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Input Inefficiency in Commercial Banks:   
A Normalized Quadratic Input Distance Approach 

 
 
Introduction 
 

In this paper we explore technical efficiency of commercial banks over the period 1990 to 
2000 using an input distance function approach. The input distance function approach is of 
interest because it is a valid representation of multiple output technologies and directly measures 
technical efficiency in producing a given set of outputs.  The analysis covers the sample period 
from 1990 to 2000 using Call and Banking Holding Company Database information for 
individual commercial banks.  In the analysis, we implement a normalized quadratic distance 
function that characterizes multiple input and output production processes estimated with 
Bayesian econometrics.  The Bayesian method provides a systematic approach for more efficient 
estimation by imposing parameter and economic restrictions, which are inherent in duality 
models of firm behavior.   

 
Kaparakis, Miller, and Noulas (1994) provided a review of methodologies and 

conclusions for eight studies on bank frontier analysis.  Past studies have taken non-parametric 
and parametric estimation approaches, including mathematical programming, stochastic frontier 
analysis, and simultaneous equation estimation.  In addition, studies have used various functional 
forms such as the translog cost function (Ferrier and Lovell, 1990), profit function (Berger, et al. 
1993), and output distance function (English, et al., 1993).  The consensus of these studies is that 
significant inefficiencies exist and were generally declining over time (possibly due to 
deregulation), banks exhibit better allocative relative to technical inefficiency, and that external 
factors explains some of the observed inefficiencies.  More recently, Berger and Mester (1999) 
found that cost productivity decreased while profit productivity increased from 1991-1997, 
particularly for banks involved in mergers.  Wheelock and Wilson (2001) examined measures of 
scale and product mix economies with nonparametric estimation found that banks experience 
increasing returns to scale up to approximately $500 million dollars in assets.  Reported 
efficiencies in past studies vary over a wide range and comparisons are difficult due to 
differences in maintained hypotheses, sample, and functional form.  

 
Our methodological focus is on the production side where we specify a form of the 

normalized quadratic function exhibiting properties consistent with an input distance function.  
No study to date has explored technical efficiency in banking using input distance function 
approach.  Furthermore, research on normalized quadratic distance functions is limited.  On the 
consumer demand side, Holt and Bishop (2002) recently specified a normalized quadratic 
distance function and used it to estimate inverse demand relationships for fish.  Also, the 
normalized quadratic input distance function is specified to accommodate both single and 
multiple output production processes and allows direct testing or imposition of input and output 
curvature conditions.  Even for the case of a single input where the properties of the consumer 
and input distance function are equivalent (Cornes 1992), the functional specification is different.   

 
To estimate measures of technical efficiency, we exploit the stochastic frontier approach 

(Stevenson 1980; Greene 1980, 1990;  Battese and Coelli 1988).  This framework coupled with 
the normalized quadratic function is sufficiently flexible to impose economic restrictions on both 
inputs and outputs with Bayesian estimation.  We implement a parametric estimator that uses a 
maximum likelihood function to construct a Bayesian Markov chain Monte Carlo model with 
economic restrictions imposed following Geweke (1986).  This research compliments recent 
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studies by Atkinson and Primont (2002) and Atkinson, Färe, and Primont (2003), who estimated 
complete systems of inverse demand relationships jointly with the distance function using a 
GMM estimator.  The input distance function is applied to several years during the period 1990 
to 2000 to explore changes in technical efficiency that may have occurred over time.   
 
Input Distance Function and Technical Efficiency  
 
Input Distance Function 
 
The direct input distance function is defined by 
 

(1)  ( ) { }, sup 0 | ( / ) ( ), MD S y +
δ

= δ > δ ∈ ∀ ∈x y x y R  

where 1δ ≥ .  In (1), y is a (m× 1) vector of outputs, x =(x1,…,xk)′ is a (n × 1) vector of inputs and 
( )S y  is the set of all input vectors n

+∈x R  that can produce the output vector m
+∈y R .  The 

underlying behavioral assumption is that the distance function represents a rescaling of all the 
input levels consistent with a target output level.  Intuitively, δ  is the maximum value by which 
one could divide x and still produce y.  The value δ  places / δx  on the boundary of ( )S y  and on 
the ray through x.  For example, in Figure 1, the distance function value is D(x,y)=OB/OA; the 
value required to scale the vector x1 back to x* on the boundary of ( )S y .  In other words, the 
input distance function measures the extent to which the firm is input efficient in producing a 
fixed set of output.  Investigating the distance function is interesting because it is a dual 
representation of the cost function and both are valid representations of multiple output 
technologies.   

