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The Spatial Distribution of Innovative         
Activity in U.S. Metropolitan Areas: Evidence 
from Patent Data* 
 

Up Lim 1 
 

Abstract.  Despite the fact that knowledge spillovers have explicitly geo-
graphic components, the role of spatial effects in the knowledge spillover 
process has been ignored. In this context, the objective of this paper is to 
observe differences in the spatial distribution of innovative activity 
across U.S. metropolitan areas, and thereby to examine whether the con-
centration of innovative activity in a metropolitan area is spatially corre-
lated to the concentration of neighboring metropolitan areas’ innovative 
activity. Based on a data set of patents, this paper presents the recent 
space-time patterns of metropolitan innovative activity for the period 
1990-1999. 

 

1. Introduction 
 

The fact that knowledge spillovers lead to increasing returns which in 
turn may be bounded for a time within the geographic limits, suggests that 
regions may realize different growth trajectories. However, the general 
analyses in the new endogenous growth theories have not explicitly consid-
ered the space in which economic relationships take place (Grossman and 
Helpman 1991; Lucas 1988; Romer 1986; Romer 1990). These studies have not 
established whether regions showing high or low values of productivity are 
randomly distributed across space or, on the contrary, are clearly concen-
trated in particular territories. Nor have they tested the spatial patterns of 
regional growth dynamics.  

                                                 
* An earlier version of this paper was awarded the 2003 M. Jarvin Emerson Student Paper Com-
petition Award sponsored by the Mid-Continent Regional Science Association. The author 
would especially like to thank Michael Oden for his valuable comments and suggestions con-
cerning this research. 
1 Up Lim is a Ph.D. Candidate of the Graduate Program in Community and Regional Planning 
at the University of Texas at Austin, 1 University Station B7500, Austin, TX 78712. 
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Beginning in the early 1990s, there have been a number of empirical 
studies to explore the geographic aspects of knowledge externalities and the 
localized relationships between private and university Research and Devel-
opment and innovative firms (Acs, Anselin, and Varga 2002; Anselin and 
Varga 1997; Anselin, Varga, and Acs 2000a; Anselin, Varga, and Acs 2000b; 
Audretsch and Feldman 1996; Feldman 1994; Feldman and Florida 1994; 
Jaffe, Trajtenberg, and Henderson 1993). However, as Malecki (1983:95) 
states that “innovation may be the most important and the least understood 
aspect of the concept of spatially unbalanced growth,” we have still a limited 
understanding of the sources of technological progress and of why the pace 
of progress varies over time and space. 

If technological knowledge is not easily accessible at every point in 
space, the location of knowledge creation and the characteristics of knowl-
edge diffusion become a crucial issue in understanding the creation of tech-
nological enclaves and the spatial patterns of regional growth dynamics. This 
explains why the extent to which knowledge spillovers are indeed bounded 
within geographic limits has received particular attention in the growing 
literature. In this context, the first objective of this study is to observe differ-
ences in the spatial distribution of innovative activity across metropolitan 
areas, and thereby to introduce the consideration of the geography of inno-
vative activity as an important requirement for the analysis of uneven re-
gional growth. The second objective of this paper is to examine whether the 
concentration of innovative activity in a metropolitan area is spatially corre-
lated to the concentration of neighboring metropolitan areas’ innovative ac-
tivity, and thereby to further investigate if spatial clusters of innovative ac-
tivity can be isolated across metropolitan areas.  

Based on a data set of patents, this paper presents the spatially detailed 
analysis of recent trends of innovative activity. This study applies explora-
tory spatial data analysis methods and concentrates on recent space-time 
patterns of innovative activity at the level of metropolitan areas. Particular 
emphasis is paid to the spatial dimensions of changing metropolitan innova-
tiveness.  

This paper is organized as follows. The following section briefly summa-
rizes the literature which provides a theoretical rationale for why innovative 
activity tends to be spatially concentrated. Section 3 deals with a methodo-
logical issue on the specification of spatial interaction relationship, followed 
by exploratory spatial data analysis methods. The empirical results of the 
analysis at the metropolitan level are discussed in Section 4. This paper 
closes with summary and concluding remarks in Section 5. 
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2.  The Evolutionary Nature of Technological Change 
and Its Economic Geography 

 
In the last decade, there has been a widespread resurgence of interest in 

innovative activity. It is increasingly seen as an essential basis for economic 
growth in the advanced economies (Dosi et al. 1988; Grossman and Helpman 
1991; Lucas 1988; Nelson and Winter 1982; Romer 1986; Romer 1990). Along 
with this renewed interest in innovative activity, has come a concern about 
why the distribution of innovative activity is geographically concentrated 
(Acs, Anselin, and Varga 2002; Anselin and Varga 1997; Anselin, Varga, and 
Acs 2000a; Anselin, Varga, and Acs 2000b; Audretsch and Feldman 1996; 
Feldman 1994; Feldman and Florida 1994; Jaffe, Trajtenberg, and Henderson 
1993). Such attention to the issue of geography rests ultimately upon the rec-
ognition of the essential importance of knowledge spillovers and spatially 
bounded increasing returns in promoting the geographic concentration of 
innovative activity and economic growth. This section briefly summarizes 
the literature which provides a theoretical rationale for why innovative activ-
ity tends to be spatially concentrated. 
 
The nature of knowledge as an input of innovation 

Knowledge as an input in generating innovation is inherently different 
from the more traditional inputs of labor and capital. Knowledge created by 
one firm can be transmitted to other firms without any compensation or with 
compensation less than the value of the knowledge. Knowledge spillovers 
arise because knowledge is a partially excludable and non-rivalrous good 
(Romer 1990). The lack of excludability implies that knowledge producers 
have difficulty in fully appropriating the returns because they cannot pre-
vent other firms from utilizing a part of the knowledge without compensa-
tion.2 

The process of innovation combines two types of knowledge: codified 
knowledge and tacit knowledge. According to Polanyi (1966), codified 
knowledge involves know-how that is transmittable in a formal, systematic 
way and does not require direct experience of the knowledge that is being 
acquired. By contrast, tacit knowledge is context-dependent and difficult to 
codify. Von Hippel (1994) persuasively demonstrates that highly contextual 
and uncertain knowledge, what he refers to as “sticky knowledge,” can only 
be communicated or transferred through face-to-face contacts and network 
types of relationships, which require spatial proximity.  

