

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Staff Papers Series

Staff Paper 91-50

December 1991

PERIPHERAL vs. CORE REGIONS IN EXTENDED INTEGRATED MARKETS: A PRELIMINARY U.S. APPLICATION

Wilbur Maki and Paul Reynolds
University of Minnesota and Marquette University

Department of Agricultural and Applied Economics

University of Minnesota
Institute of Agriculture, Forestry and Home Economics
St. Paul, Minnesota 55108

PERIPHERAL vs. CORE REGIONS IN EXTENDED INTEGRATED MARKETS: A PRELIMINARY U.S. APPLICATION

Wilbur Maki and Paul Reynolds University of Minnesota and Marquette University

Paper prepared for the Regional Science Conference, "Periphery Strategies in European Integration", at Sandbjerg Castle, Sonderborg, Denmark, November 27-29, 1991.

Staff papers are published without formal review within the Department of Agricultural and Applied Economics.

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs without regard to race, religion, color, sex, national origin, handicap, age, veteran status or sexual orientation.

Contents

Abstract	Page 1
Introduction	1
Jobs and Income Growth	3
Change Sources for Local Labor Earnings	4
Accounting for Local Employment Change	6
Excess Earnings Change Total Excess Earnings Business Volatility Spatial Structure	6 7 8 9
Assessing Competitive Position of Local Labor Markets	10
Core vs. Peripheral Labor Market Areas Attributes of Local Economic Environment	10 11
Local infrastructure Base economy Information access	11 11 13
Summary and Conclusions	13
References Cited	15
Appendix: Measuring and Predicting Regional Growth	16
Place-to-place Variability Period-to-period Variability	16 17

PERIPHERAL vs. CORE REGIONS IN EXTENDED INTEGRATED MARKETS: A PRELIMINARY U.S. APPLICATION

Wilbur Maki and Paul Reynolds University of Minnesota and Marquette University

Abstract

Industry-specific data on births, deaths, expansions and contractions of all US business establishments for the 1976-1988 period--and the number of jobs affected--are examined in this report for 382 labor market areas in the US. Percentage changes in jobs and labor income are used as indicators of economic change. Additional explanatory variables included in the study are percentage changes in the indicator series on industry-specific exports, distances to primary and secondary airline nodes, and area population density. Regression models were constructed to predict changes in the indicator variables for five two-year periods: 1978-80, 1980-82, 1982-84, 1984-86 and 1986-88. Shift-share models were prepared for each LMA to summarize period-to-period change in industry-specific total labor earnings. The periodic changes in labor earnings are attributed to three change sources--national growth, industry mix and regional share. The findings document the contribution of new and small firms to economic growth. The purpose of this paper is to account for the differential growth of peripheral and core labor market areas in the US. It will serve as a basis for building scenarios of future growth and development of peripheral areas in the US under alternative market and public policy assumptions. The findings are available, also, for comparison with related studies of regional economies in the Nordic countries and the Baltic rim. This paper is an outgrowth of a proposal by Reynolds and Maki (1990a) to use cross-national comparisons for forming and testing new insights into regional development processes.

Introduction

Domestic economic policies of the United States and many of the EC12 countries emphasize stability and growth. These policies promote local industry diversification, reduced rates of local unemployment and population out-migration, and increased rates of job and income growth. Yet, the local economies of peripheral areas continue to experience persistent losses in jobs and income.

The working hypothesis for testing the findings on regional growth stems from economic base theory. We propose that a region's economic performance is conditioned by its export-producing sectors and their competitive position in US and world markets. We propose further that a change in local economic environment leads to a change in competitive position. A change in competitive position leads to a change in exports. Finally, a change in exports leads to a change in economic performance.

The data sets for fitting the two models are county-level. The industry employment and labor earnings and business establishment distributions are based on the two-digit Standard Industrial Classification (SIC) Code. The US Department of Commerce Regional Economic Information System (REIS) statistical series provide the industry data for individual years and counties. The edited and machine processed Dun's Market Identifier (DMI) data files provide the statistical series on business firms and their organization. The six files of two-year change periods start with the 1976-78 period. The files are leased to the US Small Business Administration by Dun and Bradstreet.

Labor market areas (LMAs), based on commuting-to-work data from the 1980 US Census of Population and outlined in Figure 1, are the principal units of analysis (Tolbert and Killian, 1987). Commuting areas overlap state boundaries where the largest city in the area is located near a state boundary. Thus, the 3,124 US counties are aggregated into the 382 LMAs that serve as the relevant

geographical units for area economic performance.

Two modes of statistical analysis are used: regression and shift-share (Appendix). The regression analysis relates a series of independent, explanatory variables to change in employment. In the shift-share analysis, change in industry-specific labor earnings is attributed to three change sources--national growth, industry mix and regional share over the 1970 to 1986 period.

The national growth effect in the shift-share analysis is represented by change in total labor earnings over all industries in the US. The industry mix is measured by differential change in industry-specific labor earnings in the US economy. National growth and industry mix account for the external determinants of regional change. The regional share effect is measured by the differential change in industry-specific labor earnings in a given region. It accounts for an industry's competitive position in the given region relative to the same industry in the Nation.

Regression analysis was used to estimate the statistical association between a series of economic and demographic indicators and period-to-period change in total wage and salary employment. Regression models of the form cited earlier in this report were fitted to existing county-level data aggregated for the 382 multi-county LMAs. All variables were normalized for varying levels of total employment by converting total change into percentage change (that is, dividing the total change over each two-year period with its first-year value).

Jobs, labor income,, population and labor force are the principal economic and demographic indicators used and presented in this study. The several indicator variables are described for the purposes of this study as follows:

- 1. Change in employment refers to the period to period change in total LMA employment, with a two-year interval given for each period.
- 2. Change in personal income refers to the Regional Economic Information System (REIS) total personal income series adjusted for inflation. Like the REIS employment series, the county-level numbers are aggregated for each LMA.
- 3. Total labor earnings refer to the wage and salary income payments by place of work, adjusted for inflation. Period-to-period change in industry-specific labor earnings is documented in the shift-share analysis.
- 4. Positive excess earnings refer to the industry-specific earnings for an LMA more than its amount based on the US industry distribution of total labor earnings. Two industry groupings are used. One grouping is based on the two-digit US Standard Industrial Classification Manual. The second grouping is an aggregation of two-digit industry groups into 11 economically-differentiated groups for the shift-share analysis and the regression analysis.
- 5. Firm volatility refers to the period-to-period change in total number of firms due to births and deaths. Small Business Administration compilation of Duns Marketing Indicator files provided both the firm and the job data series.
- 6. Job volatility refers to period-to-period change in total employment due to firm births and deaths and job expansions and contractions.

- 7. Population density refers to number of persons per square mile in each LMA.
- 8. Airport node variable refers to the use of two cut-off points--one at 60 miles the other at 100 miles--for differentiating LMAs by distance to an airline.

We combine the findings of two studies in this report. The one study focuses on business volatility and economic growth (Reynolds and Maki, 1990a). The second study focuses on transportation and the economy of the Upper Midwest Region of the US (Maki, Huelgas and Chao, 1991). We also make use of insights gained from a third study still in progress (Reynolds and Maki, 1990b) to document the changing patterns of job and income growth in core and peripheral labor market areas and their related change sources. The principal findings are reported under four topical headings that follow.

Job and Income Growth

Findings on job and income growth are derived from fitting the excess earnings data to the economic base model for each labor market area. The clustering of two-digit industry groups is represented by eight types of LMAs identified in Figure 2. Each LMA type is defined by its dominant basic industry cluster as calculated from the county-level employment by residence series in the 1980 US Census of Population

The role and importance of industry clustering in rural and metropolitan core areas are represented by business volatility, excess labor earnings and access to airline and telecommunications nodes. Business volatility is represented by the entry of new firms and the exit of existing firms in both rural and metropolitan core areas and the related expansions and contractions in jobs.

Related study findings show the importance of business volatility--high establishment and job birth and death rates--in accounting for a region's economic growth (Reynolds and Maki, 1990b, p.90). The authors note that, "The process of economic change requires a substantial transfer of resources (capital, facilities, employees, entrepreneurial and managerial talent) from one firm to another, from one industry sector to another."

Excess labor earnings, when used as a measure of the geographic concentration and specialization of industry, describe the area-to-area linkages through exports of excess production to areas of deficit production. Export market conditions affect business and income volatility in the exporting areas, especially for cyclically-sensitive base economies, like mining and durable goods manufacturing.

Access variables, like distance to nearest airport node or proximity to nearest metropolitan core area, provide additional measures of rural-to-metropolitan area linkages. They serve as a surrogate measure of access to information and markets for high value added products and to growth-facilitating business distribution services in the metropolitan core areas.

Change Sources for Local Labor Earnings

Each measure of regional growth analysis varies in relative values from one period to the next. For some areas, the volatility in rates of regional growth is due to the cyclical sensitivity of the local economy. For others, the period-to-period changes in jobs and earnings are related to long-term changes in industry

product cycles. Changes in industry mix reveal both short-term and long-term changes in the importance of individual industries in the US economy. Changes in regional share reveal changes in the competitive position, or economic performance and importance, of a given industry relative to the corresponding industry in the US.

A distinguishing characteristic of declining and growing areas is the rapidity and direction of change in jobs and labor earnings. Once the volatility in jobs and income is removed, the residual "regional-share effect" becomes a measure of regional growth and decline. The results are the shift-share value for 100 selected US labor market areas delineated in Figure 1 and listed in Table 1.

Included in the shift-share analysis are 77 labor market areas located in the 13 state east-west transportation corridor region extending from Michigan to Oregon and Washington. The extended Upper Midwest Region in the transportation and economy cited earlier is included within the study region. It covers 64 LMAs. It the Lower Peninsula of Michigan and all of Idaho, Oregon and Washington.

Historically, the two study regions have experienced much economic volatility due to the many natural resource-based local economies in the interior states and cyclically-sensitive durable goods manufacturing elsewhere. The remaining 23 LMAs in the current study include both rapidly growing and generally declining base economies that vary in income volatility and overall growth from the lowest to among the highest.

Sources of income volatility--that is, period-to-period shifts in labor earnings--are illustrated by the shift-share analysis. This analysis includes the two long periods of economic recovery--1970 to 1980 and 1982 to 1986--separated by two recessions occurring in the 1980-82 period. Data for the recession from 1973 to 1975 are not included in the analysis. Both the income volatility index and the income growth index are based on income change over the entire 1970 to 1986 period.