 
The standard properties of a distance function are that it is homogenous of degree one, 

nondecreasing, and concave in input quantities x, as well as nonincreasing and quasi-concave in 
outputs y (Shephard 1970; Färe and Primont 1995).  From (1) inverse factor demand equations 
may be obtained by applying Gorman’s Lemma 

(2)            *( , ) ( , )D∂
=

∂
x y p x y
x

 

where p*=(p1,…,pn)′ is a (n × 1) vector of cost normalized input prices or *
1

/ n
i i j jj

p p p x
=

= ∑ .  

The Hessian matrix is given by the second order derivatives of the distance function (Antonelli 
matrix) 
 

(3)    

2 2

2 2

( , ) ( , )  

( , ) ( , )  

D D

A
D D
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 ′ ′∂ ∂ ∂ ∂  

x y x y
x x x y
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Imposing monotonicity constraints require that ( , )  and ( , ) ,D D∂ ∂ ≥ ∂ ∂ ≤x y x 0 x y y 0  while 
curvature constraints are based on the eigenvalues of the Antonelli matrix in (3).   
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Technical Efficiency 
 
 The input distance function has been exploited as a measure of technical efficiency 
(Farrell 1957; Debreu 1951).  Inefficiencies arise if firms do not use cost minimizing amounts of 
input for several reasons, including regulated production, production quotas, or shortages 
(Atkinson and Primont 2002; Atkinson, Färe, and Primont 2003).  The input-oriented measures 
of technical efficiency are given by 
 
(4)     { }1/ inf : ( )TE D x S

δ
= = δ δ ∈ y  

 
where TE lies between zero and one.  This efficiency measure can be equivalently specified as  
 
(5)     ln ln ln 0D TE D u+ = − =  
 
where the term lnu TE= −  can be expressed as exp( )TE u= − .  Hence, u is nonnegative being 
bounded below by zero and unbounded from above.   
 
Normalized Quadratic Distance Function 
 

To complete the empirical model specification, we specify a normalized quadratic distance 
function.  The normalized quadratic allows explicit investigation of the interactions between 
inputs and outputs and allows imposition of curvature conditions.  The importance of curvature 
properties was emphasized by Berger, Hancock, and Humphery (1993).  Featherstone and Moss 
(1994) used a normalized quadratic cost function with curvature properties to measure 
economies of scale and scope in agricultural banking, finding contrasting results in measures of 
scope and scale with or without curvature restrictions. The proposed normalized quadratic 
distance function is given by  
 
(6)
 

1

0
1 1 1 1 1 1 1 1 1

1( , )
2

n n m n n n n m n m n n m

i i i i k k ij i j ij i j ij i j
i i n k i j i n j n i j n

D y b b x b y x b x x b y y b x y
−+ + + +

= = + = = = = + = + = = +

  = + + + α + +     
∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑x  

 
with n inputs and m outputs.  The '  and 'i ijb s b s  are parameters to be estimated, while the iα  are 
predetermined positive constants that dictate the form of normalization.  Symmetry is imposed 
by restricting ij jib b= .  The normalized quadratic distance function in (6) is semiflexible at a 

reference vector *x  (Diewert and Wales 1988). 
Homogeneity of degree zero in inputs in the input demand equations implies that 

1

0
n

ij
j

b
=

=∑ , while the normalization restriction requires that 
1

1
n

k k
k

x
=

α =∑  at a reference vector. 