                                                 
2 Various forms of proprietary control mechanism, such as patent systems and copyright, grant 
inventors temporary monopoly power in order to allow them to reap a return from their inven-
tions. 
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When one combines these two features of knowledge in the process of 
innovation – the centrality of sticky tacit knowledge and the growing impor-
tance of learning-through-interacting – it becomes apparent why geography 
matters in the distribution of innovative activity. Spatial proximity matters in 
transferring knowledge, because such tacit knowledge can easily spill over 
within a spatial network, which consists of a set of nodes and links (Karlsson 
and Manduchi 2001; Simmie 1997). The nodes can be represented by human 
settlements such as metropolitan areas, and characterized by their unique 
endowments of innovative capacity and related activities, including human 
capital and knowledge infrastructure. The links can be represented by com-
munication channels as well as transportation. 
 
The nature of innovation and its geographic context 

The spatial concentration of innovative activity stems also from the fun-
damental nature of the innovation process. Feldman (1994) develops this ar-
gument by sketching out five stylized facts about the innovation process pre-
sented by Dosi (1988), which are: (i) the uncertainty of the innovation proc-
ess, (ii) the reliance on advances in scientific knowledge, (iii) the complexity 
of the innovation process, (iv)  the importance of learning-by-doing and 
learning-by-using, and (v) the cumulativeness of innovative activity.  

The process of innovation is an intrinsically uncertain, complex learning 
process that produces new products, processes, or organizational practices. 
The uncertainty of the innovation process provides an incentive for innova-
tive firms to locate together. A geographic concentration of firms may facili-
tate networking and problem-solving, and can be thought of as an approach 
to minimize uncertainty and complexity. Being a part of a localized network 
enables a firm to exploit technological developments in a timely manner and 
to facilitate problem-solving through sharing experiences with similar tech-
nologies (Lundvall 1988).  

Most major new technological opportunities stem from scientific ad-
vances, and technological innovations rely heavily upon sources of basic sci-
entific knowledge such as universities, research institutions, and R&D activi-
ties. Spatial proximity of a knowledge-intensive industry to universities and 
knowledge infrastructure gives direct access to individuals that can turn in-
formation into usable knowledge in a timely manner.  

Another stylized fact about innovative activity is the importance of 
learning-by-doing and learning-by-using. Some aspects of knowledge have a 
tacit nature which cannot be communicated and transferred in a direct, codi-
fied way. This knowledge is learned through learning-by-doing and learn-
ing-by-using (Nelson and Winter 1982), which result in geographically local-
ized relationships. 

Finally, the cumulative nature of innovative activity suggests that the 
firms located in innovative regions will find themselves in a more favorable 
position for the next round of innovation as compared with firms located in 
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less innovative regions. This implies a virtuous and self-reinforcing process 
by which past innovation breeds future location of innovative activity within 
selected regions, eventually leading to the spatial clustering of innovative 
activity (Arthur 1990). 
 
The nature of technological regimes and its geographic context 

Another approach to analyze the spatial patterns of innovative activity is 
the concept of technological regimes, which dates back to the contribution of 
Nelson and Winter (1982). In broad terms, a technological regime can be de-
fined by the particular combination of four fundamental factors: (i) techno-
logical opportunity, (ii) appropriability, (iii) cumulativeness of technological 
knowledge, and (iv) knowledge base (Breschi 1999). It seems reasonable to 
claim that there is a spatial dimension to technological regimes, and that the 
basic features defining a firm’s technological regime will have consequences 
for its geographic location and for the spatial distribution of innovative activ-
ity. 

Opportunity conditions reflect the probability of innovation for any 
given amount of resources. Technological regimes marked by high levels of 
innovative opportunities are expected to exhibit a strong tendency toward 
sectoral concentration. This results in a small number of innovators, and 
therefore a relatively higher level of concentration of innovative activities. 
The sources of technological opportunities, such as universities, research in-
stitutions, and R&D activities, strongly affect where such opportunities are 
available, and therefore it drives the spatial concentration of innovative ac-
tivity. 

Appropriability conditions reflect the possibility of protecting innova-
tions from imitation, and therefore gaining a larger share of profits from in-
novations. Cumulativeness of technological knowledge represents the prob-
ability of innovation for any given amount of innovations produced in pre-
vious periods. By limiting the extent of knowledge spillovers and allowing 
successful innovators to acquire high levels of market power, industries with 
a high level of appropriability and technological cumulativeness are ex-
pected to result in a small number of innovators, and therefore a relatively 
higher level of spatial concentration of innovative activity.  

Finally, knowledge base conditions characterize the properties of the 
knowledge on which the firms’ innovative activity is based. Some aspects of 
knowledge have a tacit nature which cannot be completely codified and 
transferred through blueprints and instructions. This type of knowledge can 
only be learned through everyday practice and practical example. This is 
relevant when a technology is on the early stages of its life cycle (Nelson and 
Winter 1982). Due to these features, knowledge can only be effectively 
transmitted through face-to-face contacts and inter-firm mobility of workers, 
both of which are eased by close geographic and cultural proximity 
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(Saxenian 1996). Spatial proximity facilitates the transmission of complex, 
tacit knowledge across agents, and it is expected to result in the creation of 
technological enclaves. 
 
The discontinuous nature of technological change and its geographic context 

Within the evolutionary framework, technologies are thought to evolve 
along specific paths or trajectories; however, major innovative breakthroughs 
represent dramatic breaks in the direction of technological development 
(Boschma and van der Knaap 1997). It is not always likely that technological 
knowledge accumulated along trajectories determines the appearance of in-
novation. It is even very likely that prevailing routines and institutions act as 
impediments for the adoption of major innovations. 

Chance events and spatial accidents are involved in this case because it is 
impossible to predict where a specific potential source of major technological 
innovations will induce the rise of a new industry. In this view, small, fortui-
tous events may determine the location of a new industry, and the impact of 
the local environment is expected to be of minor importance for the location 
of a new industry (Boschma and van der Knaap 1997). 

