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Application of Mathematical Prognimming Techniques in Credit
Scoring of Agricultural Loans

Houshmand A. Ziari, David J. Leatham, and Calum G. Turvey’

Introduction

Discriminant analysis (DA) or classification methods are used to classify an individual or object, based
on a set of discriminatory variables or attributes, into one of a number of mutually exclusive groups.
DA has emerged as an important decision making tool in many fields. DA is extensively used in
business, biology, the social sciences and other areas that require classification processes. The
methods has been widely applied in business fields such as: credit scoring (Srinivasan and Kim; and
Turvey), bankruptcy assessment (Mahmood and Lawrence), for prediction of various events including
credit card usage and tender offer outcomes, and personal evaluation or selecting employees
(Eisenbeis).

Historically, statistical DA methods have been the standard to deal with classification problems. In
recent years, many researchers have expressed concern about certain features of statistical DA
models. In particular, statistical DA methods require restrictive assumptions of distributional form.
For example, Fisher's Linear Discriminant Analysis model which perhaps is the most widely used DA
method, requires assumption of multi-variate normal populations with the same variance/covariance
structure. Unfortunately, violations of these assumptions occur regularly. Esinbeis argues that
deviations from the normality assumptions, at least in economics and finance, more likely are the rule
rather than the exception (p. 875). For example, the financial ratios normally used in credit scoring
are rarely normally distributed. In addition, most empirical data include qualitative variables that
cannot be multivariate normal (Goldstein and Dillon). The performance of statistical DA models,
when underlying parametric ‘assumptions are violated, are discussed by Baladrishnan and
Subrahmanian; Lachenbruch, Sneeinger, and Revo; and Press and Wilson. -

The statistical DA models also assume that misclassification costs are the same for all groups (Type
I and Type II errors have equal significance). For example, the cost of turning down a good loan
(Type I error) and the cost of accepting a bad loan (Type II error) are assumed to be the same.
Furthermore, statistical DA models are not apt to adequately handle a complex discrimination
problem. In certain situations, a side constraint might be necessary which would prohibit the use of
statistical DA models. The aforementioned shortcomings of statistical DA models have prompted
researchers to the development of several nonparametric DA techniques such as neural network,
mathematical programming, and search methods. This paper focuses exclusively on the mathen.atical
programming (MP) DA techniques.

"Houshmand A. Ziari is a visiting assistant professor and David J. Leatham is an associate
professor of agricultural economics at Texas A&M University, College Station, Texas. Calum G.
Turvey is an associate professor of agricultural economics and business, University of Guelph,
Ontario, Canada.
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In recent years, considerable theoretical research has been devoted to the use of MP techniques to
the classification problem. Hand; Freed and Glover (1981a, b) were the first to introduce the use of
MP in DA. Glover, Keene and Duea argue that the MP approach to DA offers certain advantages
over the statistical DA models. These include:
® MP methods are free from underlying parametric assumptions;
® Varied objectives and more complex problem formulation are easily accommodated;
® Varied misclassification costs can be easily incorporated into the model;
® Some MP methods, especially Linear Programming, lend themselves to sensitivity
analysis; and
® MP are less sensitive to outliers since the model is based on the L1 metric rather than
the L2 metric. i

In several experiments utilizing Monte Carlo simulation data, researchers have found that some of
MP techniques rival or outperform the statistical DA techniques in terms of the relative classification
performance (Bajgier and Hill; Freed and Glover, 1986; Joachimthaler and Stam, 1988; and Rubin).
This is specially true when the underlying assumptions of statistical DA models are not satisfied.
In spite of these experimental results, there has not been an extensive study which compare the
performance of alternative MP models using real-world data. Mahmood and Lawrence; and
Srinivasan and Kim are the only researchers that have applied MP discriminant models to actual
business data. But, the MP models they used was a rudimentary form of general MP models tha*
have been found to perform poorly in practice (Bajgier and Hill; Markowski and Markowski, 1987).
Moreover, neither author attempted to take advantage of inherent flexibility of MP models as stated
above. The purpose of this paper is to compare alternative MP formulations in more detail and apply
them to actual business data.