Normalizing quantities by their mean values yields unit means, or * (1,...,1) nx l′= = , which can 
be used as a reference bundle.  At a reference vector *x , the demand restrictions become 
 

(7)   *

1 1
1

n n

k k k
k k

x
= =

α = α =∑ ∑ , 0,k kα ≥ ∀ , and *

1 1

0
n n

j ij ij
j j

x b b
= =

= =∑ ∑  
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Stochastic Input-Normalized Distance System 
 

Given the distance function is homogeneous of degree one quantities, then it is possible 
to normalize by some λ  (e.g., an input or output or convex combinations),  

(8)   ( ) ( )* *1 , ,     ln , ln ln ,D D D D   = ⇔ − λ =   λ λ λ   
x xx y y x y y   

 
From (5) the relationship can be rewritten as 
 

(9)    *ln ln ,D u λ = − + λ 
x y  

 
In empirical applications, the term lnu TE= −  has been exploited to form an estimable equation 
of the distance function itself that provides a direct measure of input inefficiency (Stevenson 
1980; Greene 1980; Battese and Coelli 1988; Morrison Paul, Johnston, and Frengley 2000; 
Brümmer, Glauben, and Thussen 2002).   
 
 To define a distance function normalized by the kth input let * 1,...,s s kx x x s n= ∀ = .  

Define the predetermined constants as (0,...,0, ,0...,0) 1k kα = α ∋ α = , then *

1
1 

n

s s
s

x
=

α =∑ .  Using 

the homogeneity property of the distance function, it can be written as  
 
(10)
 

1 1 1 1
* * * * * * * *
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1 1 1 1 1 1 1 1

( / , ) 1( , )
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n n m n n n m n m n n m
k

i i i i ij i j ij i j ij i j
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= = + = = = + = + = = +
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 
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Hence, the distance function in (10) is a special case of that in (6).  From (9) the kth input-
normalized distance function can be represented by 
 
(11)
 

1 1 1 1
* * * * * * *
0 0

1 1 1 1 1 1 1 1

1ln ln
2

n n m n n n m n m n n m

k i i i i ij i j ij i j ij i j
i i n i j i n j n i j n

x b b x b y b x x b y y b x y u
− + − − + + − +

= = + = = = + = + = = +

  
= − + + + + + + + ε     

∑ ∑ ∑∑ ∑ ∑ ∑ ∑  

 
where 0ε  is assumed to be an identically distributed stochastic error term and independent of u.  
Estimation issues concerning (11) are complicated by that fact that u is unobserved, but have 
been addressed in several ways in the stochastic frontier production literature, which we discuss 
in more detail below. 
 
Econometric Estimation 
 
Following Greene (1980, 1990) the likelihood for the composite error term v  is specified as a 
GAMMA distribution with parameters 2θ >  and 1λ = , which yields the exponential 
distribution.  For 2θ >  the maximum likelihood estimation of the parameters is a regular case.   
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The log-likelihood function for (11) becomes 
 

(13) ( ) ( ){ }2 2
1ln ( , , | , ) ln / 2 ln /T

i itL
=

θ σ =  θ + θσ + θε + Φ −ε − θσ σ ∑β Y X   

 
where σ  is the variance of the normal distribution.  Under a general set of regularity conditions 
the maximum likelihood estimates are asymptotically normally distributed and asymptotically 
efficient. 
 
Markov Chain Monte Carlo 
 
 To specify a posterior pdf for either (12) or (13), we assume prior information on the 

( ), ′′β ϕ  with prior pdf ( , ) ( ) ( )π θ ϕ = π β π ϕ .  Here, ϕ  represents parameters σ  and 2θ >  in (13).  
The β parameters are assumed to have a noninformative prior (i.e., β ∝ constant) for either 
model.  For the truncated normal distribution µ  is assumed to have uniform distribution bounded 
below by zero.  The inverted gamma is used for a prior on σ , while θ  is assumed to have a 
uniform distribution bounded below by two.  These priors have been used in numerous Bayesian 
studies (e.g., Zellner, Bauwnes, and Van Dijk 1988).  The posterior pdf is then as 
 

( , ) ( , , , | , ) ( ) ( )up Lϕ = σ µ σ π β π ϕβ β Y X  
 
Techniques of Markov chain Monte Carlo (MCMC) simulation estimation using the Metropolis-
Hastings algorithm are applied to Bayesian estimation (Mittelhammer, Judge, and Miller 2000; 
Chib and Greenberg). 
  