Consequently, the discontinuous nature of technological change might 
imply that the spatial formation of a new industry involves spatial indeter-
minacy and spatial leapfrogging (Brezis, Krugman, and Tsiddon 1993; 
Boschma and Lambooy 1999). Due to a mismatch with the new requirements 
on the local environment, spatial practices that have been accumulated in the 
past might not provide any stimuli to the development of a newly emerging 
industry, and this produces the spatial leapfrogging pattern of the new in-
dustry. 

Human agencies and institutions also play an essential role in determin-
ing the location of a newly emerging industry (Boschma and Lambooy 1999). 
As noted, there is likely to be a wide gap between the requirements of major 
new technologies and their local environment. Therefore, newly emerging 
firms depend on their capacity to locally produce their own necessary condi-
tions of growth, such as specific knowledge bases, technological interde-
pendencies, entrenched network relations, etc. (Rigby et al. 1997). In this per-
spective, firms and other organizations (including competitors, us-
ers/customers, suppliers, and regulating institutions) should not only adapt 
their behavior to the external environment, but also adapt their environment 
in accordance with their own needs (Saviotti 1996). In short, the discontinu-
ous nature of radical innovations provides an explanation for the patterns of 
spatial leapfrogging as a response to occasional major changes in technology. 
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3. Research Methods: Exploratory Spatial Data 
Analysis 
 

The spatial weights matrix 
Exploratory spatial data analysis is a set of techniques that aims to de-

scribe spatial distributions, to discover patterns of spatial association, to sug-
gest different spatial regimes or other forms of spatial instability, and to 
identify atypical observations (Anselin 1996). For specifying spatial relation-
ship in a set of geographic units, the concept of neighborhood has to be 
quantified. Given any predefined method to determine the neighborhood 
relation for n geographic units, we have an (n × n) matrix to capture the spa-
tial relationship among the n geographic units. This matrix is called a spatial 
weights matrix W, which indicates the form of spatial interaction that is as-
sumed to hold. The traditional approach relies on the geography or spatial 
arrangement of the units, designating geographic units as neighbors when 
they share a common border (simple binary contiguity) or are within a given 
distance of each other, i.e., wij = 1 for dij ≤  d, where dij is the distance between 
geographic units i and j, and d is a distance cutoff value (distance-based bi-
nary contiguity). More generally, the spatial weights may be specified to ex-
press any measure of potential interaction between geographic units i and j 
(Anselin 1988). This may be related directly to spatial interaction theory and 
the notion of potential, with wij = 1/dija or wij = exp(−ßdij). In these spatial 
weights, the strength of spatial interaction between two geographic units is 
inversely proportional to the distance between the units.  

However, these spatial weighting schemes do not consider the masses of 
geographic units. It is reasonable to assume that regions with large econo-
mies will be influential, having an effect on remote regions because of exten-
sive trade, capital, and labor market linkages (Isard 1998). For example, in-
novative activity in a metropolitan area ranked in the lower hierarchy of 
knowledge accumulation will depend on innovative activity in metropolitan 
areas with larger accumulation of knowledge (Echeverri-Carroll and Bren-
nan 1999). In general, it is not only geographic proximity that leads to spatial 
interaction or spatial diffusion of knowledge between geographic units, but 
also contacts between geographic units through communication, migration, 
transactions, and any other type of economic relationship.3  

                                                 
3 An analysis of Internal Revenue Service data reveals that metropolitan areas are increasingly 
linked by common knowledge and industries. For example, the top ten metropolitan areas con-
tributing people to Austin TX from 1992 through 2000 are Los Angeles-Long Beach CA, San Jose 
CA, Chicago IL, Phoenix-Mesa AZ, Washington DC-MD-VA-WV, San Diego CA, Orange 
County CA, Boston MA-NH, Denver CO, and Atlanta GA, and most of them also are high tech-
nology centers (Austin American-Statesman August 4, 2002). 
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In order to capture these phenomena, different approaches have to be 
suggested to generalize the concept of spatial interaction or spatial diffusion 
of knowledge and thus to allow for economically viable interpretations of 
spatial interaction matrices (Fingleton 2001).  In this study, therefore, the 
measure of spatial interaction of innovative knowledge between metropoli-
tan areas i and j is extended to accommodate both size and proximity effects 
into the spatial weights matrix via the following specification: 
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where Qi and Qj are the size proxies for innovative intensity of metropolitan 
areas i and j, respectively, and dij is the distance between metropolitan areas i 
and j. Given the size of innovative intensity of metropolitan area i, the spatial 
interaction with metropolitan area j is likely to be stronger if metropolitan 
area j possesses a larger innovative intensity. The spatial weight wij between 
two metropolitan areas i and j is proportional to innovative forces between 
these metropolitan areas, as proxied by the product of their average patents 
per 100,000 workers (1990-1999), divided by the d-th power of the distance dij 
between two metropolitan areas. This weighting scheme of spatial interac-
tion says that spatial interaction of innovative activity between two metro-
politan areas declines as the distance between the areal units increases; how-
ever, it increases with innovative intensity of a neighboring metropolitan 
area. Although the parameters should be estimated, this study a priori as-
sumes ? = ? = 1 and d = 2 for a gravity effect. 
 
Moran’s I statistic 

Spatial autocorrelation can be defined as the coincidence of value simi-
larity with locational similarity (Anselin and Bera 1998). Several indexes 
have been proposed in the spatial data analysis literature to assess the pres-
ence of spatial autocorrelation. This study employs the Moran’s I statistic, 
which is the most widely known measure of spatial autocorrelation. The 
Moran’s I statistic gives a formal indication of the degree of linear association 
between the observed values and a spatially weighted average of the 
neighboring values.  

Formally, the Moran’s I statistic for n observations on a variable x, with 
observation xi at location i, is expressed as: 
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where n is the number of observations, wij is the element in the spatial 
weights matrix W corresponding to the geographic units (i , j), the observa-
tions xi and xj are in deviations from the mean of the variable for units i and j, 
respectively, and s0 is a normalizing factor equal to the sum of the elements 
of the spatial weights matrix, i.e., s0 = Σ  i Σ j wij  (Anselin 1992). When the spa-
tial weights matrix is row-standardized such that the elements in each row 
sum to 1, the expression (2) simplifies to: 
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or, in matrix notation: 

 

xx
Wxx
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′
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where W is a spatial weights matrix whose characteristic element, wij, sum-
marizes the spatial interaction between areas i and j, x is a vector of the ob-
served values xi, in deviations from the mean. The value of Moran’s I statistic 
ranges from –1 for negative spatial autocorrelation to 1 for positive spatial 
autocorrelation. Over the entire geographic units, if similar values are more 
likely than dissimilar values between neighbors, the Moran’s I statistic tends 
to be positive, and vice versa. Comparing the change in spatial autocorrela-
tion for different time points, this study will trace the trajectory of dynamic 
spatial distribution patterns of metropolitan innovative activity over time. 
 