The summary results of the shift-share analyses, as presented in Table 2, show vastly different growth patterns for the four regional groupings. Over the 16-year period, total labor earnings--the principal source of personal income--increased by more than \$782 billion (in 1982 dollars), from \$1,426 billion in 1970 to \$2,208 billion in 1986. The overall increases ranged from \$40.5 billion in Mid-continent West to \$50 billion in Mid-continent East, \$132 in comparison LMAs, and \$560 billion in the remaining LMAs in the US. The comparison LMAs increased in importance from 10.6 percent of total US labor earnings in 1970 to 12.8 percent in 1986. Mid-continent East dropped from 9.5 percent of the total to 8.4 percent.

The principal reasons for the contrasting growth patterns rest with the base economies of the two regions. Not only are the local base economies of Mid-continent East dominated by below-average growth industries, but they also are marked by a continuing decline in the competitive position of their principal exports. The base economies of the comparison region are distinguished by an overall above-average industry-mix effect and an overall above-average regional-share effect.

A distinguishing difference between the high income volatility and low income volatility LMAs in Table 3 is the direction of relative change. It is strongly negative for high volatility areas and strongly positive for low volatility areas. For most high income volatility LMAs, a positive regional-share effect for the

1970s turned negative in the 1980s, thus contributing to the strongly negative relative change in the 1980s.

The ranking of total change in labor earnings in the 1970-86 period in Table 4 confirms the unique role of the local base economy in accounting for regional job and income growth. For the 30 fastest-growing LMAs, total labor earnings increased from \$182.6 billion in 1970 to \$345 billion in 1986--an increase of 89 percent. During the same period, total labor earnings increased by only 22 percent for the 30 slowest-growing LMAs--from \$96.1 billion in 1970 to \$116.9 billion in 1986.

High local labor income growth is as frequently associated with high as low labor income volatility-nine in both cases. In comparison, the low income LMAs include 13 of the highest and five of the lowest volatility LMAs. Thus the mid-range LMAs in labor income growth include 12 high and 12 low income volatility LMAs. The findings show a lack of strong correlation between income growth and income volatility when further differentiation of local base economies is lacking.

The excess earnings variables in the regression analysis (cited earlier and presented in the next section) are used, also, in estimating the industry mix in the base economies of the 100 LMAs. Excess earnings of each two-digit industry group in the county-level labor earnings series compiled and reported by the US Department of Commerce was calculated for each county and aggregated by LMA. The industry distribution of the excess earnings for the 30 highest and 30 lowest volatility LMAs for 1974 is presented in Table 5A. The corresponding distribution for 1986 is presented in Table 5B.

The base economies of the high volatility LMAs are marked by high levels of industry specialization in farming, mining or manufacturing. In these areas, the high income volatility is associated with a high degree of vulnerability to the vicissitudes of cyclically-sensitive export markets. Moreover, the extreme specialization of industry in the base economies of the high income volatility LMAs persisted through the 1970s and many of the 1980s. Where high income volatility was accompanied by slow income growth, the local base economies also faced shrinking export markets.

High income growth areas differ from high income volatility areas and low income growth areas in the diversity of their base economy, as shown in Table 6A and Table 6B. Even specialized base economies support high income growth when the export-producing sectors remain competitive in their export markets and maintain their market shares. Generally, however, the specialized fast-growing economies had lost their earlier momentum by the mid 1980s and faced, instead, much reduced income growth.

Accounting for Local Employment Change

Regression models for each year and their area orientations are presented in this section of the report, starting with the 1978-80 period and the composite area orientation. The findings for each model are reviewed in the context of the preceding discussion of the role and importance of the base economy of in regional economic growth.

Employment Change

Period-to-period percentage change in total wage and salary employment is the measure of regional economic well-being used in all regression models. The employment change over a two-year period is related to a series of explanatory variables, also for two year intervals, lagged by one period.

The explained variance attributed to individual regression models--measured by the adjusted R square values--ranges from 34 percent to 76 percent of total variance. The individual R square values are summarized as follows:

LMA Group	7880	8082	8284	8486	8688	
All LMAs (381)	.6594	.5996	.3404	.5444	.5056	•
Metropolitan (81)	.6535	.5630	.5431	.5159	.5788	
Rural (103)	.7365	.7606	.6307	.7495	.6788	
Manufacturing (139)	.6317	.5035	.3870	.5186	.4643	

Generally, the explained variance is higher for the beginning and ending periods than the three intervening periods. The regression model for the rural emphasis yields the highest R square values. The diversity and complexity of regional economic change in the early 1980s apparently added to the difficulties of statistical estimation.

Excess Earnings Change

The excess earnings change variable is estimated from the two-digit county-level wage and salary earnings series. The statistical series are prepared by the US Department of Commerce for the following years: 1970, 1975, 1980, 1982, 1985 and 1986. By straight-line data interpolation, intervening year estimates were obtained to complete the two-year even-year change series.

Statistically significant (at a 5 percent confidence level) estimates of the "All LMAs" regression model parameters (standardized Beta weights) are presented for the five two-year periods, as follow:

Industry Group	7880	8082	8284	8486	8688	E
Agriculture (1-9)	.396					R
Mining (10-14)	.345	.225			.272	R
Construction (15-17)	.164		076	.284	.119	U
Mfg., Nondurables (20-3,26-31)	.165			.120		M
Mfg.,Durables (24-5,32-9)	.201	071	.094	.178		М
TCPU (40-47)						М
Wholesale (50-51)	.112			.090		R
Retail (52-59)	.216			.101		R
Business Serv. (60-7,73,81,86)			.119			R
Consumer(70,72,75-6,78-9,84,8	38) .226	.065		.063	.144	R
Other Private Serv. (80,82-3)	053					U

Most excess earnings variables are positively correlated with employment change. Exceptions occur in the 1980-82 period and in construction, durable goods manufacturing and other services (health care, education and social services) that relate to their role in the 1980-82 recessions. In the preceding two-year period many LMAs peaked in total employment because of high levels of durable goods manufacturing in their local base economies. Peak employment levels in the 1978-80 period were followed, however, by large employment losses in the 1980-82 period.

The largest percentage change in total employment was associated with a given percentage change in agriculture sector labor earnings. On the other hand, the mining earnings-to-employment multiplier is large because of high earnings per worker in mining.

The series of 11 regression coefficients varied among LMAs because of primary economic emphasis (E)--urban metropolitan (U), rural (R) or manufacturing (M). The geographical distribution of the three groups of LMAs included in the additional regression analyses was cited earlier in Figure 2.

Employment effects of changes in construction and other private services, like health care, education and social services, were largest in the urban metropolitan areas. Employment effects of changes in manufacturing and the transportation, communications and public utilities sector were large in LMAs with a manufacturing orientation. However, for the remaining industry groups the employment effects were largest in LMAs with a rural emphasis.

Total Excess Earnings

The current year values of excess earnings were included in the model to account for the differential effect of sector size, as well as rates of change, on total employment. Again, this measure of the base economy proved statistically significant in explaining model variance, as shown by the fitted regression coefficient values below:

Industry Group	7880	8082	8284	8486	8688	E
Agriculture(1-9)	.106				.066	R
Mining(10-14)			555	139		М
Construction (15-17)	.119		.288		211	R
Nondurables (20-3,26-31)					.192	M
Durables (24-5,32-9)	076	056				M
TCPU (40-47)			220		203	M
Wholesale (50-51)					200	R
Retail (52-59)	.211	.070		.225	200	
Business Serv. (60-7,73,81,86)		.070			.323	U
Consumer(70,72,75-6,78-9,84,8				113		U
	•					M
Other Private Serv. (80,82-3)	.090					R

Sector size is related positively to employment change in agriculture, construction, nondurables manufacturing, retail trade and other services. It is negatively related to employment change in mining, durable goods manufacturing, the transportation, communications and public utilities sector, and business services.

Employment effects of sector size vary with economic emphasis. They are the largest in (1) the urban metropolitan emphasis for retail trade and business services, (2) the rural emphasis for agriculture, construction, wholesale trade and other services, and (3) the manufacturing emphasis for mining, manufacturing, the transportation, communications and public utilities sector, and consumer services.

Business Volatility

Business volatility is represented by changes in the number of establishments and related jobs due to their establishment births and deaths, expansions and contractions. Firm volatility is represented by four variables--autonomous births and deaths and branch births and deaths. Job volatility is represented by eight variables--the factorial combination of autonomous and branch, births and deaths,

and expansions and contractions. The employment effects of each of the 12 explanatory variables are summarized as follows:

Business Volatility Variable	7880	8082	8284	8486	8688	Ε
Branch Births		.099	135	.093		R
Branch Deaths			.100		103	R
Autonomous Births	.175	.312	.296		.264	U
Autonomous Deaths			.149			R
Job Growth, Auton. Births	.083					R
Job Loss, Auton. Contractions	S		.098			М
Job Loss, Auton. Deaths						R
Job Growth, Auton. Expansion	ns				.240	М
Job Growth, Branch Births			094			R
Job Loss, Branch Contraction	ıs					
Job Loss, Branch Deaths					.097	U
Job Growth, Branch Expansion	ns					R

Business volatility variables are positively associated with employment change, except for branch births and branch deaths in the 1982-84 period and job growth associated with branch births in the 1986-88 period. Autonomous firm births have the largest effect on total area employment.

Labor market areas with a rural emphasis are more strongly affected by the business volatility variables than LMAs with an urban metropolitan emphasis, particularly with autonomous births and autonomous expansions. While LMAs with a rural emphasis may experience more income volatility than LMAs with an urban metropolitan orientation, they also are more susceptible to the positive influences of increased business activity. One result of having a concurrence in firm births and job expansions as well as firm deaths and job contractions is an economic dynamism that shifts local resources into more productive enterprises.

Spatial Structure

Market access differences in the spatial structure of rural and metropolitan areas are represented by three dummy variables. The values of 1 or 0 depend upon the status of the LMA relative to the specified access attribute, population density and location in or out of the Sunbelt (Texas, Oklahoma and Florida). Distances from the principal urban center of the LMA to the nearest and the next nearest airline nodes are the measures of market access represented by the dummy variables. The importance of the three dummy variables, population density, Sunbelt location (also a dummy variable) and personal income in accounting for local employment is summarized as follows:

7880	8082	8284	8486	8688	E
		.154	.070		R
.107	.099				
	.188		.053		U
.167	.404		183	173	U
				117	М
201			.107	.086	М
	.107	.107 .099 .188 .167 .404	.154 .107 .099 .188 .167 .404	.154 .070 .107 .099 .188 .053 .167 .404183	.154 .070 .107 .099 .188 .053 .167 .404183173 117

Market access as represented by proximity to one or two of the 29 US airline nodes is a statistically significant locational attribute for differentiating among LMAs with reference to employment change. It helps articulate the role and dimensions of location in regional economic growth and change.