Empirical Methodology and Data 

 
To estimate a measure of technical inefficiency a theoretically consistent model must be 

specified.  There are two common approaches to modeling banks, the production and 
intermediation approach.  The production approach measures bank production in terms of the 
numbers of loans and deposit accounts serviced and includes operating costs.  The intermediation 
approach measures outputs in terms of the dollar amounts of loans and deposits and includes 
operation costs and interest expense.  We choose to follow the intermediation approach as have 
Berger et al (1987), Ferrier and Lovell (1990), Kaparakis, Miller, and Noulas (1994), and 
Wheelock and Wilson (2001) among others.   

 
The data are from the 1990, 1994 and 2000 Call Report information for commercial 

banks.  Following Kaparakis, Miller, and Noulas (1994) and Wheelock and Wilson (2001) the 
model includes four outputs, four variable inputs, and one quasi-fixed input.  Outputs include 
loans to individuals (y1), real estate loans (y2), commercial and industrial loans (y3), and federal 
funds, securities purchased under agreements to resell (y4).  Inputs include interest-bearing 
deposits except certificates of deposits greater than $100,000 (x1), purchased funds (certificates 
of deposits greater than $100,000, federal funds purchased, and securities sold plus demand 
notes) and other borrowed money (x2), number of employees (x3), and book value of premises 
and fixed assets (x4).  The quasi-fixed asset is noninterest-bearing bonds. Kaparakis, Miller, and 
Noulas (1994) suggest that banks cannot attract more noninterest-bearing deposits by offering 
interest and they should be regarded as exogenous.  The data used in the empirical model are 
based on average quarterly values across a given year.   



 121

 
Rather than compute input prices, we choose to estimate only the distance function itself 

in (11) without the system of inverse demand relationships defined by (2).  Typically, inverse 
demand relationships are included to increase econometric efficiency, obtain measures of price 
flexibilities, or obtain dual cost measures.  Our justification is that for large sample sizes the 
efficiency gains from including the inverse demand system will likely not compensate for the 
added numerical complexities and computations, and because our interest is technical efficiency 
that is completely characterized by (11). Moreover, including calculated input prices may 
introduce measurement error or results in prices with little price variation that can compromise 
empirical duality properties (Lusk, Featherstone, Marsh, and Abdulkadri). 
 

To arrive at the final data sets for estimation, several data management steps were taken.  
First, we excluded banks that reported negative inputs or outputs (which only influenced x1).  
This yielded 12,395 observations in 1990, 10,765 observations in 1994, and 8,517 observations 
in 2000.  Then to account for extreme outliers, we excluded banks that 6 or more standard 
deviations away from the mean of the input and output values.  In 1990 there were 12,218 
remaining observations, in 1994 there were 10,620 remaining observations, and in 2000 there 
were 8,409 remaining observations.  The number of employees (x3) was used to normalize the 
other inputs because it had a few reported zero values (e.g., in 2000 there were only eleven zero 
values).  The zero values were assigned the minimum value of the remaining observations in x3.   
 

Econometric models of (11) were estimated for each year using the Bayesian estimator 
based on alternative cross-sections of the data.  Models were estimated on the entire data set, for 
banks with total assets less than $50 million, and banks with assets greater than $50 million.  
Partitioning data in this manner are consistent with previous studies (e.g., Kaparakis, Miller, and 
Noulas 1994) and allows comparison and testing of results between smaller and larger banks (as 
well as across the entire sample).  A histogram of the number of banks across total assets is 
presented in Figure 2, showing a steady decrease (increase) in the number of banks with total 
assets under (over) $50 million. 
 

To complete the MCMC simulation of the Bayesian estimator, a burn-in period of 30,000 
iterations was used.  These iterations were then discarded and 70,000 additional iterations were 
simulated to yield the final empirical distribution.  Additional details of the data and the MCMC 
analysis are available from the authors upon request.  Curvature conditions are imposed using 
Cholesky decomposition (Lau 1970). 
 
