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Abstract:

A normalized quadratic input distance function is proposed with which to estimate
technical efficiency on commercial banks regulated by the Federal Reserve System. The study
period covers 1990 to 2000 using individual bank information from the Call and Banking
Holding Company Database. A stochastic frontier model is specified to estimate the input
normalized distance function and obtain measures of technical efficiency.

" Associate Professor and Professor, Department of Agricultural Economics, Kansas State University; and Research
Division, Federal Reserve Bank of St. Louis, MO.

115



Input Inefficiency in Commercial Banks:
A Normalized Quadratic Input Distance Approach

Introduction

In this paper we explore technical efficiency of commercial banks over the period 1990 to
2000 using an input distance function approach. The input distance function approach is of
interest because it is a valid representation of multiple output technologies and directly measures
technical efficiency in producing a given set of outputs. The analysis covers the sample period
from 1990 to 2000 using Call and Banking Holding Company Database information for
individual commercial banks. In the analysis, we implement a normalized quadratic distance
function that characterizes multiple input and output production processes estimated with
Bayesian econometrics. The Bayesian method provides a systematic approach for more efficient
estimation by imposing parameter and economic restrictions, which are inherent in duality
models of firm behavior.

Kaparakis, Miller, and Noulas (1994) provided a review of methodologies and
conclusions for eight studies on bank frontier analysis. Past studies have taken non-parametric
and parametric estimation approaches, including mathematical programming, stochastic frontier
analysis, and simultaneous equation estimation. In addition, studies have used various functional
forms such as the translog cost function (Ferrier and Lovell, 1990), profit function (Berger, et al.
1993), and output distance function (English, et al., 1993). The consensus of these studies is that
significant inefficiencies exist and were generally declining over time (possibly due to
deregulation), banks exhibit better allocative relative to technical inefficiency, and that external
factors explains some of the observed inefficiencies. More recently, Berger and Mester (1999)
found that cost productivity decreased while profit productivity increased from 1991-1997,
particularly for banks involved in mergers. Wheelock and Wilson (2001) examined measures of
scale and product mix economies with nonparametric estimation found that banks experience
increasing returns to scale up to approximately $500 million dollars in assets. Reported
efficiencies in past studies vary over a wide range and comparisons are difficult due to
differences in maintained hypotheses, sample, and functional form.

Our methodological focus is on the production side where we specify a form of the
normalized quadratic function exhibiting properties consistent with an input distance function.
No study to date has explored technical efficiency in banking using input distance function
approach. Furthermore, research on normalized quadratic distance functions is limited. On the
consumer demand side, Holt and Bishop (2002) recently specified a normalized quadratic
distance function and used it to estimate inverse demand relationships for fish. Also, the
normalized quadratic input distance function is specified to accommodate both single and
multiple output production processes and allows direct testing or imposition of input and output
curvature conditions. Even for the case of a single input where the properties of the consumer
and input distance function are equivalent (Cornes 1992), the functional specification is different.

To estimate measures of technical efficiency, we exploit the stochastic frontier approach
(Stevenson 1980; Greene 1980, 1990; Battese and Coelli 1988). This framework coupled with
the normalized quadratic function is sufficiently flexible to impose economic restrictions on both
inputs and outputs with Bayesian estimation. We implement a parametric estimator that uses a
maximum likelihood function to construct a Bayesian Markov chain Monte Carlo model with
economic restrictions imposed following Geweke (1986). This research compliments recent
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studies by Atkinson and Primont (2002) and Atkinson, Fire, and Primont (2003), who estimated
complete systems of inverse demand relationships jointly with the distance function using a
GMM estimator. The input distance function is applied to several years during the period 1990
to 2000 to explore changes in technical efficiency that may have occurred over time.

Input Distance Function and Technical Efficiency
Input Distance Function

The direct input distance function is defined by
(1) D(x,y)=sup{6>O\(x/8)eS(y),VyeRT}
8

where 0 >1. In (1), y is a (mx 1) vector of outputs, X =(x1,...,xx)" is a (n x 1) vector of inputs and
S(y) is the set of all input vectors x € R that can produce the output vector y e R” . The

underlying behavioral assumption is that the distance function represents a rescaling of all the
input levels consistent with a target output level. Intuitively, 6 is the maximum value by which
one could divide x and still produce y. The value & places x/d on the boundary of S(y) and on

the ray through x. For example, in Figure 1, the distance function value is D(x,y)=OB/OA; the
value required to scale the vector x' back to x" on the boundary of S(y). In other words, the

input distance function measures the extent to which the firm is input efficient in producing a
fixed set of output. Investigating the distance function is interesting because it is a dual
representation of the cost function and both are valid representations of multiple output
technologies.