Each of the three economic orientations cited earlier has a different response to the market access variables. Proximity to a primary and secondary airline node is positively correlated with employment change, especially for the LMAs with a rural orientation. Proximity to two airline nodes is most important to LMAs with a metropolitan orientation.

A Sunbelt location was a positive factor in employment growth in the 1978-80 and 1980-82 periods, but a negative factor in the 1984-86 and 1986-88 periods. The LMAs with a metropolitan orientation were slightly more influenced by these factors in three of the four periods than the combined LMAs. Population density was a negative factor for LMAs with a manufacturing orientation during the 1980-82 period, but a positive factor in the 1984-86 period. It was a positive factor for LMAs with a rural orientation in the 1978-80 period. Finally, total personal income change was positively associated with employment change in the 1984-86 and 1986-88 periods and negatively in the 1978-80 period. Its largest effect was in the LMAs with a manufacturing orientation.

Assessing Competitive Position of Local Labor Markets

One interpretation of the study findings is that a particular region's location in the national and global regional settlement and trading systems imposes severe constraints on regional development options. A rural LMA located well beyond the outer limits of any metropolitan LMA has diminished prospects for long-term economic viability beyond the lifetimes of its principal product cycles. Even the incorporated municipalities of the metropolitan core area lack the economic and political power to seriously affect the decision options of its largest export-producing businesses (Jutila and Maki, 1991). The conclusions are inferred in part from comparisons of the contrasting labor earnings and employment experience of core versus peripheral labor market areas in the US.

Core vs. Peripheral Labor Market Areas

The principal findings of the two studies cited earlier are summarized, in part, by a series of statements contrasting the two types of areas--core and periphery. The study findings show that:

- 1. Slow-growing labor market areas (LMAs) were not consistently slow-growing and fast growing LMAs were not consistently fast growing in the three time periods--1970-80, 1980-82, and 1982-85 included in this study. However, slow-growing areas in total were consistently slow growing and the fast-growing areas in total were consistently fast growing in each of the three time periods.
- 2. Slow-growing areas experienced both a negative industry effect and a negative regional share effect during each of the three time periods. Fast-growing areas experienced both negative and positive industry mix effects and generally positive regional share effects.
- 3. Slow-growing areas were concentrated in the sparsely populated parts of the study region while fast-growing areas were concentrated in and around metropolitan core areas.

- 4. Exceptional shifts in the commodity-producing sectors accounted for high income volatility among LMAs while low volatility areas generally maintained their diverse base economy.
- 5. Rural areas with some exceptions retained high levels of industry specialization, while metropolitan areas generally sustained their diversified base economies during each of the three study periods.
- 6. High business (not income) volatility was associated with high growth and low business volatility was associated with low growth.
- 7. Access to, and choice of, airline node was associated with high growth.
- 8. Sunbelt location was associated with high growth in the 1970s and low growth in the 1980s.

In summary, the peripheral LMAs were most vulnerable to cyclically-induced income volatility while metropolitan core areas benefitted most from business volatility. Transitional rural areas experienced high income and business volatility and, also, high income growth.

Attributes of Local Economic Environment

Location in the context of economic competitiveness used here is thus much more than the geography of physical space. It includes, also, economic space and political space. It is the total local environment and its available human, natural and physical resources for successful business performance. It includes the local infrastructure, the base economy and the resources and capabilities for information access by the resident businesses and other economic units.

Local Infrastructure. Building local infrastructure, as a regional issue, has much currency in legislative committees because of the opportunity it offers local representatives for "bringing home the bacon." Moreover, numerous studies show a high correlation between public infrastructure expenditures and the profitability of business investment (Aschauer, 1991). Understandably, the findings are warmly received in legislative circles, even though the studies are highly aggregate in nature and the assumed causal relationship, if any, is questionable.

Nonetheless, an important attribute of an optimal location for a business enterprise is the local infrastructure--the physical facilities and economic resources shared, in varying degree, by all local businesses (Porter, 1990). For the most part, the local infrastructure is in the public sector, although it includes important quasi-private and private enterprise. The local infrastructure includes the regulated industries--transportation, communications and public utilities--and banking, finance and insurance companies, management consulting agencies, and research and development laboratories.

Each industry cluster in a local community shares the total local infrastructure, which represents the macro-economic entity that relates to the individual export-producing businesses in the local economy. By definition, the export-producing businesses are part of the local base economy and, typically, the largest employers in this category are branch plants or headquarters offices of multinational companies trading in global markets. The branch plants, particularly, are affected by corporate decisions based on national and global rather than local considerations. However, the productivity of the local work force is strongly affected by the quality of local training and education in public schools

and post-secondary educational institutions.

Base economy. The location attribute for strengthening a region's economic base includes support industries serving the region's residentiary sector and the local transportation and telecommunications infrastructure. Both supporting industries and local infrastructure are directly affected by local governmental efforts the local macro-economic environment addressed by these efforts. The base economy, however, is likely to include direct linkages to various micro-economic decision centers. They include the regional, national and multi-national firms that function in a global macro-economic environment of which the local branch plants and offices are a part. Local efforts to directly affect the local base economy thus may pale besides the micro-economic decisions of the largest employers in the base economy (Jutila and Maki, 1991).

The study findings presented earlier show a high degree of industry specialization in most LMAs, especially among those with the highest income volatility. The incidence of specialization has not changed among individual LMAs with the highest income volatility. Overall, reduced dependence on agricultural specialization among the 100 selected LMAs has been replaced by increased dependence on manufacturing specialization. Until the 1982-84 period, mining specialization also was important.

For most LMAs with a rural or manufacturing orientation, replacement of extreme dependence on industry specialization with a more diverse base economy seems unlikely, given the factual evidence presented earlier. Especially the peripheral rural LMAs in the economic regions centered on the metropolitan LMAs are overwhelmingly dependent on the utilization of local natural resources.

Transitional LMAs are the exceptions to the overall pattern of continuing industry specialization, according to the study findings. Apparently they are close enough to the metropolitan core area to gain new industry, particularly new businesses of industries branching from the metropolitan core area to low cost sites in contiguous rural areas. Also, a new, diverse base economy is emerging in the transitional LMAs because of metropolitan core area businesses subcontracting with transitional area businesses. Thus, transitional rural areas are likely to experience high income growth and high income volatility and, also, high business volatility.

Metropolitan LMAs, with the exception of areas marked by negative industry mix and regional share values in a highly specialized base economy, generally are the fastest growing in labor earnings. At the same time, income volatility may range from the lowest to among the highest LMAs. A high degree of dependency on a specialized base economy would still sustain high income growth as shown by the strongly positive industry mix and regional share effects. Business volatility is generally high in metropolitan areas.

The promoting of regional growth is a regional issue, therefore, severely constrained in its successful implementation. The realities of business location, industry product cycles and access to new product and process technologies are constraining influences on regional growth.

If individual LMAs were assigned to one of two types of export-producing industry clusters--those producing a standardized and readily tradeable product and those producing a non-standardized less

readily tradeable product--the peripheral LMAs would dominate the first cluster and the metropolitan LMAs would dominate the second cluster. Successful strategies for maintaining and improving on existing business locations, products and technologies would thus differ for the two types of industry clusters. Government intervention would be limited primarily to the maintenance of a favorable economic environment.

Support industries produce goods and services for local intermediate and final markets. Local industries purchasing semi-finished products are the intermediate markets while households, businesses and governments purchasing finished products are the final markets.

The location attributes of support industries are simple and straightforward in their implications for new business formation: all markets are local. Any excess product demand is fulfilled by imports from outside the LMA. Therefore, economies of scale in production and production knowledge are the critical limiting factors facing entrepreneurial efforts in establishing strongly competitive new business ventures tapping into existing local markets.

Information access. Improving access to decision information by the residents of a region is of over-riding importance in building local infrastructure or supporting the base economy. However, access to information on the part of local community leaders and resident small business managers is often limited by available local resources. The decision centers of the large corporations with branch plants and offices in the local community have the access advantage.

Information production, distribution, interpretation and use are essential functions of education and research institutions. Despite the prominence of these institutions, their individual missions are more than likely to avoid the challenge of improving access to information for purposes of local business expansion and community development.

Nonetheless, key sectors for improving local access to information include state and local educational institutions and related community functions, such as city and neighborhood libraries and social centers. Moreover, various information partnerships that involve local businesses and community leaders, as well as state and local governments, can become active participants in improving access to decision information.

Summary and Conclusions

The purpose of this paper is to account for the differential growth of peripheral and core labor market areas in the US economy as a basis for (1) building scenarios of future growth and development of peripheral areas in the US under alternative market and public policy assumptions and (2) comparing the findings for selected US labor market areas with the findings of related studies of regional economies in the Nordic countries and the Baltic rim. We combine the findings of two studies and the insights gained from a third study still in progress to document the changing patterns of job and income growth in core and peripheral labor market areas and related change sources.

The working hypothesis for testing the findings on regional growth stems from economic base theory. This theory states that a region's economic performance is conditioned by its export-producing

sectors and the competitive position of its export-producing businesses in US and world markets.

Peripheral areas--the sparsely-populated labor market areas producing standardized, tradeable agricultural, mineral and timber products--would benefit from export growth. The economic and political importance of these products and their areas of production has declined in recent years.

Earnings per worker also are high in metropolitan core regions relative to rural regions. Yet, the two contrasting types of regions are linked as interdependent local economies because of their common product markets and input supply sources. Once differences in the base economies of the two types of areas are accounted for, business volatility is positively, rather than negatively, associated with economic growth.

Included in the shift-share analysis are 77 labor market areas located in the 13 state US Mid-continent east-west transportation corridor region extending from Michigan to Oregon and Washington. This transportation corridor region has experienced much economic volatility due to its many natural resource-based local economies in its interior states and cyclically-sensitive durable goods manufacturing elsewhere in the region. The remaining 23 LMAs in this study include both rapidly growing and generally declining base economies that vary in their indexes of income volatility and overall growth from the lowest to among the highest.

The largest percentage change in total employment in the regression analysis reported in this study was associated with a given percentage change in agriculture sector labor earnings. On the other hand, the mining earnings-to-employment multiplier is large because the high earnings per worker in mining.

The series of 11 regression coefficients varied among LMAs because of primary economic emphasis (E)--urban metropolitan (U), rural (R) or manufacturing (M). Employment effects of changes in construction and other private services were largest in the urban metropolitan areas. The employment effects of changes in manufacturing and the transportation, communications and public utilities sector were large in LMAs with a manufacturing orientation. However, for the remaining industry groups the employment effects were largest in LMAs with a rural emphasis.