Specifically, the objective of the paper is to evaluate alternative MP techniques in credit scoring of
agricultural loans using statistical DA models, namely Fisher's Linear Discriminant Analysis
(FLDA) and Logit Discriminant Analysis (LDA), as a performance benchmark. The MP and
statistical DA models are compared on the basis of classification ability on in-sample and hold-out
sample data set. The paper is organized into four major sections. First, a two-group discrimination
problem is discussed. This is followed by a brief discussion of statistical DA models. Next, we
present MP discriminant models. Finally, we compare the classification performance of statistical
and MP models.

Two-Group Discrimination Problem

The two-group discriminant problem deals with discrimination between two predefined groups and
is the fundamental problem in DA. Two-group discriminant problem assumes that there are two
well-defined populations, G, and G, (e.g., good loans vs bad loans), and it is possible to measure j
discriminatory variables or attributes for each member of either population. The focus of DA is the
determination of a numerical rule or discriminant function that allows the investigator to distinguish
between two populations using the j attributes. A linear discriminant function can be expressed

Z-X+B X+BX+..BX 6))
1 o Tur T .
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where, X is a constant term; X; is the weight assigned to variable j; B; is the value of the /* variable
for the i individual; and Z, is the discriminate value for the i individual. For a cutoff or boundary
value of b, the classification rule then becomes: if Z; > b then individual i is assigned to group G,,
otherwise individual i is assigned to group G,. The cutoff value does not have to be the same for
both groups. But, for simplicity, we assume the cutoff values for both groups are the same in this

paper.

The goal of any DA model is to estimate parameters X and b so as to minimize the number of
misclassifications for in-sample and/or hold-out sample data set. DA models are inherently different
from each other according to their choice of criterion function and/or distribution assumption(s).
In all DA models, X and b, are however determined from a set of observations for which their group
membership is known.

Statistical Linear Discriminant Analysis

There exists an extensive body of literatures which discuses the statistical DA models. Interested
readers are referred to Altman et al. and Maddala for a detailed discussion of statistical models in
classification studies. For a discussion of credit scoring models and the theoretical consideration of
credit scoring in agriculture, the interested reader is referred to Betubiza and Leatham; Miller and
LaDue; Turvey; and Turvey and Brown. The statistical procedures of FLDA and LDA have been
discussed extensively in the literature, and their detailed formulations are not repeated here.

Fisher Linear Discriminant Analysis

FLDA procedure computes the linear discriminant function (1) by maximizing the ratio of the
between-group variance to the within-group variance. The derived linear discriminant function is
known to be optimal in context of minimizing the total probability of misclassifications, provided
the following conditions are held: (a) the distributions of the variable are multivariate normal, and
(b) the variance-covariance of the variables are the same for both population groups (Johnson and
Wichern). The coefficients for FLDA model are estimated by

X - [((n1-I)S]’(nz-l)Sz)/(nl*nz-z)]-l(pl'pz)

X, = -X'(ny»p,)/2 @

where, S, and u, are the variance-covariance matrix and mean vectors for group g (g=1,2),
respectively, and n, is the number of observations in group g. The cutoff value for FLDA is
calculated by b=In(c,p/c,(1-p)). Where c, and c, represent the misclassification costs for population
1 and 2, and p is the prior probability that the individual comes from population 1. The cutoff value
for an FDLA model is equal zero, if the prior probability of group membership, and misclassification
costs are the same.