Moran scatterplot 

From a more disaggregated view of the nature of spatial association, the 
Moran scatterplot, suggested by Anselin (1996), is employed to capture the 
local structure of spatial association. Since the elements in the vector x in (4) 
are in deviations from the mean, the Moran’s I statistic is formally equivalent 
to the slope coefficient in the linear regression of the spatial lag Wx on x. This 
interpretation of the Moran’s I statistic provides a way to visualize the linear 
association between x and the spatially weighted average of the neighboring 
values, or spatial lag Wx, in the form of a bivariate scatterplot of Wx against 
x.  

The Moran scatterplot decomposes global spatial association into the 
four different quadrants, which correspond to the four types of local spatial 
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association between a metropolitan area and its neighbors: (i) HH: a high 
innovation area surrounded by high innovation neighbors (quadrant I); (ii) 
LH: a low innovation area surrounded by high innovation neighbors (quad-
rant II); (iii) LL: a low innovation area surrounded by low innovation 
neighbors (quadrant III); (iv) HL: a high innovation area surrounded by low 
innovation neighbors (quadrant IV). Quadrants I and III represent positive 
spatial association indicating spatial clustering of similar values while quad-
rants II and IV refer to negative spatial association. 
 

4. Empirical Results  
 
Data 

Previous empirical studies of the spatial distribution of innovation use 
states as their observational units (Audretsch and Feldman 1996; Feldman 
1994; Feldman and Florida 1994). Although states may be the most relevant 
policymaking units concerned with fostering innovative activity within their 
boundaries, they may be regarded as arbitrary economic units. As Krugman 
(1991:57) emphasizes, “states aren’t really the right geographical units,” be-
cause of the lack of concordance between economic market and political 
units. When data are aggregated to the state levels, the high degree of spatial 
aggregation might mask the existence of different economic trajectories be-
low the state level.  

Even if Metropolitan Statistical Areas (MSAs) cover only 836 metropoli-
tan counties among all 3,141 counties in the nation, excluding 2,305 non-
metropolitan counties, MSAs are less arbitrary economic units than states. 

In many respects, the U.S. economy is really a collection of metropolitan 
economies linked to a national system. In the theoretical context that spatial 
processes occur within the boundaries of geographic areas characterized by 
functional linkages and dependencies, spatial units which are more disag-
gregated than states are likely to be more appropriate to study the nature of 
knowledge spillovers that are supposed to be locally bounded (Varga 1998). 
If knowledge spillovers are important to innovative activity, they should be 
more easily identified in metropolitan areas where many people are concen-
trated into a relatively small geographic space so that knowledge can be 
transmitted between them more easily.4 Therefore, this study is based on 
data covering all 313 MSAs in the contiguous U.S. states, consisting of all 243 
Metropolitan Statistical Areas (MSAs), 59 Primary Metropolitan Statist ical 
Areas (PMSAs) and 11 New England Consolidated Metropolitan Areas 
(NECMAs), as defined by the Office of Management and Budget as of July 
1996. 

                                                 
4 Innovative activity measured by patent counts is highly concentrated in metropolitan areas. 
More than 90 percent of the total number of patents (1990-1999) has been granted within metro-
politan areas (U.S. Patent and Trademark Office). 
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Patent statistics are most widely used as an indicator of innovative out-
put of a region. Using patents statistics as a proxy for innovative output has 
several disadvantages (Griliches 1990). The main disadvantage of patent sta-
tistics lies in the problem that simple patent counts do not take into account 
differences in the quality and economic impact of innovations. However, 
these differences do not form a major concern since the spatial distribution of 
patents still gives valuable information about the degree of innovativeness of 
a region. In addition, the correlation analysis indicates a very tight associa-
tion (r = 0.934) between patents and innovation (Feldman and Florida 1994). 
Thus, this study employs patent statistics to analyze metropolitan differences 
in innovative performance. The data on patents are obtained from the United 
States Patent Grants by State, County, and Metropolitan Area (1990-1999), re-
ported by the U.S. Patent and Trademark Office.5 The amount of data avail-
able depends on the geographic region and the level of classification detail. 
However, this report does not include classifications of patents; this study 
could not present the industrially detailed analysis of innovative activity. 
 
The spatial distribution of innovative activity 

The analysis in this section begins with an overview of the spatial 
distribution of patents in all metropolitan areas over the years 1990-1999. It 
has been previously recognized by Feldman and Florida (1994) and 
Audretsch and Feldman (1996) that, at the level of states, innovative activity 
exhibits a remarkably strong tendency to cluster spatially. According to these 
studies, the most active states in innovative activity are California, New 
York, New Jersey, Massachusetts, Pennsylvania, Illinois, Ohio, Texas, 
Connecticut, Michigan, and Minnesota. 

Figures 1 and 2 provide a clear description of the spatial distribution of 
innovative activity across metropolitan areas based on patents in 1990 and 
1999, respectively. From Figures 1 and 2, it is clear that the distribution of 
innovative activity tends to follow an explicit spatial pattern. A particularly 
striking feature shown in Figures 1 and 2 is that the bulk of innovative activ-
ity in the United States occurs in the metropolitan areas on the coasts, and 
especially in California and in New England-Middle Atlantic. There appear 
some quite large spatial clusters around the main metropolitan areas in those 
regions. Moreover, some other relatively isolated spatial clusters emerge in 
the South. 

 

                                                 
5 For more detailed description on patent data, see Worgan and Nunn (2002). 
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Figure 1.  Number of patents, 1990 
 
The major innovation concentrations are the California and the New 

England-Middle Atlantic clusters. The California cluster exhibits a center in 
the north (around San Jose and San Francisco metropolitan areas) and a cen-
ter in the south (around Los Angeles and San Diego metropolitan areas). The 
New England-Middle Atlantic cluster is centered around Boston, Philadel-
phia, and New York metropolitan areas. It is also possible to recognize some 
medium-sized clusters, such as metropolitan areas around Seattle, Chicago, 
Detroit, Minneapolis, Dallas, and Houston.  

