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The Accuracy of Producers’ Probability Beliefs:  
Evidence and Implications for Insurance Valuation

Abstract

The accuracy of producer’s probability beliefs is examined through
a survey of large cash-grain farmers in Illinois.  It is found that
their subjective probability beliefs about important weather
variables are systematically miscalibrated to the true distributions. 
The nature and extent of the differences between their subjective
and true probability measures are shown empirically, and through
fitted calibration functions.  The economic significance of
inaccurate subjective probability beliefs is established in the context
of insurance valuation by producers.  The results demonstrate that
significant errors in producers’ risk assessments and insurance
valuation arise simply from the fact that producers possess
systematically inaccurate probability beliefs. 

Keywords: precipitation insurance valuation, probability beliefs, risk assessment

Introduction

Significant resources have been devoted to the development and evaluation of agricultural

risk-management products, with particular attention paid to crop yield, and crop revenue

insurance contracts.  Numerous studies have carefully examined the empirical distributions of

crop yields and prices, and have developed various insurance valuation models that are equipped

to deal with the resulting risk specifications (Day; Gallagher; Goodwin and Ker; Ker and

Goodwin; Nelson; Stokes).  On the behavioral side, moral hazard and adverse selection issues

have also been carefully assessed and incorporated into explanations of the performance of

popular insurance products, and into empirical and theoretical studies of crop insurance demand

(Coble, Knight, Pope, and Williams; Just, Calvin, and Quiggin; Smith and Goodwin; and Skees

and Reed; and many others).  While the bulk of the applications in agriculture have

understandably targeted the large array of Federal Crop Insurance Corporation (FCIC) products,
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there has also been a rapidly increasing interest in the use of weather derivatives as mechanisms to

manage specific agricultural risks.  To date, the weather derivative market has developed much

more rapidly in energy applications, and in insurance for outdoor public events, but studies that

parallel crop insurance methods to evaluate weather insurance are also beginning to appear in the

literature (Martin, Barnett and Coble; Dischel; Sakurai and Reardon; Turvey; Changnon and

Changnon).  Importantly, the vast majority of the existing crop insurance and risk management

literature is underpinned with the assumption that producers accurately understand and rationally

respond to the risks they face.  

This research explores the important, but frequently unexamined assumption that

producers possess accurate probability beliefs when evaluating risky variables that affect their

financial well-being.   To do so, a survey designed to elicit subjective probability beliefs about

important weather variables that influence producers’  well-being was administered to a set of

producers.  The recovered subjective probability beliefs are then compared to actual weather event

distributions in both empirical and fitted form.  Then, calibration functions are estimated to

provide insight into the extent and nature of the differences between the “ true”  probability

distribution and individuals’  subjective probability measures.  Standard precipitation insurance

contracts are evaluated to demonstrate the economic significance of the differences between the

producers’  belief sets and the underlying true distributions of interest.  Weather variables are

focused on due to their ubiquity, relevance to crop farmers, impossibility of  influence by

producers, and widely available existing information to condition decision makers’  priors.  

Further, insurance on weather variables naturally limits adverse selection and moral hazard

influences, and thus isolates the impacts of inaccurate priors in a relatively straight-forward

fashion.
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The remainder of the paper is organized as follows.  Results are first presented from a

survey that was used to elicit subjective climate expectations from a sample of agricultural

producers.  The producers’  subjective probability beliefs are first compared directly to “ true”

probabilities at several points on the underlying distribution.  Then, calibration functions are fit to

provide insights into the nature of the differences between the subjective and historic probability

measures.  Thereafter, the implications of the differences are developed in terms their impacts on

insurance valuation.  A summary and concluding remarks complete the paper. 