Business volatility is represented by changes in the number of businesses and related jobs due to establishment births and deaths and job expansions and contractions. Firm volatility is represented by four variables--autonomous births and deaths and branch births and deaths. Job volatility is represented by eight variables--the factorial combination of autonomous and branch, births and deaths, and expansions and contractions.

Business volatility variables are positively associated with employment change, except for branch births and branch deaths in the 1982-84 period and job growth associated with branch births in the 1986-88 period. Autonomous firm births have consistently the largest effect on total area employment.

Labor market areas with a rural emphasis are more strongly affected by the business volatility variables than LMAs with an urban metropolitan emphasis, particularly with autonomous births and

autonomous expansions. While LMAs with a rural emphasis may experience more income volatility than LMAs with an urban metropolitan orientation, they also are more susceptible to the positive influences of increased business activity. One result of having a concurrence in firm births and job expansions as well as firm deaths and job contractions is an economic dynamism that shifts local resources into more productive enterprises.

Market access as represented by proximity to one or two of the 29 US airline nodes is a statistically significant locational attribute for differentiating among LMAs with reference to employment change. It helps articulate the role and dimensions of location in regional economic growth and change.

Each of the three economic orientations cited earlier has a different response to the market access variables. Proximity to primary and secondary airline nodes is positively correlated with employment change, especially for the LMAs with a rural orientation. Proximity to two airline nodes is most important to LMAs with a metropolitan orientation.

One interpretation of the study findings is that a particular region's location in the national and global regional settlement and trading systems imposes severe constraints on regional development options. A rural LMA located well beyond the outer limits of any metropolitan LMA has diminished prospects for long-term economic viability because of reduced access to vital business and market information. Even the incorporated municipalities of the metropolitan core area lack the economic and political power to seriously affect the decision options of the largest export-producing businesses. It is quite possible that at best many peripheral areas must aspire to a gradual decline in economic and social well-being. If fortunate, they may be assisted by some new sense of fairness in the implementation of contractionary public policies affecting natural resource-based local economies.

References Cited

Aschauer, David A. 1991. Infrastructure: America's Third Deficit. Challenge. March-April, p. 39-45.

Jutila, Sakari and Wilbur Maki. 1991. Empirical Investigations of Political Interregional Economic Development. Paper prepared for Regional Science Conference, "Periphery Strategies in European Integration", at Sandbjerg Castle, Sonderborg, Denmark, November 27-29.

Maki, Wilbur. Richard Bolan and Hossein Akhavi-Pour. 1991. Forging a Peace Economy in Minnesota. A Report for the Minnesota Economic Conversion Task Force. Minnesota Department of Jobs and Training, 390 N. Robert St., St. Paul, MN 55101.

Porter, Michael 1990. The Competitive Advantage of Nations. New York: Free Press.

Reynolds, Paul and Wilbur Maki. 1990a. "Business Volatility and Regional Economic Change." Paper prepared for Cross-National Workshop on the Role of Small and Medium Enterprise in Regional Economic Growth, University of Warwick, Coventry, United Kingdom, March 28, 1990.

Reynolds, Paul and Wilbur Maki. 1990b. "Business Volatility and Economic Growth," Final project report submitted to the U. S. Small Business Administration in fulfillment of Contract SBA 3067-0A-88, Regional Economic Development Associates, Incorporated, 4520 Oxford Avenue, Minneapolis, MN, May 28, 1990.

Reynolds, Paul D., Brenda Miller and Wilbur Maki. 1991a. "Regional Characteristics Affecting New Firm Births," Prepared for presentation to Second Annual Workshop on Small Business Economics and Entrepreneurship, Harvard Business School, Cambridge, MA, April 19, 1991 and 23rd Annual Meeting of the Mid-Continent Regional Science Association, Chicago, IL, June 1, 1991.

Reynolds, Paul D., and Wilbur Maki. 1991b. U.S. Regional Characteristics that Promote Regional Growth. Ford Foundation Grant No. 8900-013, U. Minn Grant No. 0610-5764. (in process)

Tolbert, Charles M. and Molly Sizer Killian. 1987. <u>Labor Market Areas for the United States</u>. Washington, D.C: US Department of Agriculture, Economic Research Service, Agricultural and Rural Economy Division, Staff Report AGE870721.

APPENDIX: Measuring and Predicting Regional Growth

Place-to-place Variability

Area differences in job and income growth are "explained" for a given two-year period in a series of equations based on a model of regional growth as follows:

REGCHG = F(BUSVOL, BASECHG, ACCESS),

where,

REGCHG is a regional growth indicator variable, i.e., jobs or income changes;

F denotes a functional relationship between the target, or dependent, and explanatory, or independent, variables;

BUSVOL is a set of business volatility variables, e.g., change in jobs due to establishment births, deaths, expansions and contractions;

BASECHG is a set of area economic base variables, e.g., change in excess earnings of specified industry group;

ACCESS is a set of distance variables indicating access to airline nodes.

Period-to-period Variability

Period-to-period differences in jobs and income are "explained" for a given area are by a "shift-share" model of the form.

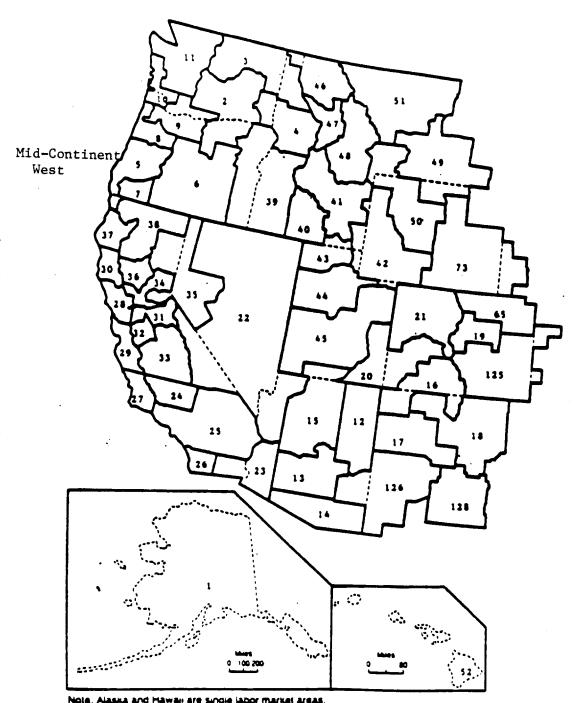
REGCHG = F (USGROWTH, INDMIX, AREASHARE),

where,

REGCHG is a regional growth indicator variable, i.e., jobs or income changes;

F denotes an identical relationship between the target, or dependent, and explanatory, or independent, variables;

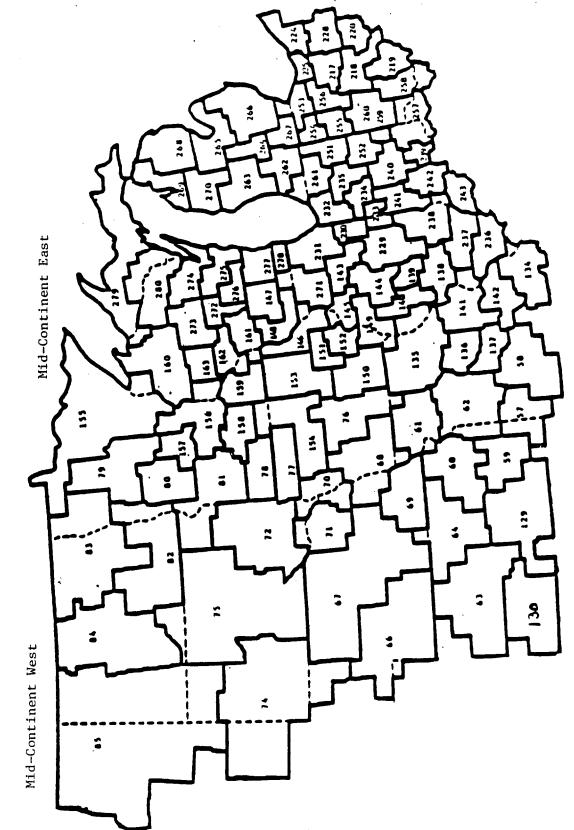
USGROWTH is a set of aggregate US industry change variables, i.e., change in real labor earnings;


INDMIX is a set of industry-specific US change in industry-mix variables, i.e., change in industry-specific real labor earnings less aggregate US industry change;

AREASHARE is a set of industry-specific area change variables, i.e., change in industry-specific area real labor earnings less corresponding change for US.

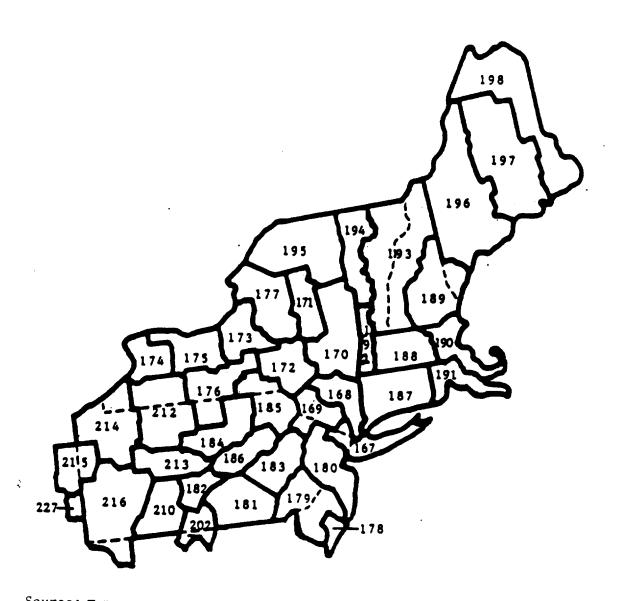
Measures of regional growth can be sorted into three broad categories--internal, external and intervening. The internal measures include the target variables--jobs and income--that are affected by local economic activity and the intervening variables and relationships. The external measures include industry-specific production of all products originating in the US and each area industry's share of the total product. Most rural areas of the United States are influenced heavily by external conditions--the general business cycle and world trade. The intervening measures, like market or employment share (that is, the proportion of the total product market or industry employment share accounted for by the local industry), link internal to external variables.

In addition, the response of each product market to changes in product prices and consumer incomes and the response of the total production of each product to improvements in productivity-measured by increases in output per hour worked--must be estimated to account for local changes in industry employment, earnings and productivity. Productivity per worker, especially in rural areas, is closely geared to investment per worker. For the dominant small business enterprise in rural areas, investment per worker is generally low, which results, in part, from limited access to export market information and access.