Table 1 provides the distribution of innovative activity among metropoli-
tan areas. The geographic distribution of innovative activity is highly con-
centrated in a relatively small number of metropolitan areas. Almost 75 per-
cent of the total number patents in the period 1990-1999 were recorded in the 
top 50 metropolitan areas. The top 30 centers of innovative activity ac-
counted for 61.0 percent of the total number of patents in the period 1990-
1999. Furthermore, the top 10 centers of innovative activity produced over 30 
percent of the total number of patents, suggesting the existence of a strong 
concentration of innovative activity among a limited number of metropolitan 
areas. 
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Figure 2.  Number of patents, 1999 
 
The spatial concentration and cumulativeness of innovative intensity 

A simple comparison of the absolute amount of patents across metro-
politan areas would ignore the size of metropolitan employment. To normal-
ize for differences in metropolitan employment size, innovative activity may 
be measured on a per worker basis (Audretsch and Feldman 1996; Feldman 
1994; Feldman and Florida 1994). When the absolute distribution of innova-
tive activity is converted to a ratio of patents per 100,000 workers, geo-
graphic concentration of innovative activity persists. As Figures 3 and 4 
demonstrate, even after controlling for metropolitan employment, innovative 
activity is geographically concentrated in the metropolitan areas in Califor-
nia and on the east coast in New England-Middle Atlantic. Also, there is a 
higher incidence of patenting in the metropolitan areas in the Sunbelt as well 
as in the traditional manufacturing belt. 
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Table 1. Total patents (PAT), 1990-1999 
MSA/PMSA PAT %PAT CUM% 

San Jose, CA 27,617 4.97 4.97 
Boston-Worcester-Lawrence-Lowell-Brockton, MA-NH 26,419 4.75 9.71 
Chicago, IL 24,286 4.37 14.08 
Los Angeles-Long Beach, CA 18,538 3.33 17.41 
Detroit, MI 15,932 2.86 20.28 
Minneapolis-St. Paul, MN-WI 15,209 2.73 23.01 
Philadelphia, PA-NJ 14,496 2.61 25.62 
Rochester, NY 13,330 2.40 28.02 
New York, NY 12,748 2.29 30.31 
Houston, TX 12,121 2.18 32.49 
Orange County, CA 11,248 2.02 34.51 
San Diego, CA   10,981 1.97 36.48 
Dallas, TX 10,795 1.94 38.42 
Washington, DC-MD-VA-WV 9,498 1.71 40.13 
San Francisco, CA 9,492 1.71 41.84 
Oakland, CA 9,315 1.67 43.51 
New Haven-Bridgeport-Stamford-Danbury-Waterbury, CT 8,844 1.59 45.10 
Newark, NJ 8,585 1.54 46.65 
Middlesex-Somerset-Hunterdon, NJ 8,291 1.49 48.14 
Seattle-Bellevue-Everett, WA 8,010 1.44 49.58 
Phoenix-Mesa, AZ   7,794 1.40 50.98 
Austin-San Marcos, TX   7,761 1.40 52.37 
Pittsburgh, PA   6,786 1.22 53.59 
Atlanta, GA   6,744 1.21 54.81 
Cleveland-Lorain-Elyria, OH 6,376 1.15 55.95 
Nassau-Suffolk, NY 6,004 1.08 57.03 
Cincinnati, OH-KY-IN 5,815 1.05 58.08 
St. Louis, MO-IL   5,761 1.04 59.11 
Portland-Vancouver, OR -WA 5,548 1.00 60.11 
Baltimore, MD 4,886 0.88 60.99 
Albany-Schenectady-Troy, NY   4,784 0.86 61.85 
Raleigh-Durham-Chapel Hill, NC   4,759 0.86 62.70 
Wilmington-Newark, DE-MD 4,459 0.80 63.51 
Milwaukee-Waukesha, WI 4,369 0.79 64.29 
Hartford, CT 4,304 0.77 65.07 
Indianapolis, IN   4,291 0.77 65.84 
Denver, CO P  4,290 0.77 66.61 
Monmouth-Ocean, NJ 4,013 0.72 67.33 
Bergen-Passaic, NJ 3,872 0.70 68.03 
Boise City, ID   3,651 0.66 68.68 
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Table 1. Continued 
MSA/PMSA PAT %PAT CUM% 
Salt Lake City-Ogden, UT   3,491 0.63 69.31 
Trenton, NJ 3,453 0.62 69.93 
West Palm Beach-Boca Raton, FL   3,266 0.59 70.52 
Ann Arbor, MI 3,252 0.58 71.10 
Fort Lauderdale, FL 3,050 0.55 71.65 
Grand Rapids-Muskegon-Holland, MI   2,865 0.52 72.17 
Tampa-St. Petersburg-Clearwater, FL   2,858 0.51 72.68 
Dayton-Springfield, OH   2,829 0.51 73.19 
Buffalo-Niagara Falls, NY   2,821 0.51 73.70 
Boulder-Longmont, CO 2,798 0.50 74.20 
Source: Computed from United States Patent Grants by State, County, and Metropolitan Area (1990-
1999), U.S. Patent and Trademark Office. 

 
 

 
Figure 3.  Number of patents per 100,000 workers, 1990 
 

The Spearman’s rank order correlation coefficient (rs = 0.866) of innova-
tive intensities between 1990 and 1999 suggests the existence of a very high 
stability over time in the hierarchy of innovative intensity in all metropolitan 
areas. However, it is worth highlighting several upward and downward 
movements in the leading group. For the years 1990 and 1999, Table 2 lists 
the top 30 metropolitan areas along with measures of innovative intensity, 
expressed by the number of patents per 100,000 workers and rankings based 
on patenting activities. Over the past decade, innovative intensity among 
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leading metropolitan areas has changed considerably, making it a spatially-
dynamic phenomenon.  

