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A BAYESIAN EXAMINATION OF AGRICULTURA
Chad Hart and Sergio H. Lence’

From a public policy standpoint, few issues are seen as crucial to er
performance/growth as private business investment. In addition to
growth, private business investment contributes significantly to the
economic activity. It comes as no surprise that the theoretical and |
investment has occupied a prominent role in the research agenda of

many years.
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Following the thorough recent survey by Chirinko, investment models may be classified in

two main categories: implicit and explicit. Among implicit models
neoclassical model advanced by Jorgenson (1963, 1971). The two
the g model advocated by Keynes, Tobin, and Brainard and Tobin,

investment’s Euler equation via generalized method of moments (G

, the most important is the
major explicit approaches are
and the direct estimation of

MM) (e.g., Hubbard and

Kashyap). The theoretical paradigm underlying the neoclassical model is fundamentally different

from the theory behind the ¢ and the Euler equation-GMM models

Euler equation-GMM models are but alternative empirical formulat

In contrast, the g and the

ions of the same theory.

All three models have been used to study investment in agriculture. Articles relying on the

neoclassical model include Weersink and Tauer, and Jensen, Lawsc
model was employed by Herendeen and Grisley, and Bierlen and F¢
Kashyap relied upon the Euler equation-GMM framework to analy

As noted by Chirinko, explicit models are theoretically mon
neoclassical model. However, the latter typically performs better €

alternative avenues have been explored to improve the empirical fit

n, and Langemeier. The g
eatherstone. Hubbard and
ze agricultural investment.

e appealing than the
mpirically. For this reason,

of explicit models. Quite

possibly, the most successful of these alternatives has been the explicit consideration of financial

market imperfections. The findings from this literature, reviewed 1

ecently by Hubbard, provide
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overwhelming indications that firms' internal financial variables have a significant impact on
investment. Studies showing that agricultural firms' investment is affected by their financial
situation include Jensen, Lawson, and Langemeier; Hubbard and Kashyap; Bierlen and
Featherstone; Bierlen et al.; and Bierlen, Ahrendsen, and Dixon.

Upon review of the literature, a few stylized facts emerge. First, there are no empirical
studies testing whether the q model performs better than the neoclassical paradigm, or vice
versa, in explaining agricultural investment. This is surprising, given that knowing the relative
empirical performance of the main alternative investment theories is highly relevant to analyze the
likely impact of various policies. For example, policy-making inferences based on empirical
estimates of the g paradigm might be seriously misleading if investment decisions are better
represented by the neoclassical model.

Second, the specific financial variables used to explain investment vary substantially
across studies. One might expect this because there is no theoretical justification to choose any
particular financial variable over others. However, none of the studies applies formal model
selection procedures to justify their financial variable choice. Unfortunately, one obvious
implication is that the reported impact of financial variableS on investment could simply be the
consequence of data mining, and therefore lead to spurious conclusions.

Third, none of the existing studies accounts for outlier effects. This is unexpected, as it is
well known that investment data exhibit an unusually large proportion of observations that might
be defined as outliers. Some studies (e.g., Gilchrist and Himmelberg) follow ad hoc rules such as
removing all of the observations below the 1* and above the 99™ percentiles. However, it is
unclear whether such ad hoc cutoff points are reasonable (e.g., the 5™ and 95™ quantiles, or even
asymmetric cutoff points, might be warranted). Furthermore, the impact of such rules on
statistical inference is unknown.

The present study contributes to the empirical investment literature by employing a
Bayesian approach to address the aforementioned issues. More specifically, we (1) test the g

model against the neoclassical model using data on investment in agricultural machinery and
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equipment for a panel of 366 Iowa farms over the period 1991-1998; (2) analyze the impact of
financial variables on investment accounting specifically for model selection; and (3) incorporate
outliers explicitly within the advocated modeling framework.
Importantly, the contribution of the present study transcends investment research. This is
true because the techniques used originate from very recent works in Bayesian model selection,
and our study is one of the first to employ them in an econometric setting. By showing how to
integrate model selection and outlier detection procedures in a unified econometric framework,
the advocated Bayesian approach should be of interest to applied researchers in many economic
fields other than investment.
The results of our analysis provide more support for the neoclassical model than the ¢
model. In fact, the g model is found to have very little support. Most of the support for the
neoclassical model is embodied in the inclusion of the change in the cost of capital in the
investment model. Financial variables, specifically lagged current asset values and off-farm
income, also add greatly to the investment model. The addition ofjan outlier detection component

to the model makes a significant difference in the results obtained and the inferences drawn.

Investment Models
In the interest of space, this section only provides a very brief sketch of the two competing
models used for empirical analysis --neoclassical and . Both models are developed in great depth
in many excellent sources (e.g., Chirinko and references therein). In addition, financial and

demographic variables used in econometric models of investment are briefly discussed.

The Neoclassical Model of Investment

In the neoclassical model, the firm is assumed to maximize discounted expected profits over an
infinite horizon. Capital depreciates at a geometric rate, and there|are no adjustment costs or
vintage effects. The optimal physical capital level is determined by output and the user cost

(rental price) of capital.




Assuming the production function exhibits a constant elasticity of substitution (o) between

variable inputs and capital, the investment equation for the neoclassical model may be written as

follows:!

. Qi
1.1) LiK=a)f +a 27, {Ku cr - K,.,_]Cf,_j_,}’
where I, = K;; — K;,—; denotes firm #’s total net investment in period ¢, K, is the capital stock at
the end of period #, a;° is the depreciation rate, O;, represents output, C,, is the user cost of
capital divided by the output price, a;* is a parameter from the production function, and 7 ;*
(Zy}° = 1) are parameters representing capital delivery lags. According to the neoclassical
model, total investment should be positively related to the initial capital stock and to the change in
output (normalized by the initial capital stock), and negatively related to the change in the user

cost of capital.

The q Model of Investment

The g model assumes that there are adjustment costs associated with the addition of new capital

to the firm. In the standard case of quadratic adjustment costs, the corresponding investment

equation is (1.2):

(12) LidK..=a’q,,

where parameter a ? denotes the inverse of the adjustment cost of new capital, and g, is the
expected present value of the marginal product of new capital for firm 7.
The g, term in (1.2) embodies all of the information available about the present value of

adding one more unit of capital to the firm. For a given level of adjustment costs (1/a ),

!Superscripts are used to economize in symbols. In what follows, superscripts “nc" and "¢" refer to the neoclassical
and the g models, respectively.
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investment (normalized by existing capital) increases with g;.. Greater adjustment costs (i.e.,

smaller & ?) imply a smaller response of (normalized) investment to

Financial and Demographic Variables

Git

In models (1.1) and (1.2), internal and external sources of finance are treated as perfect

substitutes. The firm is unconcerned or unaffected by the choice of

This would be true if there were no transaction costs or asymmetri

between lenders and borrowers. Although this type of assumption
settings, it is hard to justify for agricultural investment at the farm 1

agricultural investment provide evidence of financial constraints (e.

