if its associated

perturbation vector, eJ = exp(vj-cj), j=1,2,..,n, satisfies the GARPe. We

shall say that r (p), or F (p), satisfies the GARPe if it contains a structure
n n

that satisfies the GARPe. The minimum distance between the observed structure

and a structure that satisfies the GARPe can now be defined as:

p = Min{p: r (p) satisfies GARPe}, (2)
n n

with the estimate

p = Mln{p: r (p) satisfies GARPe}. (2)
n

Observe that p's p" if and only if (p' ) s r(p") [resp. r (p' ) 
n n n

r (p")], thus r (p) [resp. r (p)] satisfies the GARPe for all p 2 p [resp. p
n n n n

p ]. Note further that, when the GARP is violated by the data, F (0) does
n

not satisfy the GARPe (since it entails ej = 1, all J) whereas F (o) vacuously
n

satisfies the GARPe (since vj= -- implies e3 = 0).

Equipped with a notion of distance between structures, particularly the

minimum distance between the data and a perturbed structure that satisfies the

GARPe, we proceed to provide statistical content to the statement "it is

plausible that the true structure, from which the data were generated,

satisfies the GARP".

If the satisfaction of the GARPe requires that at least one of the ej

vanishes, then we interpret this as evidence that the true structure could not

possibly satisfy the GARP. Attention is therefore limited to cases where this

unfavorable event does not occur and we require:

Assumption 2: There exists 6 > 0 such that, for all n, the GARPe can be

satisfied by a perturbation vector ej 86, j=1,2,..,n.

This assumption implies that pn is bounded from above for all n and we can

define

Po = lim sup Pn. (3)
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· 2 2
Now, c e r (p) for all p 2 2 and c ¢ r (p) for all p < . If

n n

2
Pn > 2 , then c could not possibly satisfy the GARP. On the other hand, if

P s 2 then c belongs to a set that satisfies the GARP and may well satisfy

the GARP itself. This leads to specifying the null hypothesis, which

maintains that c satisfies the GARP, as:

Ho: p s 2.

If Ho is rejected, then the conclusion that c could not possibly satisfy the

GARP is, subject to the qualification of a statistical test, correct.

The following result provides a test-criterion for Ho. Let z(a) be the

2
1-a positive quantile of the standard normal distribution, = Var(c ) and

2 = Var( )

Proposition 1: Under Assumption 1 and Ho,

lim Pr{vn(p -m2)/T S z(a)} a 1-a.
n-o n

The proof relies on

Lemma 1: (p -p ) - O.
n n

Proof: By the Law of Large Numbers, d (v,c) - d (v,c) -p- 0, i.e., d(v,c) =

d (v,c) + o (1), where A = o (B ) if A /B -n 0 as n-> m . Let v' E Rn be the
n p n p n n n

particular vector corresponding to p , i.e., v' satisfies the GARPe,

v' e r (p ) and d (v',c) = Pn. Then, v' E r (p +o (1)), implying that

n n p

Let v" E Rn be the particular vector corresponding to p , i.e., v" satisfies

the GARPe, v" e r (p ) and d (v",c) = p . Then v" E r (p -O (1)), implying
n n n n n p

that

p s P - o (1).
"n n p

Together, the two inequalities imply p = p + o (1), as asserted.I

It follows immediately from the lemma, using (3), that:

Corollary: Prob{p s p 0 }-4 1 as n- ox.
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Proof of proposition 1: By standard application of central limit theory,

2_ 2 d 2 nl2
vn(s2 - ) /T-d N(0,1), where it is recalled that s2 E Cl i/n. Thus

n n I=1 1

Pr{Vn(s 2 - o2)/T s z(a)} -- 1-a.
n

Now, s2-n 2, Pr{p a p }- 1 and Ho imply Pr{p a s 2 }n 1. Thus, under Ho:

Pr({n(p - a2)/ T n(s2-_2)/T} -- 1.
n n

Let A denote the event {Vn(s2 -a)/T s z(a)}, B denote the event {Vn(p -a2 )/T s
n n

Vn(s 2-a 2 )/T} and C denote the event {vn(p -a2)/T s z(a)}. Then, we have
n n

Pr{A}-» 1-a and, under Ho, Pr{B}-> 1, implying that Pr{AuB}-> 1; thus Pr{AnB}

= Pr{A} + Pr{B} - Pr{AuB} - 1-a. Since C 2 AnB, Pr{C} 2 Pr{AnB} for all n.