Expectations of Climate Variables Survey

A survey was conducted to recover complete probabilistic descriptions of producers’

climate expectations.  Participants were selected for their:  1) cooperation with the Illinois Farm

Business - Farm Management (FBFM) record keeping association, 2) proximity to a single

weather reporting station (to mitigate the potential effects of widely differing experiences, all were

in a territory covered by a single NOAA weather reporting station), 3) being relatively large cash

grain operations, and 4) demonstrated understanding of probability concepts.  Personal

interviewers elicited producers’  perceptions of the long-run probabilities of rainfall at various

levels through a series of questions posed in both the cumulative distribution function (CDF)

framework and inverse CDF framework.  Numerous questions were recast throughout the survey

to locate any changes in perceptions or misperceptions of the intent of questions.  For example, if

a respondent indicated that the level of rainfall at which the 25th  cumulative percentile occurred

was 2", the enumerator would later ask for the probability that 2" would be exceeded to insure that

the respondent replied in a manner consistent with the earlier answer.  A pretest was administered

to insure comfort and adequate facility with probabilistic concepts, and internal checks were

constructed to insure that the respondents’  probability measures were indeed consistent and
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representative of their beliefs.  The survey included approximately 12 categories of variables that

affected the producer’ s financial well-being and took approximately one hour plus pretest time per

respondent to administer.  A total of fifty-four surveys were administered and processed into

useable form .1  Among the specific climate variables of interest included in the survey are April

rainfall and July rainfall.2   Higher April precipitation is considered by Illinois crop producers to

be a negative event as it tends to delay planting.  Conversely, July precipitation is a positive event,

as it tends to enhances crop growth and reproduction during a crucial phase of reproduction. 

These two variables were chosen because of their particular importance to grain farmers, and

because the effects on the respondents are of opposite sign thus generating a natural contrast for

study of the accuracy of their probability beliefs.  

Weather Variable Representations

A distributional representation is needed to summarize information from the historic

weather data, and to provide a more complete description of each producer’ s subjective

probability beliefs.  A distribution that has been used extensively in various forms to model

precipitation amounts, as a function for business losses, and by the insurance industry as a

candidate for loss distributions is the Burr-12 distribution, also sometimes referred to as a 3-

parameter Kappa distribution in weather applications (Mielke; Mielke and Johnson; Tadikamalla). 

The Burr has zero support, may take on a wide range of skewness and kurtosis, and can be used to

fit almost any set of unimodal data (Tadikamalla, 1980).  The Burr distribution is highly flexible

and contains the Pearson types IV, VI, and bell-shaped curves of type-I, gamma, Weibull, normal,

lognormal, exponential, and logistic distributions as special cases (Rodriguez; Tadikamalla). 

Because of this flexibility, it is widely accepted in the climate literature as a representation for

precipitation levels, and was used to represent the true distribution and each producer’ s underlying
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subjective distribution.3  The Burr probability density function (PDF) and cumulative distribution

function CDF for rainfall, Y, with parameters , , and , are respectively:  

( ) ( ) ( ) ( ( ) ) , , , ,( )1 1 01 1 1f y y y y= + >� � ���tla a a a l t	 	 


( ) ( ) ( ( / ) )2 1 1F y y= - + �a ��

Monthly data from the National Climatic Data Center on rainfall totals from 1900 to 2000

at the East Central Illinois weather reporting station were used to estimate the parameters of the

true distributions of April and July rainfall using maximum likelihood estimation.  Parameters for

each producer’ s subjective probability measures for both April and July rainfall were also

estimated under the same parametric assumptions using nonlinear least squares between implied

and tabulated response quantiles.

Results

Figure 1 depicts the subjective beliefs about precipitation levels for a selected set of

respondents with differing types of probability beliefs.  As can be seen in the graph, different

forms of miscalibration or incongruence between historic and subjective measures exist.  For

example, farmers #5 and #47  believed the density of April precipitation to be more spread out

and have a higher median than the true (these two represent the most common responses relative

to April precipitation).  Farmers #19 and #25 have subjective probability measures that are

generally shifted to a lower level than the true, but with a somewhat longer right hand tails. 

Respondent #44 displays overconfidence, and a slightly elevated central tendency.

Relative to July precipitation, respondent #25 has a higher median while the others each

have subjective beliefs with medians lower than the true.  Respondent #47 displays extremely

high pessimism with highly overstated probability of zero or no rainfall.  Respondent #44
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represents a typical response for July rainfall with a median that is below the true and somewhat

understated probabilities at the high range.  Respondent #5 has fairly accurate probability beliefs

relative to July rainfall.  The cumulative distribution functions are provided as well for

convenience in interpretation.

The respondents depicted in the graphs are not meant to be representative of the entire

sample, but  were chosen simply to illustrate the nature of the information retrieved and to help

understand the types of differences both among their responses and between their individual

beliefs and the historic measures. 