The most obvious change has been a rise of the metropolitan innovation 
potential in new high technology centers (e.g., San Francisco-Oakland-San 
Jose, Boise City, Denver-Boulder-Greeley, Austin, San Diego, and Raleigh 
metropolitan areas), which have built up very competitive systems of re-
gional innovation. On the other hand, all of the eight metropolitan areas that 
have experienced downward movement belong to traditionally dominant 
metropolitan areas in the New England-Middle Atlantic cluster, although 
they are still among the leaders in terms of the level of innovative intensity. 
These metropolitan areas seem to have suffered some losses with respect to 
their regional competitive advantage. 

 

 
 
Figure 4.  Number of patents per 100,000 workers, 1999 
 

The measures of concentration of innovative activity across the metro-
politan areas corroborate these initial evaluations. To measure the extent to 
which innovative activity is concentrated geographically, this study follows 
Krugman’s (1991) example and calculates the locational Gini coefficients for 
the geographic concentration of innovative activity across the metropolitan 
area.6 The Gini coefficient G, which is a summary statistic of the Lorenz 

                                                 
6 This study presents the result based on the locational Gini coefficient because other measures 
of spatial concentration, the spatial Herfindahl index and the coefficient of variation, produce 
the same results as the locational Gini coefficient.  
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curve, is defined as the ratio of the mean absolute difference between all 
pairs (xi , xj) to twice the mean level of the variable xi : 
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where n is the total number of regions and x  is the average value of the 
variable xi (Coulter 1989). The locational Gini coefficient ranges from a 
minimum value of 0 when all metropolitan areas are equal, to a maximum 
value of 1 when every metropolitan area except one has a size of zero. The 
closer the coefficient is to 1, the more geographically concentrated the vari-
able would be.  
 

Table 2.  Patents per 100,000 workers (PWP) 
MSA/PMSA PWP90 PWP99 RANK90 RANK99 ?RANK 

San Jose, CA 123.93 461.47 6 1 5 
Boise City, ID  44.87 391.80 68 2 66 
Dutchess County, NY 77.07 262.19 15 3 12 
Rochester, NY  148.89 238.38 4 4 0 
Rochester, MN  63.91 233.86 27 5 22 
Boulder-Longmont, CO 99.31 210.87 9 6 3 
Austin-San Marcos, TX  68.51 193.15 22 7 15 
Burlington, VT  59.73 179.48 31 8 23 
Fort Collins-Loveland, CO  57.50 174.06 40 9 31 
Santa Cruz-Watsonville, CA 59.51 167.64 33 10 23 
Middlesex-Somerset-Hunterdon, NJ 110.32 146.60 7 11 -4 
Trenton, NJ 170.64 145.44 1 12 -11 
Ann Arbor, MI 79.93 136.68 12 13 -1 
Binghamton, NY  73.88 134.24 16 14 2 
San Francisco, CA 44.17 120.70 74 15 59 
Oakland, CA 54.26 119.47 45 16 29 
Raleigh-Durham-Chapel Hill, NC  39.79 114.76 87 17 70 
Wilmington-Newark, DE-MD 124.28 110.61 5 18 -13 
Monmouth-Ocean, NJ 69.18 108.90 21 19 2 
Hamilton-Middletown, OH 58.50 106.27 37 20 17 
San Diego, CA  52.92 105.00 47 21 26 
Saginaw-Bay City-Midland, MI  162.73 104.84 3 22 -19 
Minneapolis-St.Paul, MN-WI  67.53 104.48 24 23 1 
Greeley, CO 55.15 101.13 44 24 20 
New Haven-Bridgeport-Stamford-, CT  78.98 99.99 13 25 -12 
Boston-Worcester-Lawrence-, MA-NH  58.64 97.60 36 26 10 
Cedar Rapids, IA  58.66 97.18 35 27 8 
Newark, NJ 73.34 96.57 18 28 -10 
Yolo, CA 32.45 95.96 110 29 81 
Racine, WI 67.47 95.65 25 30 -5 
Source: Computed from United States Patent Grants by State, County, and Metropolitan Area (1990-
1999), U.S. Patent and Trademark Office. 
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The locational Gini coefficients are calculated for two different variables: 
patents and income. Comparing patents and income, we can see that innova-
tive activities display much higher levels of spatial concentration than eco-
nomic activity across all metropolitan areas. The locational Gini coefficients 
for innovative activity are based on patents granted per 100,000 workers in a 
metropolitan area. The locational Gini coefficients for economic activity are 
based on income per worker in a metropolitan area and are calculated in a 
similar way.  

Figure 5 provides the locational Gini coefficients for innovative activity 
and economic activity for the period 1990-1999. As previous studies observe 
strong spatial concentration of innovations at the state level (Audretsch and 
Feldman 1996; Feldman 1994; Feldman and Florida 1994), Figure 5 shows 
that innovative activity displays much higher level of spatial concentration 
than economic activity for every year. The spatial distribution of innovative 
activity in the metropolitan areas appears to be highly concentrated mainly 
because of the substantial differences in innovative intensity as shown in 
Figures 3 and 4.  
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Figure 5.  Locational Gini coefficients, 1990-1999 
 
The degree of spatial concentration of economic activity (G = 0.049 in 

1990 and G = 0.056 in 1999) is remarkably lower than that of innovative activ-
ity. Another interesting point to be noted is the presence of a steady increas-
ing trend in the spatial concentration of innovative activity over the past 
decade (from G = 0.333 in 1990 to G = 0.390 in 1999). This suggests that there 
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is no indication of convergence in innovative intensity across metropolitan 
areas. The difference in the spatial concentration can be ascribed to the fact 
that spatially bounded increasing returns and geographically localized 
knowledge spillovers are more important for innovative activity rather than 
for overall economic activity. 
 
Exploratory spatial data analysis results 

The locational Gini coefficient only shows the degree of geographic con-
centration of a variable. It provides no information about the way in which 
the value in one region is spatially structured with the value in neighboring 
regions. However, a given value of spatial concentration can indeed corre-
spond to different spatial configurations of a variable. Hence, this study also 
employs spatial autocorrelation technique which enables us to identify a sig-
nificant nonrandom arrangement in an areal pattern of a certain variable 
(Anselin 1996; Rey 2001; Rey and Montouri 1999). The advantage of the con-
cept of spatial autocorrelation over the locational Gini coefficient is that it 
allows us to identify clustering patterns which spread out over the regional 
borders. If it is the case that geographic distance still matters for the spatial 
diffusion of knowledge, we would expect to find significant regional cluster-
ing, which is indicated by the presence of significant spatial autocorrelation. 
This study tests overall spatial autocorrelation by means of the Moran’s I 
statistics. 