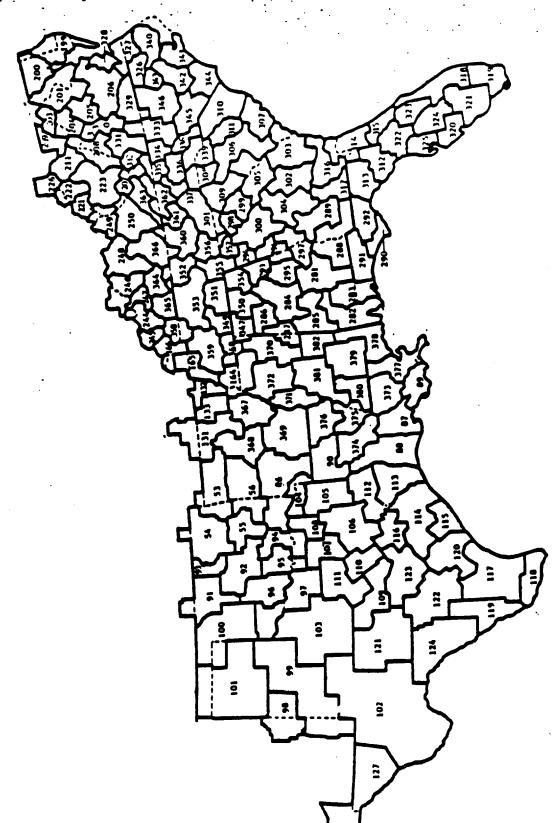

Western Labor Market Areas with LMA Codes

NOIS. AISSAS SING MEWINI SITE SATISTS MADUL ITHER RELIED OF THE PART OF THE PA

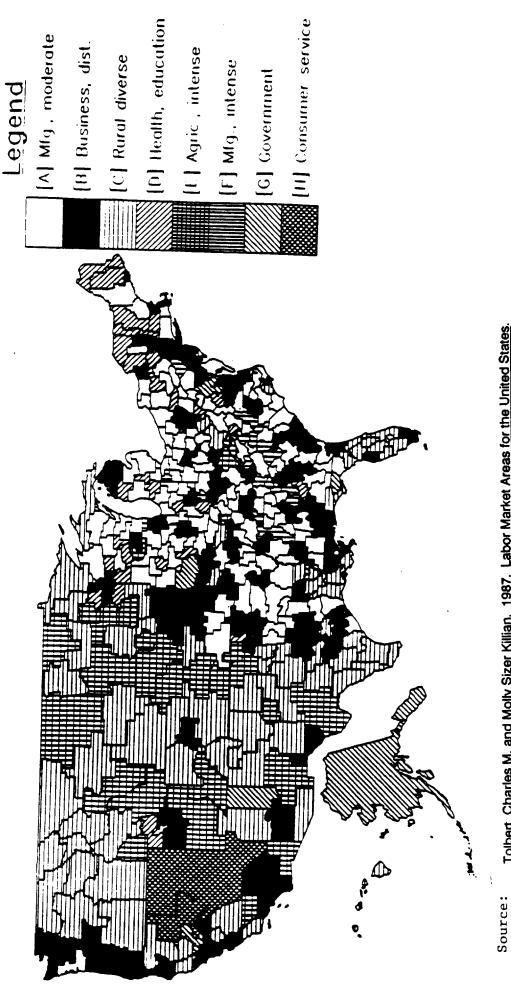
Tolbert, Charles M. and Molly Sizer Killian. 1987. <u>Labor Market Areas for the United States</u>. Washington, D.C: US Department of Agriculture, Economic Research Service, Agricultural and Rural Economy Division, Staff Report AGE870721.


North Central Labor Market Areas with LMA Codes

Tolbert, Charles M. and Molly Sizer Killian. 1987. <u>Labor Market Areas for the United States.</u> Washington, D.C: US Department of Agriculture, Economic Research Service, Agricultural and Rural Source:


Economy Division, Staff Report AGE870721.

Northeastern Labor Market Areas with LMA Codes


Source: Tolbert, Charles M. and Molly Sizer Killian. 1987. Labor Market Areas for the United States.

Washington, D.C: US Department of Agriculture, Economic Research Service, Agricultural and Rural Economy Division, Staff Report AGE870721.

Washington, D.C: US Department of Agriculture, Economic Research Service, Agricultural and Rural Economy Division, Staff Report AGE870721. Tolbert, Charles M. and Molly Sizer Killian. 1987. Labor Market Areas for the United States. Source:

Location of Eight Types of LMAs

Washington, D.C: US Department of Agriculture, Economic Research Service, Agricultural and Rural Tolbert, Charles M. and Molly Sizer Killian. 1987. Labor Market Areas for the United States. Economy Division, Staff Report AGE870721.

Table 1. Total labor earnings (1982 \$) for all industry and volatility and growth indexes of specified labor market areas;
Mid-Continent West, Mid-Continent East and Comparison Labor Market Areas, US, 1970-1986