[see figure 1]

 Table 1 summarizes the farmer responses across the entire sample for both April and July

precipitation.  Several quantiles are tabulated under which the farmers’  responses are summarized

and compared to the actual precipitation values.  For example, for April precipitation at the 25th

percentile, the precipitation level corresponding to the true distribution is 2.30 inches.  In other

words, there is a 75% chance of receiving at least 2.30 inches of precipitation in the month of

April in this weather reporting district.  Of the farmers surveyed, 63% expected more precipitation

at the 25th percentile.  The average of all responses at the 25th percentile of the distribution was

2.77 inches.  Note that the average of the expected precipitation is greater than the true amount at

all percentile levels, although by only a slight amount at the 10-percentile level.  Clearly, the

subjective probabilities elicited from this group of farmer respondents generally overweighted

what they perceive as the negative event of excess April precipitation, with the fraction

overstating the rainfall higher at levels generally considered less desirable.  If the respondents had

no systematic bias in their beliefs, then the percentage overstating the median might reasonably

have been expected to be around 50%, but the miscalibration of the sample appears to be

systematically toward overstated levels of precipitation.  The standard deviation across responses
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at each quantile is also provided to show the degree of agreement among respondents at each

level.

The respondents’  subjective probability beliefs July precipitation follow a different – yet

still pessimistic –  pattern.  In this case, more rainfall is considered to be a good event, and the

respondents generally understate the likelihoods of occurrence.  As can be seen in table 1, only

22% of the respondents overstated the quantity of rainfall at the 25th percentile of the actual

distribution.  In fact, at each percentile level, the farmers understated the incidence of

precipitation,or equivalently, overstate the probability of what would be viewed as the negative

event – lack of precipitation. 

[see table 1]

Individual Producer Calibration Tests

In addition to the information available in Table 1 that summarizes the entire set of

respondents, it is useful to develop more descriptive measures of differences between individual

producers’  subjective beliefs and the true.  And, in cases that exhibit significant differences, it is

useful to more completely describe the nature and extent of the difference between subjective and

actual distributions over different percentile levels or among differing events.  For example, a

producer may be very good at forecasting the likelihood of a low-rainfall event, but be poor at

assigning probabilities to large-rainfall events.  Or, the producer may have more accurate priors

about April than July rainfall.  Because risk management activities often focus only on ranges of

adverse outcomes, it would useful to be able to describe the congruence between actual and

subjective probability beliefs in specific regions of interest.  To address these and related issues,

calibration functions were estimated. 

Calibration in this context refers to the correspondence between a predicted and an actual

event.  In terms of distributions, calibration describes how close the predicted and resulting
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functions are.  Heuristically, the adjustment that is required to make the subjective beliefs

correspond to the true distribution is termed the calibration function.  Specifically, if the true

distribution can be described as (x) and the estimated function is F(x), then K(F(x)) = (x)

implicitly defines a transformation, K( C) of F, to generate estimates, K(F(x)), that are well

calibrated.   The function K( C) is called the calibration function.  A parametric form can be

chosen for the calibration function and estimated using standard methods, with the resulting shape

of the estimated function used to interpret the nature of the miscalibration (Fackler and King). 

For the purposes of this study, the calibration function is based on the beta distribution

with density:

where (p,q) is the beta function with parameters p and q.  As noted in Fackler and King, the Beta

distribution is well known, flexible and contains the uniform distribution as a special case when p

= q = 1, implying perfect calibration.  A simple test for calibration may be performed by testing

the uniformity of K, for if F( C) is already well calibrated, K is simply a uniform mapping. 

Regions of K(C) with slope greater than one correspond to regions of the subjective probability

CDFs that need to have mass added, and regions of K(C) with slope less than one correspond to

regions of the subjective distribution that have too much mass and need to be decreased.  Other

shapes of the fitted calibration curve similarly indicate the “ reweighting”  of the estimated

distributions needed to correspond to those subsequently observed.  