Langemeier; Hubbard and Kashyap; Bierlen and Featherstone; Bier

and Dixon; and Benjamin and Phimister).

Following the existing literature, it is hypothesized that a fir
affect its investment behavior. Unfortunately, there is no single me
situation. There are many financial indicators that provide partial i
financial situation. Theory provides no guidance as to which of sug
appropriate to use, or how it/they should enter the investment equg
previous investment literature reveals little consensus regarding the
to include in the investment equation. Similar conclusions can be d

credit literature (e.g., Miller and LaDue, and Knopf and Schoney),

internal or external funds.
> information problems
may be adequate in some
evel. Numerous studies of
g., Jensen, Lawson, and

len et al.; Bierlen, Ahrendsen,

m’s financial situation does
asure of a firm’s financial
nformation about a firm’s

ch indicator(s) is/are the most
tion. Examination of the
choice of financial indicators
rawn from the agricultural

which is concerned with the

most influential of the farm's financial variables for the credit decision from a lender's point of

view.

Arbitrariness in the choice of financial indicators to include
proves unavoidable. Further, special care has to be taken to minir
multicollinearity, which is a distinct characteristic of financial indic

informed judgement was exercised to select the set of financial var

’However, Weersink and Tauer found that investment decreases with the leve

in the investment equation
lize the problem of
ators. For these reasons,

iables to be included in the

| of real net farm income.




empirical specification. The selected set of financial indicators comprises the initial value of short-
term assets (CA..;), initial net worth (NW,.,), initial current liabilities (CL..,), initial total liabilities
(TL..,), lagged off-farm income (OFI,;), and lagged farm net cash flow (NCF,). If the firm’s
financial situation affects its investment, the latter is expected to be positively (negatively)
impacted by CA, NW, OFI, and NCF (CL and TL).

Given that the firms analyzed here are proprietorships, socioeconomic characteristics are
hypothesized to be important determinants of investment behavior as well. In particular, lifecycle
considerations provide a theoretical justification for including farmer’s age (AGE) as an
explanatory variable in the investment regression. Bierlen and Featherstone; Bierlen, Ahrendsen,
and Dixon; and Jensen, Lawson, and Langemeier found that a farmer's age significantly affected
investment, whereas Weersink and Tauer and Bierlen et al. found no significant effects of age on
investment. Other demographic characteristics (e.g., education and household size) are also likely

to affect investment, but data limitations prevented us from considering them explicitly.

Data

The data employed originate from the Individual Farm Analysis data set of the Iowa Farm
Business Association, for the years 1991 through 1998 (these were the years for which access to
the individual records was allowed). The data are collected by Iowa Farm Business Association
consultants, and kept on an inventory basis under standardized accounting procedures. For each
year, the data set contains records on more than 700 variables, including detailed production and
financial information, for over 1,000 Iowa farms. After combining the 1991 through 1998 data
sets and removing the farms that did not have complete records for the whole period, 366 farms
were left for the present analysis.’

Table 1 reports summary statistics for the study variables. After allowing for leads and

lags, there are 2,196 observations left for each variable. The physical quantity of capital stock

3 Upon consultation with the supervisor of the Iowa Farm Business Association data, 7 farms were also removed
from consideration due to extremely large changes between previous end-of-year values and beginning-of-year
values or to having investment ratios (the ratio of investment to the capital stock) greater than 5.
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(K,,) is obtained by dividing the value of machinery and equipment
Index for Agricultural Machinery” reported by the Bureau of Labof

measured as the difference between the value of machinery and equ

by the series “Producer Price
r Statistics. Investment (Z;) is

ipment at the beginning and

the end of the year (K;; — Ki;-;). Output (O;,) is divided into two measures, one for crop

production (CO,,) and one for livestock production (LO;,). Both measures are calculated as the

sum of the quantities of commodities produced on the farm multipl
price corresponding to those commodities over the study period (s¢

All monetary values, except where noted, are deflated using
Index for Finished Goods” reported by the Bureau of Labor Statist

(relative to output price) (C;) is an index representing the price at

Table 1. Summary statistics (all financial variables in 1998 dollars).

a

led by the average deflated
ze Appendix A for details).
 the series “Producer Price
ics. User cost of capital

which capital may be obtained.

Variable Mean Median  Standard Minimum Maximum
Deviation
Investment (Z;) 5,862 -138 29,658 —-240,365 293,239
Lagged machinery value (K1) 128,367 104,675 90,160 1,372 677,348
Lagged investment (/;1) 5,951 -32 28,438 -240,365 293,239
Tobin's q (9)" 0.17 0.14  0.506 -1.19 7.61
Change in crop output (4CQ,) 6,232 4265 62,792 —387,906 386,921
Change in livestock output (ALQ;,) 1,565 0 54,854 —725,708 603,713
Change in cost of capital (4C;) 0.93 091 191 -5.21 747
Lagged operator age (AGE;.1) 47.7 47 10.3 24 78
Lagged current assets (CAir1) 212,814 173,437 163,382 0 1,713,541
Lagged current liabilities (CL.-1) 73,309 38,165 102,083 0 833,026
Lagged net worth (NW;.1) 599,033 463,513 486,999 -68,437 3,531,546
Lagged total liabilities (7L;-1) 193,566 143,979 198,524 0 1,330,822
Lagged off-farm income (OFI;.1) 8,286 1,014 14,257 -45,216 142,712
Lagged net cash flow (NCFj.1) 69,479 56,203 63,748 —550,218 612,725

*All of the neoclassical and financial variables are normalized by the value o

estimation of the regression models.

®This variable is actually a multiple of Tobin's q. The constant depends on p

function.