No. Labor Market Area L	.MA	Labor Ea 1970	rnings 1986		Growth Index	No.	. (Labor Market Area	LMA	Labor E 1970	arnings 1986		Growth Index
	~~~	(mil.s) (	(mil.5)	(Rank)	(Rank) 37		۰ ۱ ۲	MN:ST CLOUD AREA	157	(mil.\$)	(mil.\$)	(Rank)	(Rank)
1 WA-OR:WALLA WALLA ARE 2 WA-ID:SPOKANE AREA	3	2664 2887	4379 4570	25 73	40			HN: MANKATO AREA	158	1323	1788	50	
3 ID-WA: LEWISTON AREA	4	833	1061	53	78			MN:ROCHESTER AREA	153.	1476	2136	75 77	54
4 OR-CA:EUGENE AREA	5	2253	3203	23	52	5 S		WI:NORTHWEST AREA WI-MN:LA CROSSE AREA	160 161	952	1041 1466	78	14
5 OR:BEND (CENTRAL)	9	773 669	1186 1221	- 19 26	51 23	57		WI-MN:WINONA MN AREA	162	506	698	52	55
6 OR:MEDFORD (SW) 7 OR:SALEM AREA	Ŕ	1998	3243	47	33	• .		IN-MI:SOUTH BEND AREA	261	1906	6595	13	21
8 OR-WA:PORTLAND AREA	9	8270	13467	54	38			MI:KALAMAZOO AREA	262	3491	4564	96	72
9 OR-WA: LONGVIEW-COAST	10	1282	1690	24	58			HI:GRAND RAPID AREA	263 264	5843 2915	9094 4491	49 88	39 43
10 WA:SEATTLE-TACOMA MET	11	17344	30708 904	81 31	18 69			MI:LANSING AREA MI:MIDLAND AREA	265	3473	4509	55	77
11 ID:SOUTH CENTRAL 12 ID:POCATELLO AREA	40 41	635 1131	1784	67	42			MI:DETROIT HETRO	266	42911	55904	17	7.4
13 HY-ID-UT:ROCK SPRINGS		420	1130	4	`2	6	4	HI: JACKSON AREA	267	1774	1819	79	99
14 UT-ID:LOGAN AREA	43	376	774	92	11	6	5	MI:HURON FOREST AREA	268	607 709	801 1236	32 51	81 27
15 MT-ID:KALISPELL AREA	46	460 441	661 728	63 36	52 35	6	7	MI:TRAVERSE CITY (NW) MI:CADILLAC AREA	270	566	752	44	27 75
16 MT:MISSOULA AREA 17 MT:BUTTE-HELENA AREA	48	702	855	70				IL-WI:ROCKFORD AREA	271	4413	5612	45	70
18 MT-WY: BILLINGS AREA	49	980	1521	18	32			WI:STEVENS POINT AREA		735	1274	83 68	22 50
19 WY-MT: YELLOWSTONE N P	50	539	847	7				WI:WAUSAU AREA	273 274	909 1447	1380 2499	85	21
20 MT:GREAT FALLS AREA 21 NE-CO:NORTH PLATTE AR	51	1124 822	1141 1140	35 30			2	WI:GREEN BAY AREA WI:OSHKOSH AREA	275	3202	4703	97	49
21 NE-CO:NORTH PLATTE AR 22 NE:GRAND ISLAND AREA	66	1720	2389		36			WI:FOND DU LAC AREA	276	751	992	91	68
23 NE-IA-MO: DMAHA METRO	68	5668	7716	43				HI: MILHAUKEE METRO	277	12088	15504	93	76 80
24 NE:LINCOLN METRO	69	1942	2911	21				WI:KENOSHA AREA HI-WI:UPPER PENNSULIA	278 279	2153 1236	2676 1424	29 65	90
25 IA-NE-SD:SOUIX CITY	70 71	1258 557	1506 805					WI-MI: IRON MOUNTAIN	280	725	1062	72	57
26 ME-SD:NORFOLK AREA 27 SD:SOUIS FALLS AREA	72	1642	2351	89			•	Total Mid-continent E	ast	135197	185176	20	
28 WY-NE: CHEYENNE AREA	73	1592	2486					AZ:HOLBROOK (NE)	12	3190 7442	672 19696	38 98	87
29 SD-NE-WY:RAPID CITY A	74	976	1720					AZ:PHOENIX MÉTRO AZ:TUSCON METRO	13	2527	5429	96	9
30 SD-ND:ABERDEEN-WEST 31 IA-MO:DES MOINES METR	75 76	896 4004	1019 5590					AZ-UT:FLAGSTAFF-CANYO	15		1068	82	7
31 IA-MO:DES MOINES MEIR 32 IA:SPENCER (NW) AREA	77	903	1017				32	NM:DURANGO-TAOS	16		1202		10
33 MN: WORTHINGTON (SE)	78	788	844					CO:DENVER METRO	19	9760 765	22467 1884	46	6
34 MN:BEMIDJI-N CENTRAL	79	507	811			i i		CO:GRAND JUNCTION-NW CA:LOS ANGELES METRO	21 25		147132		
35 MN:ALEXANDRIA AREA 36 MN-SD:MORRIS-SISSETON	80 81	622 1113	847 1362			i 8	86	UT: SALT LAKE CITY MET			10363	61	15
36 MN-5D:MORRIS-5155E10N 37 ND-MN:FARGO-MOOREHEAD	82	1324	1934	69	48	: 8	87	UT:CEDAR CITY-PRICE	45		1090		
38 ND-MN:GRAND FORKS ARE	83	1297	1754			3		CO:FT COLLINS-NE AREA	195		2648 1700		
39 NO: MINOT-BISHARK AREA	84	1033	1633		) 24 9 73			NY:NORTHEAST AREA ME:PORTLAND METRO	196		5680	7.1	25
40 ND-MT-SD:DICKINSON AR Total Mid-continent We	85	989 75431	1206 116013		, ,,			ME : BANGOR METRO	197	1048	1609	48	34
41 IA-IL: DUBUQUE AREA	146	1529	1669			, 9	92	WV-VA:BLUEFIELD	207		948		
42 WI:MADISON AREA	147	3049	4447					FL:WEST PALM BEACH	318 319		11839 26961		
43 WI : PLATTEVILLE AREA	148	686	801					FL:MIAMI METRO FL:SARASOTA AREA	320				
44 IA-IL-MO:BURLINGTON 45 IA:OTTUMWA AREA	149	7	1606 1495				96	FL:FT MYERS AREA	32:	982	297	100	
45 IA:OTTUMMA AREA 46 IA:CEDAR RAPIDS AREA	151	1654	204			9	97	NC - VA : GREENBOROUGH AF	1 33:	3 4574	7045		
47 IA: IOWA CITY AREA	152	982	155	7 4:		•	98		37		5480 1326		
48 IA: WATERLOO AREA	153		2520			1	99 00	LA:ALEXANDRIA AREA LA-MS:NATCHEZ MS ARE	374 371				
49 IA-MN: MASON CITY AREA	154 155		2450 2470		•		vV	Total Comparison LMA	. <i>J</i> /	151140	283169	•	
50 MN-WI:DULUTH AREA 51 MN-WI:MPLS-ST PAUL ME			2869					Total US		1425767	2208097	,	
OT THE METHORS OF THACK HE													

Table 2. Total and relative labor earnings (in 1982\$) and period-to-period change sources: by regional groupings of US labor market areas, 1970-86

Year and No.Change Source	T Mid-C West	otal Labo ontinent East	r Earning Comparis LMAs	s (1982\$) Other LMAs	All LMAs	Mid-Co West	Propo ontinent East	rtion of Comparis LMAs	Total Other LMAs	All LMAs
1 1970, Totals 2 US Growth 3 Industry Mix 4 Regional Share 5 Relative Change 6 1980, Totals 7 US Growth 8 Industry Mix 9 Regional Share 10 Relative Change 11 1982, Totals 12 US Growth 13 Industry Mix 14 Regional Share 16 1985, Totals 17 US Growth 18 Industry Mix 19 Regional Share 1985, Totals 17 US Growth 18 Industry Mix 19 Regional Share 20 Relative Change 21 1986, Totals	(mil.s) 75431 25388 -2452 12756 10304 11123 -1364 -2426 -3790 -6216 104743 13514 -207 -6244 -6550 111707 4363 188 -245 -27 116013	(mil \$) 135197 45504 -1462 -6483 -7945 160930 -1975 -7870 -9845 -17715 157678 20343 -705 340 -365 177657 6939 -916 1496 185176	(mil.\$) 151140 50870 -258 30157 29899 227790 -2796 4813 4969 9792 231738 29898 3361 4888 8249 269885 10541 1107 1636 2743 283169	(mil.\$) 1063999 358114 4172 -36410 -32258 1405800 -17257 5482 8667 14149 1388091 179088 -2350 1016 -1333 1565845 61160 -380 -380 -380 -380 -3266 1623739	(mil.\$) 1425767 479875 0 0 1905643 -23393 0 0 0 1982250 242844 0 0 0 2125094 83004 0 0 2208097	pct.)37.39.7.82.2446.6.693.09.22.13.39.7.80.33.99.22.13.39.7.80.33.99.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13.39.22.13	(pd:.)57-1-4.89-5.98.42-6.11.0-8.49-1-11.0-8.49-0.22-8.49-0.88.48-5-88.48-88-88-88-88-88-88-88-88-88-88-88-88-8	(pot.) 57.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19.200 19	(pot.) 74.67 33.44 -3.88 -10.4 0.66 1.07 73.79 -0.11 73.79 -0.22 73.5	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Rank Labor Market Area No.	1970 1	Change, 19 US Ind	Req	US In		Change, 1982-89 US Ind Reg	US Tod Red
Mank Labor Market Area No.	1970 G					Growth Mix Share	1985 Growth Mix Share 1986
88 MI:LAMSING AREA 264 89 SD:SOUIS FALLS AREA 72 90 IA-IL-MO:BURLINGTON 149 91 WI:FOND DU LAC AREA 276 92 UT-ID:LOGAN AREA 43	117455579294666545579294666936322844994441114977332282466936525792946669365322826669365257334473491712915422324242424242424242424242424242424242	577 -208 -208 -208 -208 -208 -208 -208 -208	1000 3319 1400 1951 1400 1951 1878 1152 12687 12687 1270 12882 1282 1282 1283 1282 1283 1282 1283 1282 1283 1282 1283 1282 1287 1282 1283 1283 1287 1284 1287 1284 1287 1284 1287 1285 1286 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1287 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 1288 128	-41 -333 -24 -34 -36 -14 -16 -37 -46 -12 -13 -17 -16 -12 -13 -17 -20 -18 -4148 -12 -18 -14 -495 -4148 -12 -18 -14 -495 -4148 -12 -13 -14 -495 -14 -495 -14 -212 -21 -212 -212 -212 -212 -212 -	-168 3848 -90 2056 -111 1534 -38 886 12 608 -708 14185 -302 4999 479 8646 -150 4082 -288 14233 55 2537 98 2152	209	1259   101   150   102   103   104   105   105   106   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107   107

Table 4. Total change in labor earnings (1982 \$) from all industry due to relative change effect in 30 fastest-growing and 30 slowest-growing areas: Mid-Continent West, Mid-Continent East and Comparison Labor Market Areas, US, 1970-1986

LMA Rank Labor Market Area No.	Ch US 1970 Growth		Change, 1980-82 US Ind Reg Growth Mix Share	Change, 1982-85 US Ind Reg 1982 Growth Mix Share 198	Change, 1985-86 US Ind Reg 5 Growth Mix Share 1986