At least 5 general shapes for the calibration function emerge that summarize the nature of

the miscalibration displayed by each individual.  Figure 2 displays the sample calibration

functions corresponding to the following cases: (1) well calibrated or uniform, p = q = 1; (2)

underconfidence or an overstatement of dispersion, p > 1, q > 1; (3) overconfidence or an
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understatement of dispersion, p < 1, q < 1; (4) understatement of location p >1, q < 1; and (5) 

overstatement of location, p < 1, q >1.   Because the slope of the calibration function reflects the

reweighting of the subjective distribution that is needed to make it correspond to the true

distribution, the uniform case (1) is a straight line with slope 1 throughout and therefore leaves the

subjective beliefs unchanged.  Case 2 is an “ S-shaped”  function that takes mass away from the

tails (where the slope is less than one) and adds it to the interior region where the slope is greater

than one.  Case 3, by contrast, is a “ reverse-S”  shaped function that spreads the mass out by

adding to the tails and reducing the central region where the calibration function slope is less than

one. Case 4  is a “ U-shaped”  function that shifts mass to the right, and case 5 is a n “ inverted-U”

shape that shifts mass to the left.  The median is located correctly when p=q (cases 1,2,and 3 as

shown), but the calibration function can also cross the uniform from above or below at locations

other than at F(y) = .5 indicating miscalibration in both location and dispersion.

[see figure 2]

Calibration functions were estimated for each participant’ s subjective distribution for both

April and July rainfall using least squares between the recalibrated beliefs and the true at each

percentile level surveyed.  Table 2 contains the summary of the results organized into two sections

with the upper panel simply reporting the parameter pairings from which general shapes can be

inferred, and the lower panel giving more specific information about two attributes – median

location and dispersion – that help understand the degree and nature of the miscalibration.  As

shown in the table, the most prominent recalibration needed for the April subjective distributions

is to shift the mass to the left (inverted-U) and for July, the most common fitted calibration

function indicates that the mass of the probability distributions need to be shifted to the right ((U-

shaped).  These shifts can occur in conjunction with either increases or decreases in dispersion,

and thus it is also useful to tabulate the more general effects.   The lower panel provides evidence
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about combined attributes representing location and dispersion.  The top two rows can be added

together to get all the cases with median overstated (and can also be read from the 50th percentile

column in table 1), while the lower two rows can be summed to get cases with the median

understated.  The first and third row contain all the cases with dispersion overstated, while the

second and fourth row show the cases with dispersion understated.  As seen in the table, the 72%

of the April sample with overstated location is more heavily weighted toward overstated

dispersion as well – both attributes that overstate risk.  Of the 74% of the July sample that

understated the location, the sample is more heavily weighted toward understatement of

dispersion.  The final line indicates the number of subjective distributions that are considered to

be well calibrated based on likelihood ratio tests of the fitted calibration function against a

uniform null, with approximately 9% and 15% of the responses considered well calibrated for

April and July respectively.

In addition to the results for individual responses, calibration functions were also

estimated for the simple average of all respondents.  In the case of April, the resulting calibration

function has an “ inverted-U”  shape, understating the location while overstating the dispersion. 

For July, the calibration function for the average response across producers displays a “ U-shape”

with a slightly understated dispersion.

It is apparent from both the tabulated survey results and the calibration tests that producers

tended to overstate the amount of rainfall in April and understate that in July – both undesirable

events are overstated.  Further, the calibration tests indicate that dispersion in the subjective

rainfall distributions has a tendency to be understated in the case of July and overstated in the case

of April rainfall.  The general beliefs are systematically what could be termed “ pessimistic”  rather

than simply being misstated in a manner that applies regardless of the event being considered. 

Again, if there were simply a “ naive”  mistake process manifested, it would have been more likely
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that the types of mistakes would have been consistent between the two events rather than

displaying the upward bias in April and the downward bias in July probabilities as was found. 

Implications for insurance valuation

The impact of inaccurate priors depends both on the degree of difference from the true and

on specific context in which the information is used.  It could be the case that small inaccuracies

have substantial consequences in risk management, or it could be that the decision rules are such

that the probability beliefs are relatively inconsequential and have little economic impact.  To

demonstrate the potential economic importance of having miscalibrated probability beliefs about

weather variables, precipitation insurance is evaluated under the each producer’ s fitted probability

beliefs and compared to the actuarial value calculated under the true.  The differences can then be

viewed as direct measures of the potential economic impact of the inaccurate prior beliefs. 