Following Weersink and Tauer, it is computed from (2.1):

f lagged machinery during the

n

eters from the production



where p° represents the output price index, p* denotes the price of new capital at time #, m;, is
farmer i’s marginal tax rate, & is the capital depreciation rate, and r, denotes the interest rate. The
price of new capital is proxied by the "Producer Price Index for Agricultural Machinery." The
depreciation rate is set at 15 percent per year. The marginal tax rate is based on federal and state
tax laws and the farmer's net farm income for that year. The interest rate is the "Average
Effective Interest Rate on Loans Made -- Farm Machinery and Equipment" reported in the
Agricultural Finance Databook. Details about the construction of the output price index @°) are

provided in Appendix A.
In (1.2), g,. is unobservable. Following Abel and Blanchard, Gilchrist and Himmelberg,

and Beirlen and Featherstone, g;, is estimated by fitting the vector autoregression (VAR) (2.2),

(22) Z” FZ, -1 + Uis,

and using the estimated matrix of coefficients 7"to calculate g

-1
23) gii=a {l—(l_é‘]r] (1_5J ﬁZx‘,t—l.
I+, 1+r,

In (2.2), u;, is an error term and Z;, is a vector of current and lagged fundamentals that contains

the marginal value product of machinery (in its first row) and other variables that help predict the
marginal value product of machinery. In (2.3),c;=[1,0, ..., 0] and 1 is a conformable identity
matrix. The marginal value product of machinery is set equal to the average value product of
machinery (which is valid if the production function is homogeneous of degree 1). The marginal
value product of machinery is measured as the ratio of the sum of management returns and

machinery depreciation to the value of the capital stock.
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Besides the marginal value product of machinery, Z;, includes all of the financial variables
previously discussed (CA, NW, OFI, NCF, TL, and CL), to make sure that their effect in the g
model is due to financial constraints and not to the fact that they help predict the marginal product
of capital. The one other variable included in Z;, is the ratio of the total value of production to the
value of the capital stock. This ratio has been employed as an alternative measure of the marginal
value product of capital (e.g., Gilchrist and Himmelberg).

Farmers in the present data. set are a self-selected sample, as they have chosen to submit
information to the Iowa Farm Business Association. To see how this self-selection might impact
the analysis, the farms under study were compared with the set of all Iowa farms in the 1992
Census of Agriculture. The present data set overrepresents "typical" farms (those between 180
acres and 2000 acres), and underrepresents both small (less than 180 acres) and very large (more
than 2000 acres) farms. Similar patterns emerge in the comparisons for machinery value and

operator age.

Methods
The empirical analysis is based on a Bayesian approach to estimate|the following linear (in the

coefficients) regression:

(3 1) Ii,g/Ki,t_] = ﬂXi,t +yt + Eit,

where B is the vector of unknown coefficients to be estimated, X;, s a vector of explanatory
variables, y, are annual effects (y; ~ iid N(0, a,,z) for all 7), and &, is an error term. Vector X,
consists of a constant, explanatory variables in the neoclassical and g models, financial variables,
and the demographic variable. To allow for nonlinear effects in the explanatory variables, cross-
product and quadratic terms are also included in X;,. Vector X;, includes lagged values of the

dependent variable as well, yielding a vector of 73 terms (see Tables 2 or 4 for a complete list).*

“Note that cross product terms between explanatory variables for the neoclassical model (1.1) and g model (1.2) are
omitted, because it is assumed that the two theoretical models are mutually exclusive. Also, the quadratic terms for
g and outputs are omitted for consistency with theoretical models (1.2) and (1,1, respectively.




Regression model (3.1) is formulated as a hierarchical normal linear model. Since
exploratory examinations indicate that outliers are likely to be present, residuals &;, are modeled

as coming from a contaminated normal distribution:

N(0,6,%)  with probability
N(0,x%c,%) with probability (1-7) |’

(3.2) &~ {

where «* > 1 is a variance-inflation parameter. This implies that the standard deviation of outliers
is || times greater than the standard deviation of non-outliers.

A fundamental advantage of the Bayesian approach is that it provides a consistent
framework for model selection. Here, this advantage we exploited to choose regressors by
employing Geweke’s variable selection method. Under this technique, a prior probability p, is
assigned to the event B = 0. Further, if §; = 0, the prior distribution on f is assumed to be
normal, p(,) « exp[-0.5 (B/%)’].

The distributional assumptions, combined with the regression equation (3.1), imply that
LidKirl Yoo B, Xir, 02, G, 6,y 1, K~ N[y + Xiuf, 0.(6,0+ & — K6,)], where 6, is an outlier
indicator defined as 6, =1 if &, ~ N(0, 0,%) and 6, = 0 otherwise. In the Bayesian framework, y,,
B, and o, are the model parameters, and ayz, 6.., n, and « are hyperparameters.

The joint posterior distribution of all parameters is obtained by combining the likelihood
function with prior distributions for the parameters and hyperparameters. Prior distributions are
as follows: p(o.%) o 1/02 for 6.2, 0,2 ~ Inverse-2(mo, 0v°) for 6%, p(6,:| n) o< e (1 — p)*~ %2
for 6, and p(n7| %, @) < 17~ °(1 — )@~V for 7. That is, the prior distribution for o’ is
noninformative. The prior for 6,” can be interpreted as adding 7, observations with an average
squared deviation of 0y’ to the analysis of o,>. The assumed prior Binomial and Beta distributions
for 6,; and 7, respectively, allow us to set the values of (hyper) hyperparameters ¥ and ¢ so as to
reflect our prior beliefs about the proportion of potential outliers in the data set.

To assess the sensitivity of the results to the priors for the outlier detection and variable

selection components, estimation is performed under ten combinations of priors. For the outlier

10

}

(e oncccneat



detection component, three sets of priors are used; namely, that 10% (y= 18, ¢=2), 50% (y=1,
@=1), and 90% (y=2, ¢ = 18) of the observations are outliers. For the variable selection
component, we also employ three priors: 10% (p,=0.9), 50% (p,=0.5), and 90% (p,=0.1)
probability that each regressor (main and cross effects) is included in the model. All nine
combinations of these priors are examined, along with a run assuming that the data set contains no
outliers and that each variable has a 90% (p, = 0.1) prior probability of being included in the
model. In total, 10 separate estimation runs are performed.
The prior o, ~ Inverse- 2/(20, 0.01) is chosen for o,”. This|highly informative prior is
based on estimates from a classical analysis of the model, and effectively adds 20 observations
with an average squared deviation of 0.01 to the analysis of o,2. Alhighly informative prior for
o, is used to alleviate the problem of separating the intercept from the random annual effects, due
to the relatively small number of years in the panel.’
An intercept is always included in the regression model (3.1). Prior standard deviations
for all of the regression coefficients (f) are set at 7 = 0.5. This setting provides support for
coefficient values different from zero, but does not support unrealistically large values. In
addition, the variance-inflation parameter is set at x = 4 for all runs involving outlier detection
(see (3.2)). This value is chosen so that there is a discernable difference between the distributions
for outliers and non-outliers.
Follo@ing most of the current Bayesian literature, integratipns are performed by means of
the Gibbs sampler (Brooks, and Gelfand and Smith). Given regression model (3.1) and the
assumed prior distributions, the Gibbs sampler for this problem has six major components: (1)
simulation of the main outlier distribution hyperparameter (7), (2) simulation of the main error
variance (0,%), (3) simulation of the annual random effect variance (6,9, (4) simulation of the
annual random effects (1), (5) simulation of the individual observation outlier detection parameter
(6., and (6) simulation of the parameter vector (). The present Gibbs sampler was designed to

handle these simulations in the order given above (see Appendix for further details).