Rank Labor Market Area Mo.  1 FL:FT MYERS AREA 321 2 WY-ID-UT:ROCK SPRINGS 42 3 FL:SARASOTA AREA 320 4 AZ:PHOENIX METRO 13 5 FL:WEST PALM BEACH 318 6 CO:GRAND JUNCTION-NH 21 7 AZ-UT:FLAGSTAFF-CANYO 15 8 CO:DENVER METRO 14 10 NM:DURANGO-TAOS 16 11 UT-ID:LOGAN AREA 43 12 UT:CEDAR CITY-PRICE 45 13 CO:FT COLLINS-NE AREA 65 14 FL:MIAMI METRO 319 15 UT:SALT LAKE CITY MET 44 16 LA:BATON ROUGE METRO 373 17 SO-NE-WY:RAPID CITY A 74 18 WA:SEATTLE-TACOMA MET 11 19 CA:LOS ANGELES METRO 25 20 MN:ST CLOUD AREA 157 21 WI:GREEN BAY AREA 274 22 WI:STEVENS POINT AREA272			(mil\$)(mil\$)(mil\$)(mil\$)(	1982 Growth Mix Share 198  #il\$) (mil\$)(mil\$)(mil\$)(mil\$)(mil\$ 2:52 2:79 77 2:00 2:02 1179 152 -38 -68 117 2537 327 86 219 317 14233 1936 204 2027 1930 3646 1115 242 1025 1103 2169 280 -47 -487 191 829 107 -13 69 99 19937 2572 53 -478 2208 4316 557 -53 313 513 1250 161 -45 -140 122 608 78 -16 47 71 1127 145 -107 -25 114 2308 298 -22 1 258 298 398 -22 1 258 27245 2870 612 -127 2560 1711 221 -106 -127 170 26364 3401 526 -1446 2884 118524 15292 2987 2469 13927 1123 145 -13 19 127 2082 269 -27 40 236 1098 142 -20 3 122	5 Growth Mix Share 1986  (mils)(mils)(mils)(mils)(mils)  (mils)(mils)(mils)(mils)(mils)  (mils)(mils)(mils)(mils)  (mils)(mils)(mils)(mils)(mils)  (mils)(mils)(mils)(mils)(mils)  (mils)(mils)(mils)(mils)(mils)  (mils)(mils)(mils)(mils)(mils)  (mils)(mils)(mils)(mils)(mils)  (mils)(mils)(mils)(mils)  (mils)(mils)(mils)  (mils)(mils)(mi
23 OR:MEDFORD (SW)  24 ND:MINOT-BISMARK AREA 84  25 ME:PORTLAND METRO 196  26 HN-WI:MPLS-ST PAUL MEIS6  27 MI:TRAVERSE CITY (NW)269  28 IA:IOWA CITY AREA 152  29 WI:MORTHWEST AREA 160  30 MN:BEMIDJI-N CENTRAL 79  30 Fastest-growing LMAS  71 NY:MORTHEAST AREA 195  72 MI:KALAMAZOO AREA 262  73 ND-MT-SD:DICKINSON AR 85  74 MI:DETROIT METRO 266  75 MI:CADILLAC AREA 270	669 225 1033 348 3487 1174	27 284 120 -114 233 149 -191 119 458 410 561 2400 13 117 107 -62 152 140 -30 120 93 -21 43 70 1080 37348 23120 -81 -241 149 -74 -209 439 -96 142 1366 -117 -5082 4032 -12 -13 731	5 -15 -123 -138 7 -18 127 108 9 -56 133 77 -295 186 -109 8 -13 -68 -81 3 -17 50 33 -11 -38 -49 -9 -1 -9 3 -3452 5264 4764 2 7 -8 -191 -244 3 -54 -191 -244 3 -17 69 52 9 -495 -4148 -4643	1014 131 15 11 117 1602 207 -25 -118 166 4568 589 -65 140 523 23594 3044 15 837 2749 986 127 -7 46 115 1420 183 -13 -108 148 857 111 -9 5 96 677 87 -5 11 77 183941 36633 3950 3902 32842 1459 188 -62 70 165 4034 521 -113 -72 436 1437 185 -74 -410 113 45071 5815 570 2223 536 649 84 -10 7 73	1 46 5 -1 1221 6 65 0 -99 1633 2 204 -14 257 5680 1 1074 1 127 28692 2 45 -5 44 1236 3 58 5 11 1557 3 38 2 38 1041 3 0 4 7 811 5 12828 1204 2554 345012 6 5 -19 -1 1700 7 171 -48 72 4564 7 44 -26 49 1226 7 2097 -321 450 55904
76 WI:MILWAUKEE METRO 277 77 MI.MICLAMO AREA 265 78 ID-WA:LEWISTON AREA 4 79 MI:BUTTE-HELENA AREA 4 80 WI!KENOSMA AREA 27 81 MI:HURON FOREST AREA 268 82 IA-NE-SD:SOUIX CITY 70 83 IA:CEDAR RAPIDS AREA 151 84 LA-MS:NATCHEZ MS AREA 375 85 IA:OTTUMMA AREA 375 86 5D-ND:ABERDEEN-WEST 75 87 AZ:HOLBROOK (NE) 12 88 MN-SD:MORRIS-SISSETON 81 89 WV-VA:BLUEFIELD 207 90 MI-WI:UPPER PENNSULIA279 91 IA-IL-MO:BURLINGTON 147	1113 375 844 284 1236 416	75 -1080 1515; -67 28 460; -53 50 111; 8 -53 89; 2 118 2998 -29 -8 777 -86 -122 147; -81 -36 2094 49 -24 63; -117 -104 146; -144 -143 91; -1004 235 624 -188 78 1378 253 -212 1166 -18 -163 147;	-56 -319 -375 -14 -81 -95 -11 -15 -26 -37 -192 -229 -78 -88 -18 -22 -40 -26 -140 -165 -9 -1 -8 -11 -26 -37 -8 -24 -31 -8 -24 -31 -7 -155 -172 -14 -48 -63 -18 -117 -135	14185     1830     -132     -874     1501       4090     528     -45     -115     445       972     125     -3     -64     103       851     110     -21     -101     84       2648     342     -41     -271     267       682     88     -14     6     6       1422     184     -24     -123     145       1878     242     -31     -133     195       627     81     -23     -89     59       1325     171     -29     -46     142       864     111     -5     -86     88       584     75     -42     19     63       1175     152     -20     -22     128       1066     138     -118     -122     96       1298     167     -37     -78     135	0     586     -88     -4     15504       7     174     -58     -63     4509       0     40     9     -18     1061       0     33     0     -17     855       105     -35     -72     2676       2     30     -9     18     801       3     57     10     -20     1506       6     76     -12     28     2049       5     23     -13     -64     542       1     56     -6     25     1495       5     35     10     89     1019       6     55     -10     21     672       5     50     14     13     1362       3     38     -31     -22     948       3     38     -31     -22     948       3     38     -31     -22     948       3     -8     29     1424
91 IA-IL-MO:BURLINGTON 149 92 WI:PLATTEVILLE AREA 148 93 MN-WI:DULUTH AREA 153 95 IA-MN:MASON CITY AREA154 96 IA-IL:DUBUQUE AREA 146 97 IA:SPENCER (NW) AREA 77 98 MN:WORTHINGTON (SE) 78 99 MI:JACKSON AREA 267 100 MT:GREAT FALLS AREA 51 30 Slohest-growing LMAS	1442 485 686 231 2243 755 2275 766 2229 750 1529 515 903 304 788 265 1774 597 1124 378 96076 32337	-69 -163 1694 -100 39 955 23 -79 2941 -161 51 2932 -273 -251 2455 -115 -75 1854 -144 -2 1061 -156 -3 894 29 -459 1941 -166 -109 1236 -2900 -7898 102928	-11 -70 -80 -36 -215 -251 -36 -196 -232 -30 -207 -237 -23 -183 -206 -13 -141 -154 -11 -86 -97 -24 -142 -166 -15 -93 -108	1534 198 -42 -116 157 761 98 -4 -144 71 2522 325 -175 -232 244 2617 338 -53 -432 247 2172 280 -34 -101 231 1599 206 -30 -181 159 885 114 -5 -38 95 776 100 -14 -55 80 1716 221 6 -158 178 1127 145 -14 -259 100 02025 13163 -638 -1997 11255	2 28 4 58 301 9 5 -26 -35 2474 0 96 -13 -33 2520 7 90 15 34 2456 6 2 -12 24 1669 6 31 9 -2 344 4 70 -22 -13 1819 0 39 -4 106 1141

Table 5A. Industry distribution of excess labor earnings in 30 highest-volatility and 30 lowest-volatility LMAs:
Mid-continent West, Mid-continent East and Comparison LMAs, 1974

CPCT   CPCT	.0 0.0 .9 0.0	10000000000000000000000000000000000000
### DITCEDAR CITY-PRICE ### \$5 17.6	3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	10000000000000000000000000000000000000

Table 5B. Industry distribution of excess labor earnings in 30 highest-volatility and 30 lowest-volatility LMAs: Mid-continent West, Mid-continent East and Comparison LMAs, 1986

			, nining	struct	Nondura	Durables	TOP	JWholesal		Business	Consumer	rvices Other	*otal
HY-NE:CHEYENNE AR  NE:GRAND ISLAND A  CO:GRAND ISLAND A  NE-SD:NORFOLK SPR  NM-CO:DURANGO-TAO'  NE-SD:NORFOLK AREA  NHY-HT:YELLOMSTONE  UT:CEDAR CITY-PRI  ND-HT-SD:DICKINSOI  LA-MS:NATCHEZ MS  IN-MI:SOUTH BEND  LA-MS:NATCHEZ MS  IN-MI:SOUTH BEND  NY:NORTHEAST AREA  NY:NORTHEAST AREA  NY:NORTHEAST AREA  NY:NORTHEAST AREA  NY:NORTHEAST AREA  NY:NORTHEAST AREA  NE-CO:MORTHEAST  AREA  OR-WA:LONGVIEW-CO  COMBINED  NE:HINCOLM METRO  COMBINED  NE:HOLOLM METRO  COMBINED  NE:HOLOLM METRO  NE:HOLOLM METR	77 778 84 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(pct.) 1119 97.01 00.6 50.5 90.5 47.6 00.0 14.7 00.0 00.8 00.0 14.7 7 7 8.1 00.7 7 8.1 00.7 7 97.0 00.8 97.0 97.0 97.0	C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	180.27.000.1.17.680.1.5.5.00.5.29.1.9.0.0.1.1.1.20.6.00.0.0.3.4.0.9.0.0.4.4.0.0.8.1.1.1.2.0.6.0.0.0.0.1.1.1.2.0.6.0.0.0.0.1.1.1.2.0.6.0.0.0.0.1.1.1.2.0.6.0.0.0.0.1.1.1.2.0.6.0.0.0.0.0.1.1.1.2.0.6.0.0.0.0.0.1.1.1.2.0.6.0.0.0.0.0.0.1.1.1.2.0.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	Nondura   1.11.00.01.90.00.00.00.00.00.00.00.00.00.00.00.00.	DU (	CP   1.4	JWholest 000000000000000000000000000000000000	Retail )9 1.4.4.0.8.3.4.5.4.0.0.1.8.2.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.6.1.0.1.0	Business	Consumer > 4.2.7.7.1.6.6.7.1.1.1.2.0.8.8.3.7.6.1.2.0.1.6.0.1.0.1.2.0.2.5.9.2.8.0.6.0.3.3.9.0.5.2.0.0.0.2.3.7.6.1.2.0.1.6.0.1.0.1.2.0.2.5.9.2.8.0.6.0.3.3.9.0.5.2.0.0.0.2.3.3.9.0.5.2.0.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.3.3.9.0.5.2.0.0.0.0.0.3.3.9.0.5.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10000000000000000000000000000000000000