The most common forms of precipitation insurance can be valued in analogous manner to

standard option pricing approaches.  Numerous precipitation guarantee valuation models have

been developed elsewhere in the literature to take advantage of specific attributes of producer

demand, but most are developed in terms of the expected loss functions (Martin, Barnett, and

Coble; Turvey; Aquila; Dischon).  

Typically, an insured event, such as cumulative precipitation in a specified interval of

time, is offered for insurance at various trigger points or strike prices, and at a fixed liability for

each unit of excess or deficit.  In the current context, rainfall totals measured at a single weather

reporting station during the months of April and July are the insured events.  The indemnity

triggers, often termed strikes or k, could be offered at either producer selected levels or at

standardized increments, for example at 2.5", 3.0", 3.5" and so on.  As is typical, the insurance

contract is written to pay a constant, , times the amount by which the insured event exceeds the
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trigger, k, and make no payments if the trigger is not exceeded.  The scale of  is chosen to make

the contract magnitude meaningful to the users, and in the case of rainfall insurance, multiples of

$1,000 are commonly used.  The strike prices are set to provide a meaningful “ menu”  to appeal to

producers with differing needs.  For instance, a producer with a large machinery base, and light

soils may consider excess rainfall less of a problem than a producer who needs more workable

field days to put in a crop.  The first farmer described might prefer a relatively high strike

compared to the latter farmer to more nearly mimic the points at which each begins to suffer

economic losses due to excess rainfall.  

The indemnity payoff function for excess rainfall can be written as max{0, y-k}*  where y

is the realized rainfall total.  Given a probability measure, f(y) governing the rainfall outcome, y,

the expected (actuarial) value, Vr of the excess rainfall insurance contract is:

Similarly, July-drought insurance is evaluated that pays  per inch of rainfall deficit to k

during the month of July with a resulting indemnity function of max{0,k-y}* .  The actuarial

value, Vd of such a contract can thus be found by evaluating:

The values of insurance against excess April rainfall were calculated using equation [4]

across strike prices from 2 inches to 10.5 inches in half-inch increments, and using  = $1000.  At

each strike, the valuation equation was applied using the estimated actual rainfall distribution for

f(y) and then repeated using each producer’ s subjective beliefs to describe the probability measure



111

f(y).  The result is one valuation relationship for each farmer, and the actuarial values at each

strike against which they can be compared. 

Table 3 contains the complete results of the actuarial calculations and producer valuation

results for insurance against excess rainfall in April.  The first two columns gives the strike price

or level of rainfall insured against, and the associated probability of triggering the insurance under

the actual rainfall distribution.  The third column contains actuarially fair values of insurance,

(expected costs) which range from approximately $1,895 at a 2" strike price, down to only $1.39

per $1,000/in. coverage at a strike of 10.5 inches.  As can be seen in the table, for example, the

actuarially fair payments to a policy holder who insures at a strike price of 5 inches would be

$347.93.  The fourth column contains the average across all respondents of their perceived

probability of triggering insurance payments at that strike.  Comparison to the second column

provides a direct indication of the mistakes in risk assessment that arise from miscalibrated

beliefs.  

The fifth column contains the average implied values of insurance at each strike. 

Interestingly, this group of producers, on average, overvalued the risk-costs associated with

rainfall at every level tabulated.  The difference at the actuarially fair point is due solely to

misperceptions of the risks faced, in this case resulting in perceived values of insurance that

exceed the actuarial values by $631 (33%) at the 2" strike, to $611 (40%) at the 2.5 inch strike and

so on to the point that the overstatement is nearly 35 times the actual value at a strike of 10.5

inches.  While the dollar value of the error declines with the strike, the percentage overstatement

explodes as the actuarial value approaches zero.  Under either case, it is clear that respondents

overestimate the risks associated with what is perceived to be the negative event of excess April

rainfall.  The next column labeled “ % Respondents who overvalue”  gives the percentage of

respondents whose implied values under their subjective probability distributions are greater than
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the value under the true distribution.  Across the sample, roughly 70% of the respondents

overvalued the insurance.  Because the different perceptions of risks result in different implied

values, it is reasonable to expect different responses to the availability of such insurance.  For

instance, it could be reasonable to expect  that only those who perceived themselves to have a

positive expected payoff to insurance to buy, and at the strike price for which the positive

expected payoff were greatest.  This form of self-selection may be viewed as favorable adverse

selection to the producers, but is really just a result of having inaccurate probability beliefs.4  