Taking limits on both sides gives

lim Pr{vn(p -c2 )/T s z(a)} E lim Pr{C} 2 lim Pr{AnB} = 1-a,
n--o *n n--» n--o

as asserted.0

2 2
Remarks: (i) If p = m2 and p = s + o (1/An), an event which iso n n p

permitted under Ho, then Pr{vn(p -2 )/T s z(a)}-4 1-a and Proposition 1 holds
n

with equality. (ii) If the c 's are normal, then ns2/ 2 is distributed as
J n

2 2 2
X and Proposition 1 becomes: Under Ho, lim Pr{np /2 s 2 (a)} 2 1-a,~(n) n -- n (n)

2 2
where 2 (a) is the 1-a right quantile of X )

(n) (n)

According to Proposition 1, a test which rejects Ho whenever

^ 2
p 2+ z(a)T/vn, has a significance level (for large enough n) no greater

n

than a, and actually attains the size a under the conditions of Remark (i).

Thus, the test criterion

reject Ho if 2 a p /(1 + z(a)VO/Vn)
n

has a significance level no greater than a for all distributions F in the set

5(e) = (F: T2/4 s e}.

The set (6e) satisfies 5(6') S 5(e") =e: O' s e"; thus, for example, 5(e)

contains the normal distribution for all O 2 2 and the uniform distribution

for all 09 4/5. If T2/ 4 is known, then e is set equal to this value.

Lacking such knowledge, the value of 0 is set equal to the least upper bound
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of 2/ 4 .

To evaluate the index p we utilize the (well known) fact that the data
n

C(j,i) satisfy the GARP if and only if there exist positive scalars uj and Aj,

J=1,2,..,n, satisfying Afriat's inequalities

uJ 5 ui + A (C(j,i) - C(j,j)), i,j=l,2,...,n.

It is readily verifiable that the perturbed data Ce(j,i) satisfy the GARPe if

and only if there exist uj,j > 0 and 0 < eJ S 1, j=1,2,..,n, satisfying
sis

uj uI + A (C(j,i) - eC(JJ)), i,j=1,2,...,n.

An operational definition of p can now be given as:
n

Pn = MIN E (log e)2/n (4)
J=1

subject to: u s u t + A[C(J,i) - eC(J,)], j,i = 1,2,..,n;

u Aj,e > 0, e s 1 , j = 1,2,...,n.

2
Given Pn and 0, implementing the test requires information on o . The

actual expenditure data can provide some rough bound on ar , since (cf. Eq.

(1)) o2s 2c where 2= E(cj-c) can be estimated by 2 = JE(c -c)2/n with
C c c J=l J

c = nc /n. But this bound is useful only if p - If P < , then one

2
needs to resort to extraneous information on o ; such information can be

obtained, for instance, by studying the process by which the expenditure data

were collected (a process conducted by human beings) and calibrating its

accuracy. The need to rely on extraneous information of the error variance

appears to be a recurrent property of hypothesis testing in the context of

nonparametric analyses (see Varian [1985] and Epstein and Yatchew [1985]).

It is illuminating to compare the distribution-free test with the test

that maintains normal errors. Following Remark (ii), with normally

distributed errors, Ho is rejected if a-2 p /[X2 (a)/n]. Now, using the

approximation x 2 (a) = 1 (z(a) + 2n - 1)2 (see, e.g., Lindgren [1976, p.
{ nW 2 { )

195]), it is easy to verify that x2 (a)/n = 1 + z(a)V2/Vn + 0(l/n), where
(n)

A = O(B ) if A /B is bounded for all n. It follows that the normal test can
n n n n
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be approximated, to the order O(1/n), by the test

reject Ho if 2 s p /(1 + z(a)V2/Vn),
n

which is equivalent to the distribution-free test with e = 2. But e = 2 is

the least e-value for which g(e) still contains the normal distribution. It

appears therefore that the distribution-free test utilizes efficiently the

limited available information. If e > 2, the normal test is sharper, in that

its rejection region is larger than that of the distribution-free test. The

normal test, however, could be misleading if the moment ratio T 2/a exceeds 2.