Table 6A. Industry distribution of excess labor earnings in 30 fastest growing and 30 slowest-growing LMAs:
Mid-continent West, Mid-continent East and Comparison LMAs, 1974

Rank	Labor Market Area	LMA No.	Agri- culture	Hining	Con- struct	Manufa Nondura	cturing Durables	TCPU	Wholesal	rade Retail	Pr Business	ivate Se Consumer	rvices Other	Total
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890123456789012345678901234567890012345678900123456789000000000000000000000000000000000000	FLIFT MYERS AREA MY-ID-UTIRCK SPRING FLISARASOTA AREA AZIPHOENIX METRO FLIWEST PALM BEACH .CO:GRAND JUNCTION-NW AZ-UTIFLAGSTAFF-CANY CO:DENVER METRO AZITUSCON METRO UTI-TD:LOGAN AREA NM-CO:DURANGO-TAOS UTICEDAR CITY-PRICE CO:FT COLLINS-NE ARE FLIMIAMI METRO UTI-TD:LOGAN AREA NM-CO:DURANGO-TAOS UTICEDAR CITY-PRICE CO:FT COLLINS-NE ARE FLIMIAMI METRO UTI-TD:LOGAN AREA NM-CO:DURANGO-TAOS UTICEDAR CITY-PRICE CO:FT COLLINS-NE ARE FLIMIAMI METRO UTI-TD:LOGAN AREA NM-HY-RAPID CITY LA:BATON ROUGE METRO NA:SALT LAKE CITY NE LA:BATON ROUGE METRO NA:SEATTLE-TACOMA ME CA:LOS ANGELES METRO NA:SEATTLE-TACOMA ME CA:LOS ANGELES METRO NM-HISTOL AREA HI:STEVENS POINT AREA MI:STEVENS POINT AREA MI:SUPPER PENNSULIA IA-HO:BURLINGTON MI:SUPPER PENNSULIA IA-HI-HURON FREE MI-WI-WI-WI-WI-WI-WI-WI-WI-WI-WI-WI-WI-WI	3 4 2 0 3 18 1 1 1 2 7 1 2 1 2 1 2 1 2 1 2 1 1 3 2 1 2 1 1 1 1	(pct.) 66.9 57.08 30.10 0.10 62.7.69 0.03 0.20 65.7.2 0.00 65.7.2 0.00 94.1 86.0 94.1	(t.0.3.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	14.5.2.5.6.5.5.6.4.6.2.9.0.2.2.1.9.0.9.3.0.9.0.0.0.7.2.2.0.0.0.0.6.0.3.5.1.2.0.6.1.0.0.0.0.3.2.1.2.2.8.1.3.1.5.2.8.1.3.1.5.0.8.1.8.2.0.0.3.0.0.0.5.0.5.0.9.1.0.0.0.0.3.2.1.0.0.0.0.0.3.2.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	Political Property of the prop	1000356014411270790687787100703811106808000023084200511001920000005 220503440112707906877871007038111068260655380327005110001920000005	1809996102405800521575757570913123700072334113254700188522224921686	10000000000000000000000000000000000000	2011 3.4.0.3.4.9.4.0.9.0.9.0.6.7.7.1.4.2.7.3.7.7.2.6.4.7.4.0.5.0.3.4.0.1.2.3.2.5.2.7.1.4.5.2.3.7.1.0.3.6.2.2.2.3.1.2.8.3.4.0.1.2.3.2.5.2.7.1.4.5.2.3.7.1.0.3.6.2.2.2.3.1.2.8.3.4.0.1.2.3.2.5.2.7.1.4.5.2.3.7.1.0.3.6.2.2.2.3.1.2.8.3.4.0.1.2.3.2.5.2.7.1.4.5.2.3.7.1.0.3.6.2.2.2.3.1.2.8.3.4.0.1.2.3.2.5.2.7.1.4.5.2.3.7.1.0.3.6.2.2.2.3.1.2.8.3.4.0.1.2.3.2.5.2.7.1.4.5.2.3.7.1.0.3.6.2.2.2.3.1.2.8.3.4.0.1.2.3.2.5.2.7.1.4.5.2.3.7.1.0.3.6.2.2.2.3.1.2.8.3.4.0.1.2.3.2.3.2.3.2.3.2.3.2.3.2.3.2.3.2.3.2	# 1	Summer 1	**COMP.3002500000840098709760750025804721900730201000400720000000000000000000000000000	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 68. Industry distribution of excess labor earnings in 30 fastest growing and 30 slowest-growing LMAs:
Mid-continent West, Mid-continent East and Comparison LMAS, 1708

Rank	Labor Market Area	LMA No.	Agri- culture	Mining	Con- struct	Manufac Nondura(	turing Ourables	TCPU	T: Wholesal	ade Retai!	Business	ivate Se Consumer	rvices Other	Total
			(pct.)	(pct.)	(pct.)		(pct.)	(pct.)	(pct.) 0.0	(pct.) 13.9	(pct.)	(pc:.)	(pct.)	(pct.)
2	FL:FT MYERS AREA WY-ID-UT:ROCK SPRINGS	321 42	26.7 0.6	0.1 65.3	35.0 26.7	0.0	0.2	6.1	0.0	0.0	0.0	3.3	2.2	100.0
3	FL:SARASOTA AREA AZ:PHOENIX METRO	320 13	10.9 0.3	0.0 1.0	31.4 38.2	0.0 0.0	0.2 28.9	0.4 0.5	0.0	24.5	16.7 18.0	2.9 2.0	4.4	100.0 100.0
Ş	FL:WEST PALM BEACH	318	14.3	0.0	10.8	0.0	41.8	0.0 1.0	0.0	6.5 13.4	19.6 2.9	3.3 21.2	3.5 6.6	100.0 100.0
6 7	CO:GRAND JUNCTION-NW AZ-UT:FLAGSTAFF-CANYO	21 15	0.1 0.5	36.7 5.4	18.2 29.4	0.0 0.0	4.7	3.3	0.0 0.0	21.1	5.1	19.9	11.6	100.0
8	CO:DENVER METRO	19	0.0	26.6 7.7	1.8 27.4	2.7 0.0	7.7 41.8	22.1 1.4	11.4	2.0	23.3 2.8	0.2 2.3	2.2 8.3	100.0 100.0
10	AZ:TUSCON METRO UT-ID:LOGAN AREA	43	3.2	0.0	0.4	14.4	80.7	0.0	0.0	0.1	0.4	0.0	0.8	100.0
11	NM-CO:DURANGO-TAOS UT:CEDAR CITY-PRICE	16 45	5.6 7.1	39.5 54.5	7.0 13.1	0.1 0.0	0.0	41.4 18.3	0.0 0.0	2.4 1.8	1.1	1.4 0.7	1.5 2.5	100.0 100.0
13	CO:FT COLLINS-NE AREA		38.9	1.8	16.6	3.8 0.2	30.8	2.0 26.3	0.0 16.1	3.1 10.0	0.1 33.2	0.8 4.8	2 1 7.9	100.0 100.0
14 15	FL:MIAMI METRO UT:SALT LAKE CITY MET	44	0.0	2.6	13.7	0.0	13.2	14.9	29.9	6.9	12.3	1.6	5.0	100.0
16 17	SD-NE-WY:RAPID CITY A LA:BATON ROUGE METRO		14.7	69.8 0.1	3.6 12.7	0.0 81.9	1.1	3.5 1.6	0.0 0.0	2.5 1.4	0.0 1.1	0.6 0.6	4.1 0.6	100.0 100.0
18	WA: SEATTLE-TACOMA MET	11	0.5	0.0	1.3	0.0	91.4 43.6	1.3	2.0 10.7	0.9	0.9 31.5	0.3 11.6	1.4	100.0 100.0
19 20	CA:LOS ANGELES METRO MN:ST CLOUD AREA	25 157	0.0 41.9	0.0 0.0	8.6	8.1	10.0	10.8	0.0	16.1	0.1	0.8	3.7	100.0
21 22	WI:GREEN BAY AREA WI:STEVENS POINT AREA	274	7.5 5.4	0.0	0.0	75.6 85.4	7.8 2.1	5.8 5,4	0.0 0.0	2.1	0.0 1.1	0.2	1.0 0.2	100.0 100.0
23	HE:PORTLAND METRO	196	1.4	0.0	10.9	54.9	12.0 85.3	1.1	0.0	8.2 5.5	7.4 0.1	0.1 0.6	3.9 4.2	100.0 100.0
24 25	OR:MEDFORD (SW) HN-WI:MPLS-ST PAUL HE	7 156	0.8 0.0	0.0	0.1	0.0 14.3	55.1	3.5	0.0 20.8	1.0	3.6	0.3	1.0	100.0
26 27	ND:MINOT-BISMARK AREA MI:TRAVERSE CITY (NW)	84	67.1 0.0	4.0	0.9 9.7	0.1 3.5	0.0 49.7	24.0 0.3	0.2 0.0	1.2	0.2 0.7	0.7 6.7	1.5 11.8	100.0 100.0
28	IA: IOWA CITY AREA	152	58.0	0.0	0.0	38.1	0.4	1.2	0.0	0.3	0.3	0.7	0.9	100.0 100.0
29 30	NC-VA:GREENBOROUGH AR WI:NORTHWEST AREA	160	0.0 54.6	0.0 0.0	3.5 0.0	74.9 17.9	14.6 20.0	0.9 1.9	4.8 0.0	0.5 1.4	0.1	0.0	4.0	100.0
71	Total Fastest-growing MI:KALAMAZOO AREA	LHA: 262	3 4.2 0.1	4.8 0.0	5.6 0.0	12.5 59.4	37.9 40.3	4.9 0.2	6. <del>9</del> 0.0	2.8	13.7	4.2 0.0	2.5	100.0 100.0
71 72	WY-NE: CHEYENNE AREA	73	11.9	51.3	2.8	1.1	0.0	26.4	0.0	2.9	0.1	0.6	2.8	100.0
73 74	MI:DETROIT METRO AZ:HOLBROOK (NE)	266 12	0.0 4.9	0.0 9.3	0.0 15.7	0.0 1.2	99.7 3.8	0.0 25.4	0.0 0.0	0.0	0.3 37.6	0.0 0.4	0.0	100.0
75	MI:CADILLAC ÀREÀ	270	13.9	0.0	0.0	32.3 7.8	36.9 87.5	2.2 1.1	0.0 1.0	4.8	0.5 2.7	1.6	7.7	100.0 100.0
76 77	WI:MILWAUKEE HETRO HI:MIDLAND AREA	277 265	0.0	0.0	0.0	20.1	79.3	0.3	0.0	0.2	0.0	0.0	0.1	100.0
78 79	ND-HE-10: DICKINSON AF ID-MASSENISTON AREA	₹ 85 4	58.6 63.0	37.6 0.0	0.1 0.0	0.0 9.0	0.0 24.9	2.9 0.8	0.0 0.0	0.3	0.0 0.3	0.1 0.4	0.4	100.0 100.0
80	HT: MEITE-HELENA AREA	48	17.2	8.0	3.7	0.0	2.3	26.2 3.2	0.0	17.4 16.7	4.2 6.8	2.8 2.6	18.2 19.1	100.0 100.0
81 82	MI:MENON FOREST AREA WI:KENOSHA AREA	268 278	0.1 0.6	10.4	5.8 0.0	5.1 11.3	86.2	0.1	0.0	1.3	0.0	0.0	0.6	100.0
83 84	IA-ME-SD: SOUIX CITY IA: CEDAR RAPIDS AREA	70 151	62.8 7.2	0.0	0.1	31.3 21.3	0.0 70.2	4.0 1.0	0.0	0.3	0.5 0.3	0.2	0.9	100.0 100.0
85	IA:OFTUNHA AREA	150	72.8	0.0	0.0	2.9	22.2	1.4	0.0	0.1	0.0	0.0 0.7	0.5	100.0 100.0
86 87	LA-MS:MATCHEZ MS AREA SD-ND:ABERDEEN-WEST	75	1.7 99.0	71.3 0.0	0.8 0.0	14.2	6.0 0.0	0.6	0.0	0.2 0.2	0.1	0.1	0.3	100.0
88 89	MN-SD:MORRIS-SISSETOR HI-WI:UPPER PENNSULIA	81	96.2 0.3	0.0 43.2	0.1 0.9	2.0 16.8	0.0 7.9	0.9 6.4	0.0	0.2 9.9	0.0	0.2 2.9	0.4 10.6	100.0 100.0
90	IA-IL-MO:BURLINGTON	149	47.3	0.0	0.0	8.4	27.0	15.7	0.0	1.2	0.0	0.2	0.3	100.0 100.0
91 92	WV-VA:BLUEFIELD WI:PLATTEVILLE AREA	207 148	0.0 88.5	97.4 0.0	0.1 0.0	0.0 1.7	0.0 4.8	1.9	0.0	2.0	0.0	0.2	2.4	100.0
93 94	MN-WI:DULUTH AREA IA:WATERLOO AREA	155 153	88.5 1.5 65.6	63.3	1.6 0.0	1.7 7.0 1.5	4.1 31.8	16.0 0.5	0.0	4.0 0.0	0.5 0.0	0.8 0.2	1.4	100.0 100.0
95	IA-MN:MASON CITY ARE	4 154	93.3	0.0	0.0	3.9	1.7	0.7	0.0	0.1	0.0	0.0	0.3	100.0 100.0
96 97	IA-IL:DUBUQUE AREA IA:SPENCER (NW) AREA	146 77	50.1 97.5	0.0 0.0	0.0 0.0	11.0	35.2 0.1	2.9 0.6	0.0	0.1 0.1	0.1	0.0	0.3	100.0
98	HN: WORTHINGTON (SE)	78	95.8	0.0	0.0	0.9	1.6 85.2	1.4	0.0 0.0	0.0	0.0 1.5	0.1 9.0	0.2 0.3	100.0 100.0
99 100	MI:JACKSON AREA MT:GREAT FALLS AREA	267 51	80.5	0.0	1.4	0.0	0.0	6.9	0.4	3.6	1.1	0.8	3.9	100.0
	Total Slowest-growin			3.9	0.1	2.9	74.6	0.9	0.0	0.2	0.5	0.1		100.9