Nonetheless, assuming that only those whose implied values exceed the actuarial values actually

purchase the insurance produces even more striking results.  The column in table 3 labeled “ Ave

Value given overstated”  tabulates the averages of the perceived values at each strike for the subset

of producers whose implied insurance values are greater than the actuarial value.  As seen, the

dollar valued overstatement is greatest at the lower strikes and declines as the probability interval

evaluated in the insurance decreases.  The percentage overstatement in value is near 100% at 3.5",

a strike that is nearly at the mean of the actual distribution.

Table 4 presents comparable results for July drought insurance with  = $1000.  The table

is constructed across strikes from .5 inches to 5 inches in half-inch increments.  The probability

range covered in this interval is from approximately 1% likelihood or a 1 in 100 years drought

event to 5", covering the outcomes of nearly three-quarters of all years.  Actuarially fair insurance

at the 3.25" level has a value of approximately $638, as shown.  The producers again substantially

overstate the probability of needing the insurance (triggering payment), and overvalue the risks of

drought across all farmers at every strike tabulated, with the greatest percentage overvaluation

occurring at the extreme low range of the outcome distribution.  The percentage of respondents

who overvalue the insurance is not as great as was the case with April excess rainfall insurance,

but still exceeds 50% across the entire range of outcomes.  As earlier, the percentage and value of
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the differences between the producers’  valuations and the actuarial valuations are very large. 

Again, the results demonstrate that inaccurate probability beliefs of the nature possessed by the

producers in this sample can have a significant impact on the evaluation of risk. 

Figures 3 and 4 summarize the results for the actuarial value, average across all farmers,

and the average across farmers who would self select insurance based on having overstated

expected values of insurance for April and July respectively.  The figures take on the familiar

shapes of traditional option or insurance values as expected.  The graph extends what is found

through the calibration tests by converting the differences to measures that have economic

interpretation as well – the value of insurance at different strike prices.  Although only the

averages are shown, it is worth noting that the valuation relationships for the individuals vary

greatly with the majority plotting substantially above the actuarial level, and a few that plot either

below, or cross from below to above the actuarial relationship.  From both the averages and the

individual results, it is clear that the farmers substantially overstate the value of this type of

insurance due to their miscalibrated beliefs about adverse outcomes. 

Summary and Conclusions

Much effort has been devoted to evaluation of production insurance of various forms and

on other risk management tools.  However, relatively little attention has been paid to what could

be called the starting point of that line of reasoning -- that subjective beliefs held by the decision

makers are accurate.  The results from this study indicate that producers have systematically

inaccurate beliefs about variables that have important impacts on their financial well-being.  The

differences between subjective priors and the actual weather event distributions are highly varied,

but display the tendency across respondents to overstate likelihoods for negative events and thus

understate the incidence of positive events.  Despite the wide differences in beliefs, they
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commonly lead to substantial overvaluation of both excess rainfall insurance during planting, and

drought insurance during a critical phase of crop development.  

The results, are of course, subject to limitations of the data, but nonetheless are important

in that they challenge the use of the assumption that producers accurately understand, and

therefore can rationally respond to, production risks faced.  The implications to precipitation

insurance are direct in that the differences can lead to substantial overstatement of the value of

insurance, and that there could be significant self selection of participation due solely to

differences in the producer perceptions of the risks faced.  More generally, the results suggest that

those designing new insurance and risk management tools should include the potential effects of

inaccurate risk assessments by users in their considerations of demand and usage.  And,

interestingly, in cases where inaccurate beliefs would lead to underusage of insurance, it may be

more effective to educate potential users about the actual risks faced than to subsidize the

products to the point that they appear attractive even with miscalibrated beliefs.  This point may

be especially relevant to the design of crop yield insurance programs, where some evidence exists

that farmers expect yields that are too high relative to the true, and as a result understate the

probabilities of very low yields.