5The panel has only 6 years of data, after accounting for lagged and differenced variables in the model.
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Within each of the ten separate estimation runs, the Gibbs sampler simulates four chains of
15,000 iterations each, for a total of 60,000 draws per estimation run. Starting values are chosen
systematically for convenience. Doing this does not present a problem as long as the chains are
“long enough” to achieve convergence. This is true because, from the properties of Markov chain
Monte Carlo methods (of which the Gibbs sampler is a special case), the chains will have a unique
stationary distribution identical to the target distribution. The first half of each chain (7,500
iterations) is discarded as a burn-in procedure. Convergence is monitored by Gelman and Rubin’s
R-statistic, \/E (Gelman et al., p. 331-332). Parameters are examined to check convergence,
including the annual random effects (y;), the variance components (o.” and o;”), and the outlier
detection (77) parameters.

Simulation programs are written in C++ and compiled using Borland C++ Builder 3. The
distribution subroutines are C++ programs contained in the SUM module of the M++ Version 7.0
libraries from Dyad Software Corporation. A typical run would last five hours on a personal

computer with a Pentium 500 MHz chip and 256 megabytes of RAM.

Results and Discussion
Because of the numerous prior scenarios analyzed, attention is focused first on the model with 50
percent prior for variable inclusion and 10 percent for outliers (Var500ut10). Results for this
estimation are given in Table 2. For all of the variables selected for the model in at least fifteen
percent of the iterations, \/R? is less than 1.15 in the main estimation, so convergence is assumed.
The last column of Table 2 reveals that seven of the variables considered are chosen at least fifty
percent of the time. These are the change in crop output, the change in the cost of capital,

lagged current asset values, lagged off-farm income, and the cross-product terms for g and off-

12
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Table 2. Summary of the results for the Var500ut10 model. .
Variable Posterior Posterior Quantiles \/E % of Times
Mean 25% = 50% 97.5% Chosen
Intercept 0.015 -0.041 0.015 0.069 1.06 100.00
Iy 0.000 0.000 0.000 0.000 1.00 3.08
qis 0.005 0.000 0.000 0.034 1.01 19.03
ACQ;: 0.012 0.000 0.012 0.036 1.01 58.30
ALQ;, 0.000 0.000 0.000 0.000 1.09 3.19
aC;, —-0.054 -0.084  -0.055 0.000 1.01 95.64
AGE;+, 0.000 0.000 0.000 0.000 1.08 238
CAim 0.016 0.010 0.016 0.024 1.03 100.00
CLit 0.000 0.000 0.000 0.000 1.02 1.31
NW, i 0.000 -0.003 0.000 0.000 1.07 7.94
TLit 0.000 0.000 0.000 0.000 1.06 0.44
OFI; 1 0.025 0.000 0.019 0.081 1.00 . 52.82
NCF1 0.000 0.000 0.000 0.000 1.03 1.70
AC,H 0.000 0.000 0.000 0.000 1.03 233
AGE;. ) 0.000 0.000  0.000  0.000 1.00 0.01
CA ,~,,_12 0.000 0.000 0.000 0.000 1.00 0.02
CL,;,_12 0.000 0.000 0.000 0.000 1.11 0.55
NWi. 2 0.000 0.000 0.000 0.000 1.00 0.01
TL;er? 0.000 0.000 0.000 0.000 1.00 0.06
OFL-,:_nz 0.000 0.000 0.000 0.004 1.01 5.63
NCF,,.? 0.000 0.000 0.000 0.00( 1.00 0.44
qixAGE; 0.000 0.000 0.000 0.003 2.38 2.16
qixCA; 0.000 0.000 0.000 0.000 1.00 0.28
qi<CLj 1 0.000 0.000 0.000 0.00C 1.02 3.42
qiXNW, e 0.000 0.000 0.000 0.000 1.00 0.19
qixTLe 0.000 0.000 0.000 0.000 2.47 0.68
qixOFI, 0.075 0000  0.085  0.144 1.01 80.70
qi<NCF 0.000 0.000 0.000 0.000 1.19 1.72
ACQ;<xALQ;, -0.001 -0.020 0.000 0.000 1.14 7.46
ACQ;xAC;; —0.001 -0.020 0.000 0.000 2.80 2.81
ACQ;xAGE; 0.000 0.000 0.000 0.000 1.00 0.03
ACQ;xCAi 0.000 0.000 0.000 0.000 1.00 0.02
ACQ;xCL ;i 0.006 0.000 0.007 0.010 1.13 58.62
ACQ;; i1 0.000 0.000 0.000 0.000 1.00 0.02
ACQixTL; 0.000 0.000 0.000 0.000 1.00 0.05
ACQ,xOFI;1 4 -0.010 0039 0000  0.000 1.01 38.03
ACQ; xNCF 11 0.000 0.000 0.000 0.00 1.00 0.19
ALQ, xAC; 0.000 0.000 0.000 0.00 1.00 2.09
ALQ,xAGE; 1 0.000 0.000  0.000  0.00 137 2.44
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Table 2. (Continued).