The standard properties of a distance function are that it is homogenous of degree one,
nondecreasing, and concave in input quantities x, as well as nonincreasing and quasi-concave in
outputs y (Shephard 1970; Féare and Primont 1995). From (1) inverse factor demand equations
may be obtained by applying Gorman’s Lemma
@) oD(x,y) _

10) ¢

where p =(p1,...,pn) is a (n x 1) vector of cost normalized input prices or P =D /Z:’;:1 DX .

p(xy)

The Hessian matrix is given by the second order derivatives of the distance function (Antonelli
matrix)

0’D(x,y) 0°D(x,y)

Oxox' oxoy'
3) A=
0’D(x,y) 0’D(x,y)
Oyox' oyoy'

Imposing monotonicity constraints require that 0D(x,y)/0x >0 and 0D(x,y)/dy <0, while
curvature constraints are based on the eigenvalues of the Antonelli matrix in (3).
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Technical Efficiency

The input distance function has been exploited as a measure of technical efficiency
(Farrell 1957; Debreu 1951). Inefficiencies arise if firms do not use cost minimizing amounts of
input for several reasons, including regulated production, production quotas, or shortages
(Atkinson and Primont 2002; Atkinson, Fare, and Primont 2003). The input-oriented measures
of technical efficiency are given by

4) TE:I/D:i%f{S:SxeS(y)}

where TE lies between zero and one. This efficiency measure can be equivalently specified as
&) InD+InTE=InD-u=0

where the term u =—In7E can be expressed as TE =exp(—u). Hence, u is nonnegative being
bounded below by zero and unbounded from above.

Normalized Quadratic Distance Function

To complete the empirical model specification, we specify a normalized quadratic distance
function. The normalized quadratic allows explicit investigation of the interactions between
inputs and outputs and allows imposition of curvature conditions. The importance of curvature
properties was emphasized by Berger, Hancock, and Humphery (1993). Featherstone and Moss
(1994) used a normalized quadratic cost function with curvature properties to measure
economies of scale and scope in agricultural banking, finding contrasting results in measures of
scope and scale with or without curvature restrictions. The proposed normalized quadratic
distance function is given by

(6)
n n+m 1 n -1, o n+m n+m n o n+m
D(x,y)=b, +Zbl.xl.+ z bl.yl.+5 (Zakka ZZbijxl_xj + z z bl.jyl.yj +z z bl.jxl.yj
i=l1 i=n+l k=1 i=l j=1 i=n+1 j=n+l i=l j=n+l

with n inputs and m outputs. The b,'s and b; s are parameters to be estimated, while the o, are

predetermined positive constants that dictate the form of normalization. Symmetry is imposed
by restricting b; =b,,. The normalized quadratic distance function in (6) is semiflexible at a

reference vector x (Diewert and Wales 1988).
Homogeneity of degree zero in inputs in the input demand equations implies that

n n
Zbi/ =0, while the normalization restriction requires that Z o, x, =1 at areference vector.
j=1 k=1

Normalizing quantities by their mean values yields unit means, or x* = (1,...,1) =/ , which can

be used as a reference bundle. At a reference vector x , the demand restrictions become

7 iockxz=iock=l, a, 20,Vk, and Zn:x;bij=zn:blj=0
k=1 k=1 =1 =
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Stochastic Input-Normalized Distance System

Given the distance function is homogeneous of degree one quantities, then it is possible
to normalize by some A (e.g., an input or output or convex combinations),

(8) lD(x,y):D*(i,yJ =S lnD(x,y)—ln%:lnD*(i,yj
A A A
From (5) the relationship can be rewritten as
* X
9) InA=-InD (X,yj+u

In empirical applications, the term u = —InTE has been exploited to form an estimable equation
of the distance function itself that provides a direct measure of input inefficiency (Stevenson
1980; Greene 1980; Battese and Coelli 1988; Morrison Paul, Johnston, and Frengley 2000;
Briimmer, Glauben, and Thussen 2002).

To define a distance function normalized by the kth input letx, = x,/x, Vs =1,...,n
Define the predetermined constants as o = (0,...,0,a,,0...,0) > a, =1, then ZOLSx: =1 . Using

s=1
the homogeneity property of the distance function, it can be written as

(10)

* D(x/ ntm a0 ndtmonbm n-1 n+m
D (x,y)= (xxxk,y)_b +be +Zby,+—[ byxx;+ > > b yly]J-}-z > by

k i=n+1 i=l j=1 i=n+l j=n+1 i=l j=n+l

Hence, the distance function in (10) is a special case of that in (6). From (9) the &t/ input-
normalized distance function can be represented by

(11)

1nxk=—ln(b;+nz_lb; 'imby,+—["ln i+ S Zbyy]+22b %Jﬂf”o
i=1

i=n+1 i=l j=1 i=n+l j=n+1 i=l j=n+l

where ¢, is assumed to be an identically distributed stochastic error term and independent of u.