Future research should examine a similar question with regard to producers’  perceptions of

other risky variables, with particular attention paid to producers’  beliefs about yield and revenue

risks, and the impact of potential inaccuracies on the demand for yield and revenue insurance

products.  Other extensions could likewise investigate the role of beliefs about risk in input usage

and marketing behavior, to identify but two other cases where the assumption that producers’

beliefs are accurate may deserve further consideration.  In any case, what is clear from these

results is that the assumption that producers possess accurate understanding of the risks they face



115

should not be accepted without further scrutiny of the potential types of miscalibrations of beliefs

that might exist, and the potential effects on their assessments and responses to risk.           
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 Table 1.  Summary of farmers’ subjective probability beliefs relative to true probabilities

  ------------------------  Percentile Level  ------------------------

10% 25% 50% 75% 90%

April Precipitation

True (inches) 1.40 2.30 3.55 4.98 6.39

Average farmer response (inches) 1.41 2.77 4.47 5.85 7.53

 % of responses 
greater than  actual

53.7% 63.0% 72.2% 74.1% 64.8%

Std. dev. across  respondents 0.56 1.02 1.24 1.45 2.07

July Precipitation

True (inches) 1.12 2.02 3.42 5.14 6.93

Average response 0.81 1.79 3.03 4.65 6.18

 % of responses 
greater than  actual

16.7% 22.2% 25.9% 42.6% 38.9%

Std. dev. across  respondents 0.54 0.72 0.84 1.19 2.27
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Table 2.  Calibration Functions Summary
Fitted and Empirical 
Calibration features

April Precip. 
% Farmers

July Precip.  
% of Farmers

“ U” -shaped calibration function 20.4% 51.9%

“ Inverted U” -shaped calibration function 61.1% 20.4%

“ S” - shaped calibration function 11.1% 14.8%

“ Reverse S” -shaped calibration function 7.41% 13.0%

Median overstated and Dispersion overstated 57.4% 20.4%

Median overstated and Dispersion understated 14.8% 5.6%

Median understated and Dispersion overstated 7.4% 16.7%

Median understated and Dispersion understated 20.4% 57.4%

Well calibrated* 9.3% 14.8%
#Dispersion considered overstated if calibration function indicates that the probability in the interquartile range is understated by farmer (slope of calibration
function greater than one over range).  Dispersion measured by standard deviation of fitted relative to true gives similar results.
* Likelihood ratio test of fitted calibration function is insignificantly different from uniform at a 95% level of confidence and therefore considered to be well-
calibrated
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Table 3.  April excess rainfall insurance: actuarial values and producer valuation summary
Strike

(inches)
Prob. 

rain > k
Actuarial

Insurance ($)
Subjective prob.

rain > k
Ave Value to
Producer ($)

Ave %
Misvalued

% Respondents
who overvalue

Ave Value 
Given overstated ($)

Self selected 
 % overvalued

2.0 0.806 1,895.31 0.859 2,525.93 33% 74% 2,925.52 54%
2.5 0.712 1,515.31 0.787 2,126.21 40% 74% 2,506.79 65%
3.0 0.611 1,184.37 0.706 1,766.73 49% 74% 2,121.68 79%
3.5 0.509 904.36 0.621 1,451.01 60% 72% 1,798.29 99%
4.0 0.412 674.19 0.535 1,179.97 75% 72% 1,490.14 121%
4.5 0.324 490.42 0.451 951.79 94% 72% 1,221.84 149%
5.0 0.248 347.93 0.373 762.54 119% 67% 1,047.63 201%
5.5 0.184 240.63 0.302 607.45 152% 65% 866.74 260%
6.0 0.132 162.17 0.239 481.68 197% 69% 670.33 313%
6.5 0.092 106.47 0.186 380.55 257% 69% 536.43 404%
7.0 0.063 68.07 0.141 299.73 340% 69% 426.85 527%
7.5 0.041 42.37 0.105 235.41 456% 69% 337.81 697%
8.0 0.026 25.67 0.077 184.32 618% 67% 272.70 962%
8.5 0.016 15.13 0.055 143.79 850% 67% 213.74 1,312%
9.0 0.010 8.68 0.038 111.65 1,186% 67% 166.54 1,818%
9.5 0.006 4.84 0.026 86.16 1,679% 67% 128.83 2,560%