The statistical significance of the Moran’s I statistic is calculated by ap-
plying a randomization assumption, given non-normality for distributions of 
patents per 100,000 workers. Table 3 presents the result of spatial autocorre-
lation for innovative intensity for the period 1990-1999. The analysis of met-
ropolitan patent grants per 100,000 workers by means of the Moran’s I statis-
tic provides strong evidence of positive spatial autocorrelation with p < 0.001 
for every year. This result indicates that the hypothesis of spatial random-
ness is rejected and hence, the spatial distribution of innovative intensity is 
by nature clustered over the whole period. The metropolitan areas with rela-
tively high innovative intensity tend to be close to other metropolitan areas 
with high innovative intensity, and vice versa. This suggests that the metro-
politan innovative intensity is spatially related and therefore should not be 
assumed to be independent observations.  

Figure 6 compares the values of the Moran’s I statistic for per worker in-
come with those for patents per 100,000 workers for the period 1990-1999. 
These results show that the values of the Moran’s I statistic for innovative 
activity are lower than those of economic activity for every year. When this 
result is combined with the previous result of the locational Gini coefficients 
for innovative activity, it can be concluded that although the metropolitan 
areas with relatively high innovative intensity tend to be spatially associated 
with other metropolitan areas with high innovative intensity, innovative ac-
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tivity takes place in a more spatially scattered or spatially leapfrogging way 
than economic activity, but once it takes place in that way it is more spatially 
concentrated than economic activity. 
 
Table 3.  Moran’s I statistic for patents per 100,000 workers, 1990-1999 

Year Moran's I z-value 
1990 0.164 5.022 
1991 0.196 5.990 
1992 0.180 5.511 
1993 0.188 5.749 
1994 0.184 5.629 
1995 0.191 5.843 
1996 0.205 6.274 
1997 0.189 5.788 
1998 0.189 5.793 
1999 0.179 5.490 
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Figure 6.  Moran’s I statistic, 1990-1999 

 
Figures 7 and 8 display the Moran scatterplots for the initial year and fi-

nal years. In 1990, 65.5 percent of the metropolitan areas exhibit association 
of similar values (i.e., 20.4 percent in quadrant I (HH: high innovative inten-
sity – high spatial lag) and 45.0 percent in quadrant III (LL: low innovative 
intensity – low spatial lag)) and in 1999, 64.2 percent of all the metropolitan 
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areas exhibit the same positive association (i.e., 17.9 percent in quadrant I 
(HH) and 46.3 percent in quadrant III (LL)).  

Furthermore, the Moran scatterplots can help to identify spatial instabil-
ity and atypical regions, i.e., regions deviating from the global pattern of 
positive spatial autocorrelation. In 1990, 108 metropolitan areas (34.5 percent) 
display association of dissimilar values: 53 metropolitan areas in quadrant II 
(LH: low innovative intensity – high spatial lag) and 55 metropolitan areas in 
quadrant IV (HL: high innovative intensity – low spatial lag). In 1999, there 
are 112 atypical metropolitan areas (35.8 percent): 46 metropolitan areas in 
quadrant II (LH) and 66 metropolitan areas in quadrant IV (HL).  
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Figure 7.  Moran scatterplot for patents per 100,000 workers, 1990 
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Figure 8.  Moran scatterplot for patents per 100,000 workers, 1999 
 

Figures 9 and 10 show the interpretation of the local Moran statistic in 
the form of Moran scatterplot maps. The black areas (HH: high innovative 
intensity – high spatial lag) represent a highly innovative metropolitan area 
which is surrounded by highly innovative neighboring metropolitan areas; 
the dark gray areas (LL: low innovative intensity – low spatial lag) are met-
ropolitan areas of low innovation clusters. Gray areas (HL: high innovative 
intensity – low spatial lag) show a highly innovative metropolitan area sur-
rounded by low innovative metropolitan areas. White areas (LH: low innova-
tive intensity – high spatial lag) exhibit a low innovative metropolitan area 
surrounded by highly innovative metropolitan areas.  
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Figure 9.  Moran scatterplot map, 1990 
 

 
Figure 10.  Moran scatterplot map, 1999 
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As indicated in Figures 9 and 10, for the levels of patents per 100,000 
workers in 1990 and 1999, the traditionally dominant high technology met-
ropolitan areas in the California clusters and the New England-Middle At-
lantic clusters tend to be located in quadrant I (HH: high innovative intensity 
– high spatial lag), which is characterized by a high level of innovative inten-
sity, positively related with neighboring metropolitan areas. On the other 
hand, the new medium-sized high technology clusters, such as Austin, Boise 
City, Dallas, Raleigh, and Seattle metropolitan areas, tend to be located in 
quadrant IV (HL: high innovative intensity – low spatial lag) (see Table A). 
These results suggest that the new high technology metropolitan areas have 
grown up outside existing major high technology centers and in a more spa-
tially scattered or spatially leapfrogging way than the traditionally dominant 
high technology metropolitan areas.  

More insight into the evolution of Moran scatterplots over time is pro-
vided by a measure of space-time transitions (Rey 2001). These space-time 
transitions can be broken down into four groups: Type I, Type II, Type III, 
and Type 0. Type I transition involves the transitions with a relative move of 
only the metropolitan area: HHtàLHt+1, HLtàLLt+1, LHtàHHt+1, and 
LLtàHLt+1. Type II transition contains transitions of only the neighboring 
metropolitan areas in relative space: HHtàHLt+1, HLtàHHt+1, LHtàLLt+1, and 
LLtàLHt+1. Type III transition includes transitions of both a metropolitan 
area and its neighbors to different states: HHtàLLt+1, HLtàLHt+1, LHtàHLt+1, 
and LLtàHHt+1. Finally, the four cases in which a metropolitan area and its 
neighbors remain at the same level are referred to as Type 0 transitions: 
HHtàHHt+1, HLtàHLt+1, LHtàLHt+1, and LLtàLLt+1.  