Variable Posterior Posterior Quantiles w/IT{ % of Times
Mean 2.5% 50% 97.5% Chosen
ALQ;xCA 11 0.000 0.000 0.000 0.000 1.02 1.05
ALQ;xCL;;- 0.000 0.000 0.000 0.000 1.04 1.28
ALQ; xNW, 1 0.000 0.000 0.000 0.000 1.00 0.33
ALQ; }TL;r 1 0.000 0.000 0.000 0.000 1.02 3.51
ALQ; xOFI,;, 0.008 -0.010 0.000 0.087 1.00 18.96
ALQ, xNCF . 0.000 0.000 0.000 0.000 1.05 2.82
AC; xAGE; 0.000 0.000 0.000 0.000 1.00 0.29
AC;xCA ;s - 0.000 0.000 0.000 0.000 1.02 1.04
AC;xCL;1y 0.002 0.000 0.000 0.033 1.43 14.14
AC, xNW; 0.000 0.000 0.000 0.000 1.00 0.28
AC; xTL; ey 0.000 0.000 0.000 0.000 1.05 0.69
AC; xOFI,, 0.056 0.000 0.058 0.084 1.05 92.36
AC; xNCF ;1 0.000 -0.008 0.000 0.000 1.08 428
AGE; 1 1xCA ;1 0.000 0.000 0.000 0.000 1.00 0.01
AGE;;xCL; 0.000 0.000 0.000 0.000 1.00 0.27
AGE; \xNW, 0.000 0.000 0.000 0.000 1.00 0.01
AGE; 1\ xTL; 0.000 0.000 0.000 0.000 1.00 0.01
AGE;,_1xOFI,,_, 0.000 0.000 0.000 0.000 1.00 0.38
AGE;; \xNCF ;1 0.000 0.000 0.000 0.000 1.00 0.05
CA;1xCL;1y 0.000 0.000 0.000 0.000 1.00 0.32
CAi - >XNW iy 0.000 0.000 0.000 0.000 1.00 0.01
CA;1xTL; 0.000 0.000 0.000 0.000 1.00 - 0.01
CA; 1xOFT,; 1y -0.002 -0.026 0.000 0.000 1.08 12.54
CA;-1xNCF- 0.000 0.000 - 0.000 0.000 1.00 0.06
CLii s xNWiy 0.000 0.000 0.000 0.000 1.26 0.62
CLit1XTLiy 0.000 0.000 0.000 0.000 1.42 0.79
CL;11xOFI,, -0.001 -0.024 0.000 0.000 1.21 7.70
CL;t1xNCF iy 0.003 0.000 0.000 0.014 1.12 35.26
NW, o xTL; iy 0.000 0.000 0.000 0.000 1.00 0.04
NW,; . \xOFT,,_, 0.000 ~0.005 0.000 0.000 1.01 7.55
NW,.1xNCF 1y 0.000 0.000 0.000 0.000 1.00 0.04
TL, 1\ xOFI; 0.000 0.000 0.000 0.000 1.02 1.12
TL; -\ xNCF- 0.000 0.000 0.000 0.000 1.00 0.12
OFI; 1xNCF;1 4 0.001 0.000 0.000 0.017 1.02 7.64
Hyperparameter
n 0.801 0.769 0.802 0.833 1.03
o 0.015 0.013 0.015 0.016 1.01
o, 0.009 0.005 0.008 0.015 1.00
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farm income, change in crop output and current liabilities, and change in the cost of capital and
off-farm income. Of these, the change in the cost of capital, lagged current asset values, and the
cross-product for the change in the cost of capital and off-farm income are chosen over ninety
percent of the time. The linear term for the g model is chosen less than twenty percent of the
time. The signs for the linear terms of the chosen variables are as ¢xpected. Remarkably, 59 of
the 72 variables are selected less than ten percent of the time.

The posterior mean estimate for 7 indicates that roughly twenty percent of the
observations are classified as outliers by the model. The variancehlor the annual random effects is
approximately 0.009, very near the prior and the classical estimate for the same measure. This
result is expected given the informative prior placed on the random effects variance. The error
variance is estimated to be 0.015, nearly twice the size of the random annual effects variance.

To quickly summarize the results of the other estimation runs and to facilitate comparison
among them, Table 3 presents a composite summary. Table 3 lists, for each specification, the
variables selected at a greater percentage than the prior for that specification, the mean values of
their parameters, the mean values of the variance components and outlier detection
hyperparameter, and the outlier detection histogram. In addition, variables selected at least 90
percent of the time are shown in bold characters.

Several definite patterns can be seen in Table 3. First, posterior mean parameter estimates
for the variance components and the outlier hyperparameter are very similar for all of the
Bayesian estimations with both variable selection and nonzero prior probability of outliers. For
any given prior probability of variable selection, the estimation procedure selects nearly the same
set of variables regardless of the prior chosen for the proportion of outliers (except for the
extreme case of a zero prior proportion of outliers) and the posterior mean values for these
parameters are consistent.

Only the value of current assets is chosen at least ninety percent of the time in all of the
estimations. Parameter estimates for this variable are consistent across all of the estimations with

both the variable selection and outlier detection components. When the outlier detection
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Table 3. Composite summary table for Bayesian estimation results.

Prior Specification®

Varl0
QOutl0

Varl0 Varl0 Var50 Var50 Var50 Var90 Var90 Var90 Var90
Out50 Out90 Outl0 Out50 Out90 Out0 Outl0 Out50 Out90

Variable
ACQ;: 0.012 0.015 0.014 0.045
A4aC;; -0.013 -0.015 -0.018 —0.054 —0.055 —0.056 —-0.049 —-0.050 —-0.045
CAi 0.015 0.015 0.015 0.016 0.017 0.017 0.045 0.018 0.018 0.019
NW,; -0.000 -0.000
OFT;ey 0.025 0.024 0.024 0.056 0.060 0.064
qixOFI; 0.021 0.021 0.022 0.075 0.074 0.068
ACQ;xCLj¢ 0.002 0.002 0.004 0.006
ACQ;xOFT;,, -0.057
ALQ; xOFI;,, 0.109
AC; XCL; ¢ 0.003 0.003
AC;xTLie » 0.024
AC;xOFI; 14 0.009 0.010 0.014 0.056 0.055 0.055 0.137 0.069 0.069 0.072
AC; xNCF ;1 -0.078
A GE,;,.] XCL,;;.] 0.004
CA ,',,_1X0F11,t_1 -0.086
CL; 1 XTLp -0.010
CL,;.1xNCF,;r.; 0.009 0.009 0.007 0.007
TL;, \xOFI;, 0.029
Hyperparameter :
o’ 0.015 0.015 0.014 0.015 0.015 0.014 0.059 0.014 0.014 0.013
o} 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
n 0.808 0.803 0.780 0.801 0.797 0.774 0.794 0.789 0.763
Outlier %° Number of Observations
0 0 0 0 0 0 0 2196 0 0 0
(0, 10] 1482 1448 1299 1439 1409 1256 0 1372 1338 1159
(10, 20] 302 327 426 318 335 446 0 353 380 502
(20, 80] 210 216 249 230 242 263 0 260 263 303
(80, 90] 42 40 36 32 28 37 0 29 29 33
(90, 100] 160 165 186 177 182 194 0 182 186 199

Posterior Mean Parameter Value’

*For the Prior Specifications, “VarXOutY” means that results correspond to an X percent prior probability that the variables are
included in the model, and a prior that Y percent of the observations are outliers. Thus, for example, Var100ut50 means a 10
percent prior probability that the variables are included in the model, and a prior that 50 percent of the observations are

outliers.