Results and Discussion 
  

Empirical results are presented in Table 1 for 1990, 1994, and 2000.  For convenience we 
summarize these results with the median, mean, and standard deviation of technical efficiency in 
Table 1 for the Bayesian exponential model. 
 

In general, the preliminary technical efficiency estimates are consistent with those 
obtained in Berger et al. (1993) and English, et al. (1993).  English et al. (1993) report a mean 
output technical efficiency of 0.754 with standard deviation of 0.145 for small commercial banks 
in 1982.  Focusing on the results from the exponential model over the entire sample, input 
efficiency has increased over the sample period and were higher for larger banks.  In 1990 and 
1994, the median efficiency values were nearly identical yielding 0.732 and 0.730, respectively.  
In 2000, the median efficiency level over the entire sample increased to 0.754.  For smaller 
banks (total assets less than $50 million) the median technical efficiency measure incremented 
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from 0.696 in 1990, to 0.704 in 1994, and to 0.715 in 2000.   For larger banks (total assets 
greater than $50 million) the median technical efficiency measure increased from 0.75 in 1990 
and leveled off to 0.80 in 1994 and 2000.  Comparing across bank sizes, larger banks were more 
7%, 14%, and 11% more efficient than smaller banks in 1990, 1994, and 2000 respectively. Note 
that, when comparing the mean technical efficiency measures, the differences would reduce to 
0%, 6%, and 4% in 1990, 1994, and 2000 respectively.  In all, these results are consistent with 
the interpretation that bank efficiency has been increasing over time (Kaparakis, Miller, and 
Noulas 1994) and that the larger banks exhibit higher technical efficiency levels (Berger, et al. 
1993). 
 

Results were also obtained by estimating (11) without curvature restrictions in 2000, 
providing mixed results.  For smaller banks, relaxing curvature conditions increased technical 
efficiency.  For larger banks, relaxing curvature conditions decreased technical efficiency.  
Across the entire sample, the technical efficiency measures were nearly identical.  Although the 
results are mixed, it is apparent that technical efficiency results are sensitive to curvature 
restrictions.  However, the direction of this effect was not consistent between smaller and larger 
banks.  
 
Conclusions 
 

In this paper a normalized quadratic input distance function is proposed with which to 
estimate technical efficiency on commercial banks regulated by the Federal Reserve System.  
The study period covers 1990 to 2000 using individual bank information from the Call and 
Banking Holding Company Database.  A Bayesian variation of a stochastic frontier model is 
used to estimate the input normalized distance function and obtain measures of technical 
efficiency.  Preliminary findings based on 1990, 1994, and 2000 data are consistent with 
previous findings in that technical inefficiency appears to be decreasing over time and that larger 
banks are more efficient. We recognize limitations of the research presented in this paper.  
Perhaps most importantly, technical efficiency estimates were based only on selected years.  Our 
intention is to revisit and extend the empirical analysis by using a panel data set from 1990 to 
2000.   
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Figure 1.  The Distance Function and Input Efficiency.  
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Figure 2.  Number of Commercial Banks by Total Assets. 
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Table 1. Technical Efficiency Measures from Stochastic Exponential Model 
       
   Small Commercial Banks  
      

Year    Standard   
  Median Mean Deviation   
       

1990  0.696 0.696 0.113   
       

1994  0.704 0.709 0.112   
       

2000  0.715 0.716 0.100 w/curvature  
  0.738 0.739 0.096 wo/curvature 
       
   Large Commercial Banks  

       
    Standard   
  Median Mean Deviation   
       

1990  0.754 0.705 0.141   
       

1994  0.800 0.750 0.154   
       

2000  0.801 0.749 0.166 w/curvature  
  0.768 0.721 0.164 wo/curvature 
       
   All Commercial Banks  

       
    Standard   
  Median Mean Deviation   
       

1990  0.732 0.683 0.155   
       

1994  0.730 0.685 0.145   
       

2000  0.754 0.703 0.161 w/curvature  
  0.755 0.704 0.162 wo/curvature 

 
 
 
 
 