As expected, the two tests coincide in the limit of large n.

This completes our formulation of the test procedure. Implementing the

test requires calculating p , which, as it stands now, entails solving the

nonlinear problem (4). This task can become quite formidable, since the

number of constraints raises rapidly with the number of observations n (like

n2). Fortunately, there are effective ways to make this task more manageable,

and in some cases to avoid it altogether, as is discussed in the next section.

4. Implementation

The "curse" of the nonlinear problem (4) lies in the number of

constraints, which increases like n2. It would therefore be useful if these

constraint were linear (on this point see Brooke et al. [1988, p. 158]).

Fortunately, this can easily be achieved by a proper redefinition of the

variables. In particular, by defining gj = tje J , Problem (4) becomes:

pn = MIN E (log(gj/)) /n (5)
J=!

subject to: u u + k C(j,i) - gjC(,j), ,i = 1,2,..,n;

g - A a 0, j = 1,2,....n;

u j,X,g > 0, j = 1,2,...,n.

In this form, experience shows (see next section), that situations with n=100

are readily handled on a micro (Vax) type computer.
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While the linearized form (5) reduces drastically computation

requirements relative to (4), these are still quite substantial (and may even

be prohibitive) for large n (say, n 2 150). It is therefore important to note

that in many cases the nonlinear programming task, of solving (5), can be

avoided altogether. To see this, suppose there exists a distance measure n

which is close to pn but lies above it, and is easy to calculate. Suppose

further that a test that uses p instead of p cannot reject Ho. Then, since

Pn 2 Pn, Ho cannot be rejected with p either and there is no need for pn

Indeed, an estimator n , which performs extremely well (in the sense of

A

being very close to pn), is attainable by the algorithm proposed in Tsur

(1989). (For the sake of completeness we repeat the algorithm in the

appendix.) This procedure can take at most n iterations, is easy to implement

numerically (a case with 150 observations took seconds on a pc) and, as the

application in the next section reveals, gives estimates which are very close

to Pn.

If, alas, pn rejects Ho, then pn is required to verify this result

(because pn pn, it is possible that n rejects Ho whereas pn does not). In

this case the output of the pn-algorithm is still useful, as it can serve to

provide a "good" initial feasible solution from which the minimization of (5)

departs (by a good solution we mean a solution close to the true minimum). A

good initial point is important since in general the objective in (5)

possesses multiple (local) minima and the global minimum is more likely to be

reached if the initial point lies in its close vicinity. Of course, it is

always possible to experiment with many initial values and to choose the least

of all convergent points, but such an approach increases computation

significantly. (On how to use the output of the p -algorithm to calculate

initial values for Problem (5), see discussion in the appendix.)
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5. Production decisions

In the production context the observed data consist of netput vectors

zj = (y,-xj) and their associated prices qj = (pj,w), j=1,2,..,n. Here yj

and pj are scalars representing quantity and price of output, and xj and wj

are k-vectors of input quantities and prices. The profit data R(J,i) = qj'z i

contain measurement errors. The true structure, denoted by R (j,i), is

related to the observed structure according to R(j,i) = n(j,i)R (J,i), where

Q(j,i) represents measurement errors associated with the profit data. Letting

rj = log R(j,J), rj = log R(j,j) and Aj = log Q(j,J), yields (cf. Eq. (1))

rj = r + aj, J=1,2,..,n,

where the errors W1 ,w2,. ..,n satisfy Assumption 1.

The data satisfy the Weak Axiom of Profit Maximization, or WAPM, (Varian,

1984. p. 584) if, and only if, R(j,J) 2 R(j,i) for all j,i = 1,2,..,n. The

true structure satisfies the WAPM if, and only if, R (J,J) R (J,i) for all

J,i = 1,2,..,n. We introduce the perturbation scalars ej 2 1, J=1,2,..,n, and

the associated perturbed data (zj,qj,ej), J=1,2,..,n, and say that the

perturbed data satisfy the WAPMe if, and only if, ejR(j,J) 2 R(J,i) for all

J,i = 1,2,..,n.