Yf there is no value in a cell, either the variable was not selected X percent (the prior percentage) of the time or the parameter
was not estimated in that scenario. Numbers in bold indicate that the variable was selected at least 90 percent of the time.
°The percentage of times the observation was chosen as an outlier. For example, for the Var500ut10 scenario, 1439 (65.5
percent) of the observations were not selected as outliers over 90 percent of the iterations; 1864 (84.9 percent) of the
observations were not selected as outliers over 70 percent of the time, but 177 (8.1 percent) of the observations were selected
as outliers over 90 percent of the time.
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component is removed (Out0), the estimate more than doubles in size. The cross-product term
for the change in the cost of capital and off-farm income is chosen at least ninety percent of the
time for all estimation where the prior probability of variable inclusion is at or above fifty percent
(Var50 and Var90). For the specifications with both variable selection and outlier detection
components, the parameter estimates for this cross-product are simjlar, with each being contained
in the quantile intervals (2.5 to 97.5 percent) from the other estimations. The parameter estimate
for this cross-product in the no outlier specification is roughly double that from the other
specifications. The change in the cost of capital also appears in all of the specifications with both
components, but is not chosen in the no outlier specification. If the prior probability of variable
inclusion is at or above fifty percent, the change in the cost of capital is chosen over ninety
percent of the time and again, the parameter estimates are similar across these specifications.
The outlier histograms reported in the bottom half of Table 3 are also extremely robust
across nonzero priors. In the scenarios with nonzero prior probability of outliers, between 1,661
and 1,784 observations (75.6 and 81.2 percent of the total observations, respectively) were not
selected as outliers in over 80 percent of the iterations, and between 160 and 199 observations

(7.3 and 9.1 percent of the total observations, respectively) were selected as outliers over 90

percent of the iterations.

For specifications with both the variable selection and outlier detection components, those
variables chosen at least ninety percent of the time have very similar parameter estimates. To
examine the effects of the addition of the outlier detection component, the no outlier specification
(Out0) is compared to the other models with the 90 percent prior probability for variable inclusion
(Var900ut10, Var900ut50, and Var900ut90). First, the no outlier specification included eleven
more variables than and excluded two of the four variables chosen in the other 90 percent prior
variable inclusion specifications. Second, the parameter estimates in the no outlier case for the

two variables in common across all four specifications are at least double the size of the estimates

from the others. Third, the posterior mean of the error variance is

outlier case versus the scenarios allowing for outliers. This is to be
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variance must be large enough to accommodate all the outliers that are not classified as such.
Overall, it can be concluded that the choice of nonzero priors for the variable selection and outlier
detection components has a much smaller effect on the results from the Bayesian analysis than the
addition of an outlier detection component.

Despite the aforementioned differences, the no outlier and outlier detection scenarios held
a couple of similarities. The value of current assets and the cross-product of the cost of capital
and off-farm income strongly appear in all four specifications. The ¢ model is not represented in
any of the specifications. Also, the posterior means of the random effects variance are quite

similar.

Comparison with Results from Classical Analysis

At this point, it is of interest to compare the results from the Bayesian approach with those
obtained under classical methods. To this end, (3.1) was fitted using maximum likelihood under
the mixed model procedure in SAS 6.12 for Windows. Parameter estimates are reported in Table
4. Approximately 40 percent (30 of 73) of the parameter estimates are significantly different from
zero at the 5 percent level. Five of the 11 linear effects are significant and all of those are
positively related to investment. For the eight squared terms, only the change in the cost of
capital and current liabilities are significantly different from zero at the five percent level. Of the
52 cross effects, 21 have parameter estimates significantly different from zero, including all but
two (q;xCA ;1 and ALQ; xCA;,) of the cross-products involving current assets. The variance
estimates indicate that the residual error dominates the annual random effect.

It is clear from Table 4 that the g model of investment fares quite poorly under the
classical regression framework. Only one (¢;:xAGE;,) of the eight terms involving g, is
different from zero at the 5 percent level of significance. This poor performance of the ¢ model is
not the result of g;, being unable to explain investment by itself. Rather, it is due to the fact that

qi: adds little to explain investment, once other explanatory variables are taken into
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Table 4. Classical regression results.

Variable Estimate Std. Error Variable Estimate Std. Error
Intercept 0.090* 0.016 ALQ;xCA; ¢y -0.0035 0.0082
) 0.001 0.017 ALQ,; xCL; o 0.006 0.012
Gt 0.044 0.024 ALQ; xNW, 0.0073* 0.0033
ACQ;, 0.035%* 0.013 ALQ, xTL; iy 0.0063 0.0058
ALQ; 0.025* 0.011 ALQ, xOFI,, 0.150** 0.046
AC;, -0.057 0.030 ALQ; xNCF 0.006 0.016
AGE; 0.0041* 0.0020 AC;xAGE;, 4 0.0014 0.0017
CA;r 0.0320** 0.0083 AC; xCAjr 0.0221* 0.0098
CLit 0.030* 0.013 AC;xCL;y -0.005 0.022
NW,.., —0.0010 0.0024 AC; xNW, 0.0024 0.0027
TLie -0.0110 0.0060 AC; xTL; 0.0114 0.0091
OFI;1 0.081* 0.037 AC; xOFI, 0.093** 0.029
NCF 1 0.028 0.016 AC;, xNCF ;1 —0.085** 0.021
AC,H ~0.034* 0.017 AGE; \xCA; 1 0.0028* 0.0011
AGE,;. -0.00018 0.00010 AGE;»xCL;ry|  —0.0000 0.0020
CAjrr® 0.0046 0.0030 AGE, xNWi 0.00040 0.00027
CL;A -0.0226**  0.0082 AGE; 1xTL; 0.00097 0.00088
NW,. 2 0.00026 0.00024 AGE, 1xOFI, 0.0013 0.0035
TLiwt 0.0013 0.0016 AGE; . ,xNCF,.,  -0.0061** 0.0022
OFI,,.+* 0.002 0.035 CA;1xCL; 1y 0.0196* 0.0080
NCF,..\? 0.0127 0.0085 CA; -1 XNWi —0.0050** 0.0018
qixAGE; ;. 0.0083** 0.0031 CA;yxTLie —0.0112** 0.0033
qixCAir -0.0167 0.0098 CA;-1xOFT, oy —0.105** 0.026
qixCLi -0.022 0.020 CA; 1xNCF,y 0.0250%* 0.0085
qixNWis 1 -0.0001 0.0048 CL;1xNWy, -0.0063* 0.0030
qixTLie s 0.0102 0.0096 CLy1xTLiiy —-0.0017 0.0057
qi,;XOFIi,;.l -0.021 0.084 CLi"—lXOFIiJ_l -0.031 0.047
qiXNCF 1y -0.050 0.028 CL;+1xNCF 0.008 0.014
ACQ,xALQ;, —0.022 0.016 NW, axTLip 0.0022* 0.0011
ACQ;xAC;; 0.007 0.013 NW,. 1 xOFT,, —-0.0063 0.0055
ACQ,xAGE;,,  0.0013 0.0013 NW, . xNCFa|  —0.0036 0.0028
ACQ;xCA ;1 -0.0121**  0.0042 TL; 1 xOFI; 0.027* 0.012
ACQ;xCLy1 -0.0022 0.0086 TL; 1 xNCF iy -0.0097 0.0060
ACQ,xNW,.y  —0.0002 0.0018 OFI,, 1xNCF 5 0.103* 0.053
ACQ;xTL; 1y 0.0038 0.0041

