

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Size Counts: The Economic Value of Botlled Water

des for other purposes, such as convenience in use and in storage. If consumers purchase warer in small bortles for benefits orher than those related to health, then the use of toral expenditure on bottled water as an estimate of consumers' willingness to pay to avoid health-risks leads to an overstatement of consumer willingness to pay for safer drinking water. The overstarement is due to the neglect of the expenditure effect related to the size of the bottle - its ease of handling and storage. This expenditure effect is the increase in the total amount spent on bottled water as a result of the differences in bottle size. However, when policymakers examine safe drinking water regulations, they seem to assume that the increased purchases of borded water indicate a willingness to pay more and more for safe drinking water.

If people are buying bottled water only as a healthier substitute for tap water, policymakers could assume that people would pay similar amounts for regulations designed to increase the quality of domestic tap warer. However, if consumers are buying convenience rather than increased quality, policymakers could overestimate how much consumers would pay for changes in drinking water regulations. Thus, policymakers must be made aware of the importance of the expenditure effect related to bortle size.

We gathered data on bottle sizes, water types, retail prices, brands, and production sources from ten supermarkers in the Atlanta area. The bottle sizes, ranging from 6.5 ounces to 2.5 gallons, were grouped into four size categories: small size, middle size, multi-bottle pack, and large bottle (Figure 1). The small size category included single bottles containing 16 to 20 ounces (mean $=19 \mathrm{oz}$.), middle size were single bottles containing 1.0 to 1.5 liters (mean $=$ 44 oz .), multi-bottle packages contained bottles of 6.5 to 20 ounces (mean $=16$ oz.), and large size included single bottles containing 2 liters, 6 liters, 1 gallon, or
2.5 gallons (mean $=179$ oz.). The small size and multi-pack categories combined included individual botrle sizes of less than 20 ounces and accounted for 27 percent of the bottles on the srore shelves.

We collected data for six water types: spring, artesian, distilled, drinking, mineral, and purified water (Figure 2).

About 10 percent of the products came from unknown producers. The rest came from sevenceen producers, borh domestic and foreign. About 62 percent of the rotal number of bottles on the shelves in the sampled srores were products from Georgia, Florida, Canada, or California (Figure 3).

We converted recorded prices into cents per ounce of water. The lowest price was 0.45 cents per ounce for drinking water in large botrles (mean price among large bortles was 0.85 cents per ounce) and the highest price was 8.48 cents per ounce for drinking water in the multibottle pack category (mean price 3.68 cents per ounce). Figure 4 shows the mean price in cents per ounce of bottled water in each of the four size categories.

The data covered sixcy brands, including internationally known as well as local brands. Crystal Springs got more grocery shelf space than any orher single brand (Figure 5). The Crystal Springs water sold in Georgia was bottled in Georgia by a division of the Suntory Water Group.

We estimated how much people were willing to pay for bortled water (price per ounce) by using data based on brand, store, source of the water, water type (artesian, distilled, drinking, mineral), and size of bottle. Our goal was to find the effects of these product characteristics especially size of bortle - on price. The results show that most product characreristics are significant and consistent with our expectations: small size, middle size, and multi-bottle packaging were all found to have a positive effect on the price.

Figure 1 Store Distribution of Four Size Categories
(bottles on shelves)

Figure 2 Store Distribution of the Various Types of Water (bottles on shelves)

Figure 3 Store Distribution of Various Production Sources (bottles on shelves)

Figure 4 Mean Price in Cents per Ounce of Bottled Water of the Four Size Categories

Figure 5 Store Distribution of Various Brands (bottles on shelves)

The price effects of the size categories provide essential information for determining the economic value of bottle size. The price premiums (2.36 cents for small size, 2.04 cents for middle size, 2.12 cents for multi-bottle packs) represent the increase in per ounce price that comes from selecting a smaller rather than a larger bottle size. We found that 55 cents of each dollar spent on bottled water was spent in order to purchase the small size bottle. In other words, on average, over half the value of bottled water is accounted for by the size of the bottle.

What Does All This Mean?

Bottle size is an important product characteristic of bottled water. It may reflect the importance of such factors as convenience in use or storage. It is likely that when people buy bottled water,
they are purchasing this convenience rather than attempting to avert unsafe tap water. Ignoring the expenditure effect of bottle size allows overstatement of consumer willingness to pay for safer drinking water by more than 100 percent.

So, are consumers flocking to the bottled water shelves in grocery stores to avoid "unsafe" drinking water from a public water urility? Probably not. Is cheir willingness to pay higher prices for bottled water a signal to policymakers that consumers would be equally willing to pay higher water bills at home to avoid "unsafe" water? Again, probably not. Should policymakers use bottled water prices as an indication of consumers' dissatisfaction with tap water? The economics of bortled water purchases says "no." Do consumers want safe water? Of course they do - but for now, paying for bottled water seems to be more about convenience than about health.

For more information:

Abrahams, N. A., B. J. Hubbell, and J. L. Jordan. "Joint Production and Averting Expenditure Measures of Willingness to Pay: Do Water Expenditures Really Measure Avoidance Costs?" Amer: J. Agr. Econ. 82(May 2000):427-437.

Natural Resources Defense Council. "Bortled Water: Pure Drink or Pure Hype?" Online version of March 1999 Perition to the FDA, www.nrdc.org/water/drinking

Chowdhury, M. E. and R. D. Lacewell. "Implications of Alternative Policies on Nitrate Contamination of Groundwater." J. Agr: Resour: Econ. 21 (1996):82-95.

Giraldez, C. and G. Fox. "An Economic Analysis of Groundwater Contamination from Agricultural Nitrate Emissions in Southern Ontario. " Can. J. Agr: Econ. 43(1995):387-402.

International Bottled Water Association web site www.bottledwater.org
"It's Only Water, Right?" Consumers Report, August 2000.
Larson, B. A. and E. D. Gnedenko. . "Avoiding Health Risks from Drinking Water in Moscow: An Empirical Analysis." Environ. Develop. Econ. 4(1999):565-581.

Jeffrey L. Jordan is Professor and Senhui He is a Postdoctoral Associate in the Departmant of Agricultural and Applied Economics at the University of Georgia.