Any n-vector v generates a perturbed structure given by R(j,i) if joi and

exp(vj) if j=i; this is equivalent to the perturbed structure generated by the

perturbation vector ej = exp(vj-rj). A vector (or structure) v satisfies the

WAPMe if its associated perturbed structure satisfies the WAPMe. The distance

between the observed structure R and a v-structure is measured by d (r,v) =

E{f Z(rj-v) }/n and estimated by d (r,v) = )Z(rj-v )2/n.

The sets

r (p) = {v E Rn: d (v,c) s p} and r (p) = {v E Rn: d (v,c) S p}
n n n n

are said to satisfy the WAPM if they contain a v-structure that satisfies the

WAPMe. Consequently, the indices
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p = Min{p: r (p) satisfies the WAPM}
n n

and

p = Min{p: r (p) satisfies the WAPM}
n

are defined as in Eqs. (2).

We require the existence of an upper bound M < w, such that, for all n,

the WAPMe can be satisfied by perturbations ej M, j=1,2,..,n. Thus, pn is

bounded from above and p0 can be defined as in Eq. (3).

Lethj = 1 MAX (log R(j,i) - log R(,J)) and gj = MAX(O,hj)
i=1,2,...n- J

j=1,2,..,n. Then, it is easy to verify that

pn = g /n.J=1J

With o2= Var(o ), the null hypothesis, which maintains that the true

structure satisfies the WAPM, remains

Ho: p s 2

2 2
Following Proposition 1, Ho is rejected whenever p 2 a + z(a)T/vn, where o 

Var(w) and T2 = Var(w2). The test criterion

reject Ho whenever 2 s p /(l+z(a)Ve/Vn)

ensures a significance level no greater than a for all w-distributions F in

the set 5(O) = {F: T2/04 s 8}.

To test for cost minimization behavior (note that profit maximization is

stronger than cost minimization, as the former implies the latter but not vice

versa), redefine qj and zJ as: qj = wj and zj = xj, J=1,2,..,n. Thus, R(,i)

= qjz represents the cost of using input xi at prices wJ and Q(J,i) is the

measurement errors associated with the cost data. The data satisfy the Weak

Axiom of Cost Minimization, or WACM (Varian, 1984, p. 582) if, and only if,

R(J,j) s R(j,i) for all yj s yi. A perturbed structure associated with the

perturbation vector ej s 1, j=1,2,..,n, is given by R(J,i) for i*j, and

ejR(J,J), i,J=1,2,..,n. The perturbed structure satisfies the WACMe if, and

only if, e R(j,j) s R(j,i) for all yj s y,' i,j=1,2,..,n. Let Mj = {i: yl s
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Yi, and redefine h and gJ as: hJ = MIN log R(J,i) - log R(J,J)) and

gj = MIN(O,hj], j=1,2,..,n. With obvious modifications, the procedure for

testing the significance of the WACM violation proceeds along the same steps

as above, using p = j= g /n evaluated at the above redefined gj's.

In the absence of price data, i.e., when only yj and xj, J=1,2,..,n, are

available, one can proceed by seeking a set of input prices under which WACM

is satisfied. Programs (8) of Hanoch and Rothchild (1972, p. 262) is designed

for this purpose. The outcome of this sequence of linear programs includes

the indices 7j, J=1,2,..,n, which are equivalent to the minimal perturbations

needed to ensure the existence of (positive) input prices under which the data

satisfy the WACM.

5.1 Technological change

There are two main reasons for the violation of an optimization axiom.

First, the input-output decisions may not be determined only according to

profit maximization or cost minimizing considerations. Second, the production

technology may vary across producers (this is particularly relevant when

dealing with time series data, where technological differences are likely to

prevail over time as a result of technological progress). These two causes

are observationally indistinguishable, in that the data do not contain enough

information to identify the cause of the violation.

If, however, the assumption of optimization behavior is maintained, then

violations, if they occur, must be due to technological progress, and the

nature of the violation can then be used to study the nature of the technical

change process. Indeed, this idea has been utilized by Chavas and Cox (1988,

1990), who incorporated technological change into nonparametric production

theory and used this approach to study technological progress processes in

U.S. agriculture and in U.S. and Japanese manufacturing.
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Abstracting from measurement errors, Chavas and Cox (1990, p. 455)

discuss goodness-of-fit indices of nonparametric tests of cost minimization,

which are based on perturbation indices similar to the above e 's. It is

unclear, however, which values of these indices constitute good fit and

which values constitute lack of fit. In the present construction, p

represents such a goodness-of-fit measure, with a decreasing fit indicated by

Pn moving away from zero, and the magnitude, or significance, of pn is

measured relative to the error variance (o2) via the hypothesis testing

procedure.