ACQ;xOFT,; —0.085** 0.025 Variance Parameters

ACQ,xNCF;,,  0.033** 0.012 62 0.057

ALQ;xAC;, 0.014 0.016 é? 0.001

ALQ; xAGE;,, —0.0069** 0.0020 R? 0.302

* (**) Significant at the 5 (1) percent level, based on the two-sided z-test.




account. This is true because g;, is highly significant in the following univariate regression,
analogous to that reported in Table 4 (standard errors within parentheses):

(4.1) I,/K;e1 =0.070 +0.103 g;,, 62 =0.075, 62 =0.001, R? = 0.108.
(0.017) (0.012)

The Bayesian specification the most similar to the classical analysis is the Var900ut0
specification. In comparing these results, it can be seen that the classical analysis found many
more variables to be significant. Of the eleven variables chosen in the Var900ut0 specification,
eight were also found to be significant in the classical analysis. The signs of the parameters for
these eight variables are the same across the analyses, but the magnitudes differ. Also, the two
variables that are chosen by all four Bayesian specifications with a ninety prior probability for
variable inclusion, lagged current assets and the cross-product for the change in the cost of capital

and off-farm income, are found to be significant in the classical analysis.

Expected Change Estimates

From an economic standpoint, it is of interest to examine the absolute impacts of the factors on
farm machinery investment. To this end, Table 5 reports the estimated expected changes in the
investment rate related to a one unit change in each regressor from the classical results, and the
marginal posterior distributions of the expected change in the investment rate from the Bayesian
results. Because of the skewness in the investment data (see Table 1), expected changes were
computed at both the mean and median values for all variables.

The Bayesian approach taken in this manuscript allows us to approximate the marginal
posterior distributions of unit changes, because the latter portions of the chains can be thought of
as coming from the posterior distributions of interest. Within the Bayesian framework, we then
obtain point estimates and credible intervals (the Bayesian equivalent to frequentist confidence
intervals) for the expected changes. This approach also allows us to incorporate the uncertainty

about all model parameters directly into the expected change estimates. From the parameter

20

et oo coeot



) ) ) ) )

)

)

Table 5. Summary of expected changes in the investment rate.’

Variable Classical Bayesian Results
Results
Mean Posterior Posterior Quantiles| \[E % of Times
Estimate Mean 2.5% 50% 97.5% Non-Zero

At the mean:
I 0.001 0.000 0.000 0.000 0.000 1.00 3.08
Qi 0.044 0.005 0.000  0.000 0.034 1.01 19.03
4CQ;, 0.035 0.012 0.000 0.012 0.036 1.01 58.30
ALQ;; 0.025 0.000 0.000 0.000 0.000 1.09 3.19
AC;, -0.057 -0.054 -0.084 -0.055 0.000 1.01 95.64
AGE,., 0.004 0.000 0.000 0.000  0.000 1.08 238
CAia 0.033 0.016 0.010 0.016 0.024 1.03 100.00
CLj 0.030 0.000 0.000 0.000 0.000 1.02 1.31
NWi -0.001 0.000 —-0.003 0.000 0.000 1.07 7.94
TL;t -0.011 0.000 0.000 0.000 0.000 1.06 0.44
OFI;, 0.081 0.025 0.000 0.019  Q.081 1.00 52.82
NCF 1 0.028 0.000 0.000 0.000  0.000 1.03 1.70

At the median;
iy 0.001 0.000 0.000 0.000 0.000 1.00 3.08
qit 0.042 -0.004 -0.015 -0.008 Q.028 1.00 86.08
ACQ.: 0.041 0.011 —0.003 0.011 Q037 1.01 85.48
ALQ;, 0.010 -0.001 -0.009 0.000 0.005 1.02 33.11
AC;, -0.076 —0.060 -0.091 -0.061 —0.011 1.01 99.30
AGE;, 0.003 0.000 0.000 0.000 0.000 1.08 7.33
CAi 0.037 0.016 0.010 0.016 0.024 1.04 100.00
CLi 0.047 -0.001 -0.003 0.000 0.002 1.06 95.96
NW;a 0.002 0.000 —0.003 0.000 0.001 1.07 16.30
TLi: -0.014 0.000 0.000 0.000 0.000 1.04 6.77
OFI;,, 0.116 0.022 -0.007 0.015 0.084 1.00 99.35
NCFr 0.027 —0.001 —0.005 0.000 0.001 1.06 45.57

*The Bayesian results are based on the Var500ut10 specification.

draws from the Gibbs sampler for the Var500ut10 case (which had prior probabilities of 50

percent for the variable inclusion component and of 10 percent for the outlier detection

component), marginal posterior distributions of the expected changes were computed.
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The latter columns of Table 5 summarize the Bayesian results (i.e., the posterior means,
selected posterior quantiles, Gelman and Rubin’s R-statistics, and the percentage of times the
estimate is non-zero out of 60,000 iterations). At the mean values, the change in the cost of
capital has the largest impact followed by off-farm income, the value of current assets, the change
in crop output, and g. The other variables have a negligible impact. Non-zero estimates for these
expected changes only occur less than ten percent of the time. At the median values, the order is
the same but the strength of the impacts varies. The impact from ¢ switches from positive to
negative. Also, quite small negative impacts are seen from the change in livestock output, lagged
current liabilities, and net cash flow.

The classical point estimates in Table 4 were used to calculate the expected change in the
investment rate related to a one unit change in each regressor. These are shown in the second
column in Table 5. The median value of current investment is negative, indicating real
disinvestment on the farm. For both mean and median values, lagged off-farm income has the
largest impact on the expected value of the investment rate. The positive impact indicates that as
the off-farm income rises, the farm machinery investment rate also rises. The change in the cost
of capital has the next largest impact. For mean values, it is followed by g, change in crop output,
and lagged current assets. For median values, it is followed by lagged current liabilities, ¢, and
change in crop output.