10.0 0.003 2.63 0.018 65.97 2,410% 65% 101.53 3,763%
10.5 0.002 1.39 0.012 50.00 3,505% 63% 79.26 5,616%
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Table 4.  July rainfall deficit insurance: actuarial values and producer valuation summary
Strike

(inches)
Prob. 

rain < k
Actuarial

Insurance ($)
Subjective prob.

rain < k
Ave Value to
Producer ($)

Ave %
Misvalued

% Respondents
who overvalue

Ave Value 
Given overstated ($)

Self selected 
 % overvalued

0.50 0.026 4.91 0.055 12.67 158% 57% 20.17 311%
0.75 0.052 14.53 0.092 30.98 113% 59% 46.66 221%
1.00 0.083 31.23 0.134 59.10 89% 59% 86.49 177%
1.25 0.119 56.31 0.179 98.04 74% 63% 135.01 140%
1.50 0.158 90.79 0.226 148.58 64% 63% 200.46 121%
1.75 0.200 135.47 0.276 211.29 56% 65% 275.56 103%
2.00 0.244 190.93 0.326 286.53 50% 67% 362.82 90%
2.25 0.289 257.57 0.377 374.44 45% 67% 468.04 82%
2.50 0.335 335.63 0.427 474.99 42% 67% 586.41 75%
2.75 0.381 425.17 0.476 587.96 38% 69% 709.89 67%
3.00 0.427 526.14 0.524 712.98 36% 69% 852.34 62%
3.25 0.471 638.35 0.569 849.53 33% 69% 1,006.20 58%
3.50 0.514 761.52 0.611 996.97 31% 70% 1,160.71 52%
3.75 0.556 895.30 0.650 1154.61 29% 70% 1,334.72 49%
4.00 0.596 1,039.25 0.686 1321.68 27% 72% 1,505.16 45%
4.25 0.633 1,192.88 0.719 1497.39 26% 72% 1,695.14 42%
4.50 0.669 1,355.67 0.749 1680.94 24% 72% 1,892.45 40%
4.75 0.702 1,527.07 0.776 1871.59 23% 72% 2,095.90 37%
5.00 0.733 1,706.50 0.800 2068.59 21% 72% 2,304.73 35%
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Figure 1.  Actual and producer probability measures for April and July rainfall.
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Figure 3. April excess rainfall insurance values under actual and producer probability distributions

Figure 4.  July drought insurance values under actual and producer probability
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Footnotes:

1. A copy of the complete survey document is available upon request.  While the sample is
relatively small in some sense, these were all commercial scale farmers in a single weather
reporting station and all participants of a recordkeeping system that signals that they have
high quality financial information.  Each producer provided considerable detail about their
operations and beliefs.  A larger sample would have necessitated loss of detail and would
have required comparisons to data from more than one weather reporting station.  

2. The survey was conducted during the summer of 1991 as part of a larger project examining
producer beliefs. Producer subjective distributions were also recovered for commodity
prices, temperature during pollination, winter precipitation, interest rates, and other
variables that affect financial performance.  Others have also examined non-weather
expectations.  For example, Eales et al. examine the congruence between producer and
merchant expectations and market implied distributions of commodity prices, and find that
producers have accurate means but tend to have understated variances.  Likewise, Pease et.
al, examine subjective beliefs about yield and find miscalibrated producers’  expectations
that could substantially affect insurance valuation.  Kenyon likewise finds that producers
have significantly miscalibrated beliefs with a tendency to overstate the probability of lower
prices and understate the probability for large increases.

3. Various related parameterizations have been presented in the literature including Burr-3,
Burr-12, Kappa, gamma, and Lomax versions.  Mielke demonstrates the favorable
performance of the Burr over the gamma but leaves other choices unranked.  In this study,
the Burr-12, Kappa-3, and  Burr-3 parameterizations were each fitted with negligible
resulting differences.  The results presented herein are from the Burr-12 set of estimations
only, as the other two were qualitatively identical. 

4. The discussion is presented in terms of actuarial values only without the additional value
that the producer would be willing to pay as a risk premium if risk averse.  Likewise,
insurance loading costs are not considered, but from an insurance provider’ s perspective,
the positive misperceptions of value by producers provide a greater potential to add profit
loadings to insurance contracts or cover greater actual expense loadings and should
stimulate the supply of such insurance relative to a case in which producers had accurate
beliefs. 