If the violation of optimization behavior is due to technical changes, as

is maintained by the nonparametric productivity analysis, then the

significance of the violation indicates the significant of the technical

change process. Thus, for example, a rejection of the hypothesis that the

true structure does not violate WACM, can be interpreted as evidence that the

technical change process is not merely due to data measurement errors, but

rather a persistent and significant process. The technology coefficients can

then be evaluated using the procedures suggested by Chavas and Cox (1988,

1990). If, however, the violation is insignificant, then some caution ought

to be exercised when drawing conclusions from nonparametric analysis of

technical change.

6. Application

The data consist of monthly consumption and prices of four major meat

types (the data were collected in Spain and are available upon request).

Different samples, corresponding to sub-periods of lengths n = 20, 50, 75, 100

and 150 months (n stands for the number of months in the sample), are

considered. All samples exhibit some violations of the GARP, thus pn and pn

are calculated (except for p 1) and a test of the significance of the

violations is performed.
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The index pn is produced by a computer code realization (Fortran) of the

pn-algorithm described in the appendix. The output of this routine is then

used to calculate feasible values for uj, Aj and gj, J=1.2,..,n, i.e., values

satisfying the Afriat inequalities in (5). The nonlinear minimization task to

produce pn is performed by GAMS (Brooke et al. [1988]) installed on a Vax

6000-510 machine. The results are presented in Table 1.

I Table 1 l

In the first three cases (n = 20, 50 and 75), pn is slightly above Pn, as

it should be, and the difference between the two is extremely small. In the

fourth case, that with n = 100, p is slightly below p , which, by the

definition of pn, is impossible. Clearly, the nonlinear minimization routine

picked a local minimum which does not coincide with the global minimum. In

fact, other runs of GAMS with different, arbitrary initial points yielded

other local minima which were all greater than the value of pn reported in

Table 1. For the n=150 sample, only p is reported; the computations required

to calculate pn exceeded the capacity of the computer.

These results seem to illuminate the importance of the pn-algorithm, both

(i) in producing good initial points for the nonlinear programming routine and

(ii) in providing an alternative for pn when the nonlinear problem (5) is

unmanageable.

We investigate now the significance of the GARP violation of the n = 150

sample. The estimated variance of the expenditure sample {cj = log C(J,j),

j=1,2,..,n} is c2 = 0.376 and p 15= 1.Ollx10 (see Table 1). With a = 5%,
C 150

pn/(l+z(5%)v6/Vn) = 8.5x10- 6 or 4.3x10- 6 as 0 = 2 or 100, respectively.

Because a2 exceeds pn/(l+z(5%)8//Vn), a clear-cut rejection of Ho is
c n

impossible (see discussion in Section 3). The magnitudes of these parameters,

however, convey some information. Suppose 2 S pn/(l+z(5%)V/8/n), so that

/2 s [22 n/(l+z(5/%)v8/Vn)]/ 2 s 10
-5. Eq. (1) implies, in this case, that

c n c
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the measurement errors account for no more than 0.001 percent of the variation

in cj, the rest being contributed by the variation in c T. This entails an

extreme level of accuracy of measurement, which is not typical for data

collected in an uncontrolled experiment. It appears likely therefore that

a 2 pn/(l+z(5%)Ve/Vn), in which case Ho cannot be rejected. But, since pn 

A A

pn, a test based on p could not have rejected Ho either. Thus, based on pn

and without having to calculate p , we conclude that the violation of the GARP

by the data is not severe enough to render the satisfaction of the GARP by the

true structure unlikely.