The detection of spatial clusters of high and low values of innovative in-
tensity at the beginning and at the end of the period will be seen as evidence 
of persistence in the spatial inequality. In contrast, the disappearance of sig-
nificant agglomerations would be a sign of spatial diffusion of innovative 
activity. A measure of the stability in the transition types can be measured by 
the ratio of the number of observations experiencing a Type 0 transition to 
the number of all observations. For the period 1990-1999, the most common 
type of transition is a Type 0 transition in which a metropolitan area and its 
neighbors remain at the same level, with spatial stability of 70.0 percent. In 
contrast, the Type I and II transitions for the period are less common than the 
Type 0 transition, with 8.6 percent and 18.2 percent, respectively. The Type 
III transitions which contain a move of both a metropolitan area and its 
neighbors are least common for the period, with 3.2 percent. These results 
suggest the high stability of both a metropolitan area and its neighbors, but 
the relative higher mobility of the individual metropolitan area compared to 
its neighboring metropolitan areas. From these results, the lack of evidence 
of significant movements in the composition of the detected spatial clusters 
for the period suggests that these metropolitan areas had difficulties in leav-
ing their clusters of high/low values. In other words, high stability and per-
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sistence in the spatial characterization seems to exist despite the loss of rela-
tive competitiveness of the traditionally dominant high technology clusters. 
 

5.  Conclusions 
 
This paper has addressed the spatial distribution of innovative activity 

across metropolitan areas for the period 1990-1999, and examined the issue 
that the concentration of innovative activity in a metropolitan area is spa-
tially correlated to the concentration of neighboring metropolitan areas’ in-
novative activity. This issue has been approached from exploratory spatial 
data analysis techniques. The results provide new insights into the spatial 
dimension of innovative activity across metropolitan areas. The main conclu-
sions reached by this exploratory analysis can be summarized as follows: 

 

• The spatial distribution of innovative activity is highly concentrated 
in a relatively small number of metropolitan areas. The bulk of inno-
vative activity occurs in the metropolitan areas on the coasts, espe-
cially in California and in New England-Middle Atlantic, and some 
other relatively isolated spatial clusters emerge in the South. 

• Over the past decade, innovative intensity among leading metropoli-
tan areas has changed considerably, making it a spatially-dynamic 
phenomenon. The most obvious change has been a rise of the metro-
politan innovation potential in new high technology centers (e.g., 
San Francisco-Oakland-San Jose, Boise City, Denver-Boulder-
Greeley, Austin, San Diego, and Raleigh metropolitan areas). On the 
other hand, all the 8 metropolitan areas that have experienced down-
ward movement among the top 30 innovative centers belong to tra-
ditionally dominant metropolitan areas in the New England-Middle 
Atlantic cluster. 

• The locational Gini coefficients for innovative activity and economic 
activity for the period 1990-1999 shows that innovative activity dis-
plays much higher level of spatial concentration than economic ac-
tivity for every year. In addition, it is noted the presence of a steady 
increasing trend in the spatial concentration of innovative activity 
over the past decade. This suggests that there is no indication of 
convergence in innovative intensity across metropolitan areas. The 
difference in the spatial concentration can be ascribed to the fact that 
spatially bounded increasing returns and localized knowledge spill-
overs are more important for innovative activity rather than for 
overall economic activity.  

• The analysis of metropolitan patent grants per 100,000 workers by 
means of the Moran’s I statistic provides strong evidence of positive 
spatial autocorrelation for the period 1990-1999. The metropolitan 
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areas with relatively high innovative intensity tend to be close to 
other metropolitan areas with high innovative intensity, and vice 
versa. This suggests that the metropolitan innovative intensity is 
spatially correlated and therefore should not be assumed to be inde-
pendent observations. When this result is combined with the previ-
ous result of the locational Gini coefficients for innovative activity, it 
can be concluded that although the metropolitan areas with rela-
tively high innovative intensity tend to be spatially associated with 
other metropolitan areas with high innovative intensity, innovative 
activities take place in a more spatially scattered or spatially leap-
frogging way than economic activity, but once it takes place in that 
way it is more spatially concentrated than economic activity. 

• For the levels of patents per 100,000 workers in 1990 and 1999, the 
traditionally dominant high technology metropolitan areas in the 
California clusters and the New England-Middle Atlantic clusters 
are characterized as a region with a high level of innovative inten-
sity, surrounded by neighbors with high values of innovative inten-
sity. On the other hand, the new medium-sized high technology 
clusters, such as Austin, Boise City, Dallas, Raleigh, and Seattle met-
ropolitan areas, are characterized as a highly innovative region sur-
rounded by neighbors with low values of innovative intensity. These 
results suggest that the new high technology metropolitan areas 
have grown up outside existing major high technology centers and 
in a more spatially scattered or spatially leapfrogging way than the 
traditionally dominant high-technology metropolitan areas.  

• For the period 1990-1999, the most common type of spatial transition 
is a Type 0 transition in which a metropolitan area and its neighbors 
remain at the same level. In contrast, the Type I and II transitions in 
which either a metropolitan area or its neighbors move to different 
states are less common than the Type 0 transition. The Type III tran-
sitions which contain a move of both a metropolitan area and its 
neighbors are least common for the period. These results suggest the 
high stability of both a metropolitan area and its neighbors, but the 
relative higher mobility of the individual metropolitan area  com-
pared to its neighboring metropolitan areas. From these results, the 
lack of evidence of significant movements in the composition of the 
detected spatial clusters for the period suggests that these metropoli-
tan areas had difficulties in leaving their clusters of high/low values. 

  
This study has been mainly exploratory and it leaves open several direc-

tions for further research. First, more empirical work should be done in order 
to better assess differences in the spatial distribution of innovative activity 
across metropolitan areas. In particular, knowledge externalities as a key 
mechanism to spatially bounded increasing returns should be investigated to 
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examine the differences in innovative performance across metropolitan ar-
eas. Second, the extent to which innovative performance in a metropolitan 
area is affected by different channels of knowledge externalities (i.e., spe-
cialization, diversity, and local competition) should be evaluated. Finally, 
despite the fact that knowledge spillovers have explicitly geographic compo-
nents, the role of spatial effects in the knowledge spillover process has been 
ignored. In this context, we should explicitly deal with the geography of 
knowledge spillovers by testing for the relationship of spatial interdepend-
ence on metropolitan innovative performance. 
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