Estimation issues concerning (11) are complicated by that fact that u is unobserved, but have
been addressed in several ways in the stochastic frontier production literature, which we discuss
in more detail below.

Econometric Estimation
Following Greene (1980, 1990) the likelihood for the composite error term v is specified as a

GAMMA distribution with parameters 0 >2 and A =1, which yields the exponential
distribution. For 6 > 2 the maximum likelihood estimation of the parameters is a regular case.
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The log-likelihood function for (11) becomes
T 2 2
(13)  InL(B,0,6]Y,X)= zt=1{1n9+(96) /2+0¢, + lnCD[(—si ~0c )/c}}

where & is the variance of the normal distribution. Under a general set of regularity conditions
the maximum likelihood estimates are asymptotically normally distributed and asymptotically
efficient.

Markov Chain Monte Carlo

To specify a posterior pdf for either (12) or (13), we assume prior information on the

(B’,(p)' with prior pdf (0, ¢) = (B)(¢). Here, ¢ represents parameters ¢ and 0 >2 in (13).

The B parameters are assumed to have a noninformative prior (i.e., B oc constant) for either
model. For the truncated normal distribution p is assumed to have uniform distribution bounded

below by zero. The inverted gamma is used for a prior on &, while 0 is assumed to have a
uniform distribution bounded below by two. These priors have been used in numerous Bayesian
studies (e.g., Zellner, Bauwnes, and Van Dijk 1988). The posterior pdf is then as

p(B.¢) = L(B.c.p.0, | Y. X)m(B)(¢)

Techniques of Markov chain Monte Carlo (MCMC) simulation estimation using the Metropolis-
Hastings algorithm are applied to Bayesian estimation (Mittelhammer, Judge, and Miller 2000;
Chib and Greenberg).

Empirical Methodology and Data

To estimate a measure of technical inefficiency a theoretically consistent model must be
specified. There are two common approaches to modeling banks, the production and
intermediation approach. The production approach measures bank production in terms of the
numbers of loans and deposit accounts serviced and includes operating costs. The intermediation
approach measures outputs in terms of the dollar amounts of loans and deposits and includes
operation costs and interest expense. We choose to follow the intermediation approach as have
Berger et al (1987), Ferrier and Lovell (1990), Kaparakis, Miller, and Noulas (1994), and
Wheelock and Wilson (2001) among others.

The data are from the 1990, 1994 and 2000 Call Report information for commercial
banks. Following Kaparakis, Miller, and Noulas (1994) and Wheelock and Wilson (2001) the
model includes four outputs, four variable inputs, and one quasi-fixed input. Outputs include
loans to individuals (y), real estate loans (y,), commercial and industrial loans (y3), and federal
funds, securities purchased under agreements to resell (y4). Inputs include interest-bearing
deposits except certificates of deposits greater than $100,000 (x;), purchased funds (certificates
of deposits greater than $100,000, federal funds purchased, and securities sold plus demand
notes) and other borrowed money (x;), number of employees (x3), and book value of premises
and fixed assets (x4). The quasi-fixed asset is noninterest-bearing bonds. Kaparakis, Miller, and
Noulas (1994) suggest that banks cannot attract more noninterest-bearing deposits by offering
interest and they should be regarded as exogenous. The data used in the empirical model are
based on average quarterly values across a given year.
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Rather than compute input prices, we choose to estimate only the distance function itself
in (11) without the system of inverse demand relationships defined by (2). Typically, inverse
demand relationships are included to increase econometric efficiency, obtain measures of price
flexibilities, or obtain dual cost measures. Our justification is that for large sample sizes the
efficiency gains from including the inverse demand system will likely not compensate for the
added numerical complexities and computations, and because our interest is technical efficiency
that is completely characterized by (11). Moreover, including calculated input prices may
introduce measurement error or results in prices with little price variation that can compromise
empirical duality properties (Lusk, Featherstone, Marsh, and Abdulkadri).

To arrive at the final data sets for estimation, several data management steps were taken.
First, we excluded banks that reported negative inputs or outputs (which only influenced x;).
This yielded 12,395 observations in 1990, 10,765 observations in 1994, and 8,517 observations
in 2000. Then to account for extreme outliers, we excluded banks that 6 or more standard
deviations away from the mean of the input and output values. In 1990 there were 12,218
remaining observations, in 1994 there were 10,620 remaining observations, and in 2000 there
were 8,409 remaining observations. The number of employees (x3) was used to normalize the
other inputs because it had a few reported zero values (e.g., in 2000 there were only eleven zero
values). The zero values were assigned the minimum value of the remaining observations in xs.