Logit Discriminant Model

Some of the statistical DA models, such as LDA and PROBIT, define the discriminator value Z; as
a probability. The LDA model assumes a logistic distribution function to represent the probability
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that an individual i belongs to group g:
F(Z) = 1/[1+exp(-X,-B, X,- B, X, -...-B,X))] (3)

Where F(Z) converts the value of Z; to a probability value. The Maximum-likelihood technique is
usually used to estimate the weights (Maddalla). The selection of the: cutoff value for the LDA
model is rather arbitrary. Typically, if the estimated probability is greater than 0.5, then the first
alternative is selected (Amemiya).

Mathematical Programming Discriminant Analysis Models

MP approach to discriminant problems, like statistical DA models, try to construct a discriminant
function or a separating hyperplane to classify an individual or an object into a prespecified group.
For a two-group problem, the objective is to determine a weighting vector X and a scalar 5 so that
it assigns as correctly as possible the individuals of Group 1 to one side of the separation hyperplane
and the individuals of Greup 2 to the other side. Stating it mathematically, the objective of a MP
model is to find b and nonzero X, satisfying:

A4, X2b i €G, @)
A, X <b i €G, )
where, 4, is an n,%j matrix of observations and i=J,2....N, where N is the total number of

observations (N=n,;+n,).

The separating hyperplane, 4X=b, provides the boundary between two groups. When two-group are
not linearly separable, then one needs a criterion to separate the group classifications. Then, the MP
formulation of a discriminant problem can be cast as:

Optimize F(X, b) (6)
S.t:,

A X2b ieG, )
4,X<b ieG, (8)
X+0 )

where F(X,b) is the criterion function. The objective of this problem is to determine X and b that
optimizes a certain criterion function. To develop the criterion function, one can incorporate
deviation variables into (7) and (8).

Optimize F(E,, I,,E,I) (10)
Xb

S.l:

A X.E-I-b ieG, (11)

A4, X-EI - b i € G, (12)
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X+0 (13)

where, E, and I, are deviation variables (what Glover, Keene, and Duea call external and internal
deviations, respectively). A deviation is said to be external/internal if its associated observation is
incorrectly/correctly classified (i.e., falls on the wrong/right side of the separating hyperplane).
External/internal deviations represent the extent to which an observation is incorrectly/correctly
classified. So, external deviations are undesirable while internal deviations are desirable. The above
problem can be easily modified to handle multi-group classifications, as shown by Freed and Glover
(1981b) and Gehrlein.

Depending on the choice of a criterion function, researchers have recently developed assorted MP
models to deal with classification problems. Among the MP models are the minimize the sum of
distances (MSD), the minimize the maximum distance (MMD), the mixed-integer (MIP), and the
general [, distance approaches. A variety of combinations of these basic methods have been
proposed in the literature. Erenguc and Koehler (1990b) provide a comprehensive survey of various
MP model formulations. As noted earlier, some of these models have proved to yield promising
predictive power in studies using simulated data (Bajgier and Hill, Freed and Glover (1986);
Joachimthaler and Stam 1988; and Rubin) and also using real data (Mahmood and Lawrence; and
Srinivasan and Kim).

In last few years, there has been considerable research which has identified certain MP discriminant
models, that, under certain data condition, exhibit some pathological problems which have not been
experienced in applications of MP in other fields. Glover, Keene, and Duea classified these
problems under the headings of degeneracy and stability. The solution to MP is said to be
degenerate or unacceptable if X=0. The solution is unacceptable since all observations will be
assigned to one group. The resultant discriminant functions lack any discriminatory power. The
stability problem is referred to a situation where the solutions are not invariant to linear data
translation and transformation. For a theoretical discussion of these problems see Kochler (pg. 19,
89b); Markowski and Markowski (1985); Freed and Glover (1986b); and Glover, Keene, and Duea.