By way of comparison, suppose normal errors. Following Remark (ii) gives

np n/X(5%) = 150x10. lxl0-6/179.3 = 8.46x10- 6 as the 5 percent upper critical

2l A o w e t l 
level for r . As one would expect, this level is almost identical with the

critical level of the distribution-free test with e=2 (see discussion in

Section 3). Also, the normal test is sharper in that its rejection region is

larger: if a2 lies between 8.46x10 -6 and 4.3x10-6 then the normal test would

reject Ho, leading to the conclusion that the true structure could not

possibly satisfy the GARP, whereas the distribution-free test with 0=100 would

not reject Ho. This is reasonable because the nonparametric test accommodates

an entire family of distributions, of which the normal distribution is but one

member. If the normal assumption is wrong, however, the parametric test could

be misleading.

7. Concluding Comments

This works develops a framework for testing the significance of deviation

from optimal consumption and production decisions when observations are

measured with errors. The tests are free of a parametric specification of the

error distribution and are easy to implement numerically.

The distribution-free property is accomplished up to an independence

requirement and some moment bounds. The lid requirement can be relaxed, a
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task left for future research. Placing bounds on the moments of the error

distribution appears to be unavoidable and occurs in other, related tests (see

Varian, 1985, and Epstein and Yatchew, 1985). This is so because

nonparametric analysis does away with the parametric structure, usually

maintained in econometric models, that allows one to estimate moments of the

error distribution from observed data.

The computational requirements of the GARP test depend on whether pn

alone can do the job, or is pn also needed (see discussion in Section 4). In

the former case, there are no practical limits on the number of observations

(the case with n=150 took seconds on a 386-pc). The latter case is more

involved: solving the nonlinear program (5) with n=100 using GAMS installed on

a Vax 6000-510 computer took about two hours, and the case with 150

observations exceeded the computer's capacity.

Though no results are available on the relationship between pn and pn,

the application here suggests that they are extremely close to each other.

Thus, with large models, pn should be calculated first. If the test based on

*** A

Pn rejects Ho, then, and only then, should an attempt at calculating n be

considered based on the computational resources available and the nature of

the problem on hand. In this case the output of the pn-algorithm serves as a

useful starting point for the nonlinear procedure.

Because production output is observable, unlike preferences output, i.e.,

utility, the computations required to test rationality of production decisions

are substantially lighter than those required to test rationality of

consumption decisions.
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Appendix: (a) The pn-algorithm

Input: the n by n expenditure matrix C;

Output: a perturbation vector, Mj, j=1,2,..,n, satisfying the GARPe and the

associated index pn;

(1) set M(j)=1 and Ce(i,j)=C(i,j) for i,j=1,2,..,n;

(2) set Ce(j,j)=M(J)C(j,j), J=1,2,..,n;

(3) for i,j=1,2,...,n set Re(i,j) = 1 or 0 as Ce(i,i) 2 or < Ce(i,j),

respectively, and calculate its transitive closure Re [for an algorithm to

calculate the transitive closure of a matrix see Varian (1982, p. 972)];

(4) set Ge = {j: Re(i,J) = 1 and Ce(j,j) > Ce(j,i) for at least one case i};

n5) if Ge = 0 then go to (7), else go to (6);

(6) calculate the n by 1 vector M as

min {C(J,i)/C(J,j)} ;JeGe
X1ReX 

MJ = MJ ;JilGe

and go to (2);

(7) calculate
n

Pn =Jl [ l o g Mj ] 2/ n

and stop.

(b) Calculating initial values for Problem (5)

Initial values of uj, A and gj, J=1,2,..,n, associated with the output

MJ, j=1,2,..,n, of the above algorithm are calculated as follows. The

M C(J,i) if J=i
perturbed data Ce(i,j) = J = satisfies, by construction, the

C(j,i) if J*i

GARPe. Thus, the Afriat numbers (uj,Aj, J=1.2,..,n) associated with Ce(i,j)

can be calculated using Algorithm 3 of Varian (1982, p. 968). The

corresponding gj's are then given by gj = AjMj, J=1,2,..,n.
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Table 1

Violation of the GARP by meat demand data

n = # of GARP p P

# of months
an b s 6 m -l 

a 2
in the sample violationsb (xlO ) (xlO ) (i-) /n

20 4 3.92 3.5 0.0208

50 11 4.32 4.24 0.0691

75 14 9.57 8.47 0.1223

100 18 7.30 7.90 0.1916

150 33 10.11 NA 0.3764

aAll samples begin on January 1970 and cover n consecutive months.

bNo. of months for which at least one violation of the GARP was detected.