Econometric models of (11) were estimated for each year using the Bayesian estimator
based on alternative cross-sections of the data. Models were estimated on the entire data set, for
banks with total assets less than $50 million, and banks with assets greater than $50 million.
Partitioning data in this manner are consistent with previous studies (e.g., Kaparakis, Miller, and
Noulas 1994) and allows comparison and testing of results between smaller and larger banks (as
well as across the entire sample). A histogram of the number of banks across total assets is
presented in Figure 2, showing a steady decrease (increase) in the number of banks with total
assets under (over) $50 million.

To complete the MCMC simulation of the Bayesian estimator, a burn-in period of 30,000
iterations was used. These iterations were then discarded and 70,000 additional iterations were
simulated to yield the final empirical distribution. Additional details of the data and the MCMC
analysis are available from the authors upon request. Curvature conditions are imposed using
Cholesky decomposition (Lau 1970).

Results and Discussion

Empirical results are presented in Table 1 for 1990, 1994, and 2000. For convenience we
summarize these results with the median, mean, and standard deviation of technical efficiency in
Table 1 for the Bayesian exponential model.

In general, the preliminary technical efficiency estimates are consistent with those
obtained in Berger et al. (1993) and English, et al. (1993). English et al. (1993) report a mean
output technical efficiency of 0.754 with standard deviation of 0.145 for small commercial banks
in 1982. Focusing on the results from the exponential model over the entire sample, input
efficiency has increased over the sample period and were higher for larger banks. In 1990 and
1994, the median efficiency values were nearly identical yielding 0.732 and 0.730, respectively.
In 2000, the median efficiency level over the entire sample increased to 0.754. For smaller
banks (total assets less than $50 million) the median technical efficiency measure incremented
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from 0.696 in 1990, to 0.704 in 1994, and to 0.715 in 2000. For larger banks (total assets
greater than $50 million) the median technical efficiency measure increased from 0.75 in 1990
and leveled off to 0.80 in 1994 and 2000. Comparing across bank sizes, larger banks were more
7%, 14%, and 11% more efficient than smaller banks in 1990, 1994, and 2000 respectively. Note
that, when comparing the mean technical efficiency measures, the differences would reduce to
0%, 6%, and 4% in 1990, 1994, and 2000 respectively. In all, these results are consistent with
the interpretation that bank efficiency has been increasing over time (Kaparakis, Miller, and
Noulas 1994) and that the larger banks exhibit higher technical efficiency levels (Berger, et al.
1993).

Results were also obtained by estimating (11) without curvature restrictions in 2000,
providing mixed results. For smaller banks, relaxing curvature conditions increased technical
efficiency. For larger banks, relaxing curvature conditions decreased technical efficiency.
Across the entire sample, the technical efficiency measures were nearly identical. Although the
results are mixed, it is apparent that technical efficiency results are sensitive to curvature
restrictions. However, the direction of this effect was not consistent between smaller and larger
banks.

Conclusions

In this paper a normalized quadratic input distance function is proposed with which to
estimate technical efficiency on commercial banks regulated by the Federal Reserve System.
The study period covers 1990 to 2000 using individual bank information from the Call and
Banking Holding Company Database. A Bayesian variation of a stochastic frontier model is
used to estimate the input normalized distance function and obtain measures of technical
efficiency. Preliminary findings based on 1990, 1994, and 2000 data are consistent with
previous findings in that technical inefficiency appears to be decreasing over time and that larger
banks are more efficient. We recognize limitations of the research presented in this paper.
Perhaps most importantly, technical efficiency estimates were based only on selected years. Our
intention is to revisit and extend the empirical analysis by using a panel data set from 1990 to
2000.
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Figure 1. The Distance Function and Input Efficiency.
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Figure 2. Number of Commercial Banks by Total Assets.
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Table 1. Technical Efficiency Measures from Stochastic Exponential Model

Year

1990

1994

2000

1990

1994

2000

1990

1994

2000

Median

0.696

0.704

0.715
0.738

Median

0.754

0.800

0.801
0.768

Median

0.732

0.730

0.754
0.755

Small Commercial Banks

Standard
Mean  Deviation
0.696 0.113
0.709 0.112

0.716 0.100 w/curvature
0.739 0.096  wo/curvature

Large Commercial Banks

Standard
Mean  Deviation

0.705 0.141
0.750 0.154

0.749 0.166 w/curvature
0.721 0.164  wo/curvature

All Commercial Banks

Standard
Mean Deviation
0.683 0.155
0.685 0.145

0.703 0.161 w/curvature
0.704 0.162 wo/curvature
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