Early MP models constrained b to be a constant to avoid the unacceptable solutions. It was tacitly
assumed that choice of b would just scale the solutions but further research in this area found that
it is not the case and still leads to X=0 for certain data configurations (Glover). Recently, several
normalization alternatives have been suggested to overcome with these anomalies. Details regarding
alternative normalizations can be found in Koehler (1990). Since it is possible that normalization
eliminates a feasible region with potential optimal solutions, a user should be cautious when
employing normalization. To this end, Rubin recommends that
... The precise impact of a particular normalization constraint is generally difficult to assess,
and so the selection of normalization constraints tends to be arbitrary. Since trivial solutions
generally do not occur when the training sample (estimation sample) are separable, perhaps
users should initially omit such normalization constraints and incorporate them only after
obtaining a trivial solution for a particular data set" [explanation in parentheses added]
(Rubin, p16).
In this paper, normalization was incorporated into the MP models, if it was deemed to be necessary.
In the remaining section, we will present four variants of MP discriminant models. These models
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are chosen among alternative MP models based on their competitive classification power and also
their appropriateness dealing with credit scoring problem.

The first MP model, hereafter referred to as a MSD model, can be summarized as follows:

Minimize e E +eE, (14)
Xb

st

A X+E 2 b i eG, (15)
A X-E <b ieG, (16)
e, X+ b1 (17)
X,b ur.s. _ (18)
E,E 20 (19)

where e,, e,, e; are 1xn,, 1xn,, 1%j matrices of ones, respectively, and E, has dimension n,x1. X and
b are unrestricted in signs.The MSD model minimizes the sum of exterior deviations from the
hyperplane. Equation (17), a normalization constraint suggested by Freed and Glover (1986a), is
included to overcome the difficulties associated with unacceptable solutions. The normalization
constraint requires the sum of all coefficients to be equal to some arbitrary (positive) constant (1 is
used here). The constant term is only a scaling constant and does not affect the classification rates.
The MSD model, without normalization constraint (17), was originally published by Freed and
Glover (1981b).

The second MP model used in this study, called the optimize sum of distances (OSD) by
Bajgier and Hill, has the following form:

Minimize e E, +e,E, (20)
X

s.L

A4 X+E 21 i eG, @1

A X-E <1 ' ieG, (22)

X  u.rs. 23)

E,E 20 24)

MSD model is similar to OSD. Both model attempt to minimize the sum of external deviations from
the hyperplane. But, in the OSD model, the cutoff value is preassigned to be equal to an arbitrary
number (1 is used here) which precludes the need for normalization constraint.
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The third MP model, hereafter referred to as the HB, seeks to:

Minimize b E,+ h E,- m I- mI, (25)
X b

S.t

A X+E -1I=b ieG, (26)
4, X-E +I =b iegG, 27)
e X+b-l (28)
X, b u.r.s (29)
E,E,I,I, 20 (30)
B2 my, b2, @1

where, h, and m, are I xn, matrix of nonnegative objective coefficients. The objective function of
the HB model maximizes the weighted sum of interior deviations and minimizes the weighted sum
of exterior deviations. Constraint (28) is included in the model formulation to prevent potential
unbounded solutions. In practice, the 4, and m, may reflect the relative importance of
incorrect/correct classification to a particular group or individuals in the group. By modifying these
weights and parameters, usually by LP post-optimization techniques as proposed by Glover, the
solution might be tailored to meet a decision maker's specific goals. In other words, it might be
possible to find a set of weights that achieves balancing of errors for a decision maker's particular
set of data. (Markowski).

The HB model was first presented by Glover, Keene and Duea; they dubbed this model as a Hybrid
model since it can encompass several variations of MP models by setting the corresponding weights
equal to either += or --. The HB model presented here is, however, different from the model
presented by Glover, Keene and Duea. For simplicity, the maximum exterior deviation and the
minimum interior deviation were deleted from the model formulation.