When comparing these figures from the two approaches, several important differences can
be observed. The classical estimates indicate stronger impacts from almost all of the variables.
The Bayesian estimates show the change in the cost of capital to have the largest impacts,
whereas the classical estimates point to off-farm income. Lagged current assets are near the

middle of the pack in the classical results, but are the third highest in the Bayesian approach.
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Conclusions
It is widely agreed that private business investment plays a crucial role in enhancing economic
performance/growth. It is a major contributor to long-term growth and short-term fluctuations in
economic activity. Many studies have examined, both theoretically and empirically, private

investment. Two of the major models from this literature are the g|and neoclassical models.

However, many studies have found that firms' internal financial varjables also have a significant

impact on investment.

Our analysis examines three stylized facts that emerge from

the literature. First, there are

no empirical studies testing whether the q model performs better than the neoclassical paradigm,

or vice versa, in explaining agricultural investment. Second, the specific financial variables

used to explain investment vary substantially across studies. Thirg

accounts for outlier effects.

The present study employs a Bayesian approach to address
form an investment rate composite model including factors from th
and financial variables. The Bayesian approach is constructed with
detection components. This contribution transcends investment re:
techniques can be applied to the empirical analysis of many other e
techniques are based on very recent works in Bayesian model selec
one of the first to employ them in an econometric setting.

For the panel data analyzed, consisting of 366 Iowa farms ¢

|, none of the existing studies

these issues. Specifically, we
e g and neoclassical models
model selection and outlier
search in that the advocated
conomic issues. The

tion, and the present study is

pver the period 1991-1998,

more support is found for the neoclassical model than for the g model of investment. The change

in the cost of capital is selected for the investment model both in a
product with off-farm income. Confirming the findings of the prev
financial situation is found to affect its investment significantly. Th
current asset values and off-farm income add greatly to the investn
current asset value is the only variable that is chosen at least ninety

the Bayesian specifications and is also found to be significant at th
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classical analysis. Other standard financial variables, such as net worth and total liabilities, are
virtually ignored by both estimation techniques.

The incorporation of an outlier detection component changes the results drastically, in
both the variables chosen and the magnitudes of the estimated parameter values. In the present
sample, it was found that roughly twenty percent of the observations are classified as outliers.
The classical analysis of the model (not accounting for outliers) found 29 variables to be
statistically significant at the 95 percent level. The Bayesian analysis with the model selection, but
not the outlier detection, component chose only 11 variables for the model, including eight
variables that were significant in the classical analysis. The Bayesian analyses with both
components indicated that only four variables, the linear terms for the change in the cost of
capital, lagged current assets, and lagged off-farm income and the cross-product for the change in
the cost of capital and off-farm income, are important in the investment rate model. The shifts in
the variable selection are significant in that this also implies that the inferences drawn change.

To inspect this more closely, expected changes in investment rates due to changes in the
explanatory variables were also examined. It was found that the Bayesian and classical estimates
differ dramatically. In almost all cases, the classical estimates exceed the Bayesian estimates.
Also, the rankings of the effects of the explanatory variables shift between the analyses. These
results and the nature of most investment data suggest that past investment work that does not

account for outliers may have led to inaccurate inferences.
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Appendix A: Output and Output Price Indices
The formulas for the output measures and the output price index are given in (A1) and (A2),

respectively:

(Al) Olt Z p; I”:

(A7) po=2tPut

2P 71998 A j
where P is the 1991-98 average price for commodity j, 4, is the quantity of commodity j
produced by farm i in year ¢, p;. is the price of commodity j in year ¢, and A ; 1s the 1991-98

average farm-level quantity produced of commodity j. All prices employed in these calculations

are deflated by the "Producer Price Index for Farm Products."

Appendix B: Posterior Conditional Distributions
Given the assumed prior distributions for 7, o2, 6,°, ¥, and s, their posterior conditional

distributions are as shown in (B.1), (B.2), (B.3), (B.4), and (B.5), respectively:

(B l) n l IiJ/KiJ—l, B4 ﬂ, ‘Xvi,fs 0-6‘2’ Gyz: 01'.1 ~ Beta (Z?:l Z{:l 9:’,: + 7anT - Z?:l Zf:l ei,t + ¢)’

(B.2) 0'52 | L /K, Wt ﬂ, X, 1, 03,2,.9,-', ‘
I K o
~ Inverse-Gamma(O.S nT, 05,37, ( ( i1 ﬂX r,zto .})’r)z J ’
—K it

B.3) 62| LdKir1, ¥ B Xis 1, oz, 0, ~ Inverse-Gamma(O.S(T +n, ),O.S(n0002 +37, y,2 )),

B.4) yi|LidKirr, B, X 1, OF, 0%, O~

Normal (————Gf—-——} (I”/K"" ﬂX")( W+ 12} ,

o +a,'W '—1(9 +x’-x’6 )

(BS) P(at =0 I Ii.f/KiJ—la Yo ﬂ’ ‘va,f’ n, 0-827 O'yz) =p0/(P0 +p1)’ p(ei.f =1 |) =p1/(p° +p1)’
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where 7 denotes number of farms, 7 is the number of years, W= Y7, 1/(6,, + x* —x26,,), po=
exp{~0.5 [(l,/K,i1 = B X y)/(x 51}, and py = kn/(1 ~ 1) exp{=0.5[(L; /Ky ~ BXir
)/ O's]z}~

The posterior distribution of £ conditional on 8, I,/Ki.1, i, Xir, 1, 0, ayz, and S
originates from the simplified model z;; = S Xi.x + €iy, where z;, = [, /K1 =3 e B, X, ; — Vv, and
&1 1s distributed as shown in (3.2). Given the prior probability that £ =0 ( p,) the posterior
probability that §, =0 is givenby p, = p /[ p, +(1 - p,) BFi], where BF, denotes the
conditional Bayes factor in favor of £ # 0 versus £ = O:

’ 1

(B.6) BFy= __( dse st o ui )+_2J

T

v i .
1 X, 2 1 X. 2 1
ex 0 5 Zx— Z = ,L 2 Zz": ZT= ,'t’k .
P (a 1 ](0,,, +x° —xzﬁi_,) 0’ e ](0,;, —xzﬁm)

£

Larger BF;, leads to greater chances for £ to be included in the regression model. The posterior
probability that B, # O isequalto 1 — p, .

Finally, for S # 0, the posterior conditional distribution is:

(B7) ﬂkllflKl'-hybﬂj*k, it 773 O.E)O:V’G

2

. T

it k
Normal
2

ey ij

=6, +x? —K‘9 7,

\
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