The final MP variant used in this study is a mixed integer programming model (MIP). The MIP
model has the form: '

Minimize h Y, + h, ¥, (32)
Xb

st

A4 X+qY 2b i € G, (33)

4, X -qY, < b ieG, (34)
eX+b-1 (35)
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X, b ur.s. (36)

Y, ¥, €(0,1) 37)

where ki, denotes the misclassification costs associated with group g; Y; is binary variable that equal
one if individual i is misclassified and zero otherwise; and ¢ is a large positive number. The
objective function of MIP model minimizes total misclassification costs. The interesting feature of
the MIP model, as noted by Bajgier and Hill, is that it is the only model that directly attacks the goal
of minimizing the number of misclassifications. Whereas, all other DA models (including
parametric and nonparameteric models ) use a surrogate criterion function to achieve the goal. If
misclassification costs for both groups are the same, then, MIP directly minimizes the number of
misclassification. Whereas, all other models minimize the amount or extent of misclassification
from the hyperplane which might not be intuitively appealing to the users. Another interesting
feature of MIP is that a constraint can be easily incorporated into the model to balance the number
of misclassification for each group. In spite of its potential, the MIP model has not been widely
utilized by researchers and practitioners because of a large computational cost and lack of efficient
software. Koehler and Erenguc (1990a) recently developed a special purpose mixed integer
algorithm which takes advantage of the problem's structure. Moreover, because of the recent
decrease in computing cost and increase in computing power, some of general purpose mixed integer
program packages can now be conveniently applied to solve larger MIP problems.

The discussion in the last two sections emphasized the estimation of a linear discriminant function
for a two-group classification problem using alternative econometrics and MP credit scoring models.
We have, however, omitted the theoretical aspects of credit scoring problem. As noted by Turvey
"...the credit scoring models themselves will not be successful in assessing the success of a particular
loan". There are several other factors that one has to consider in order to establish a successful credit
scoring practice. The choice of discriminant variables, the level of subjectivity, the institutional
constraints and several other factors are important consideration in any credit scoring study, but in
this paper we only concentrate on providing a comparison between the classification performance
of MP and statistical credit scoring models. Chhikara; Betubiza and Leatham; and Miller and LaDue
provide a detailed discussion of credit scoring issues.

Data and Variable Selection

To perform a comparative analysis, the above models are applied to estimate the corresponding
discriminant functions using a sample of credit application data. The classification power of these
models are then tested based on their performance using in-sample and hold-out sample data. The
credit application data used in this paper were collected by Canada's Farm Credit Corporation. The
data are from actual 1981, 1982, and 1983 loan applications for which loans were made in the
Saskatchewan Province. The applicants in Group 1 consist of individuals with recent histories of
delinquent credit payments (noncurrent loans) and applicants in Group II consists of those
individuals without recent delinquent credit payments (current loans) based on the status of the loan
as of March 1990. The sample consisted of 754 current loan applications (38%) and 1,245 of
noncurrent loan applications (62%). The sample data was divided into two subsamples- an in-
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sample and a hold-out samples. The in-sample data set was used for model developments and the
resulting models were then validated using the in-sample and hold-out sample sets. In this study,
60% (1,199 loans) of total sample was used for model estimation.

The usual procedure in credit scoring studies is to select a large group of explanatory variables and
reduce that to a smaller number of statistically significant variables. The above data set was recently
used by Turvey in a study in which he compared alternative statistical credit scoring models. Our
investigation only included the explanatory variables used in his study to avoid potential overfitting
biases. Definition of the explanatory variables are presented in Table 1. Turvey and Brown; and
Turvey provide a more formal definitions and explanations of the explanatory variables.

Table 1. Explanatory Variables for Credit Scoring Application

Variable Variable Definition

Liquidity Ratio Current asset / current liabilities

The Rate of Return on Assets (Net farm income + interest expense) /total assets

Debt-to-Asset Ratio Debt / assets

Loan-to-Security Ratio (Loan + other prior changes + FCC prior mortgages
+ statutory charges) / total security

Contribution Margin (Total Revenue - variable cost)/total revenue

Repayment Ratio (Net farm income + depreciation + off-farm income-

living costs + interest on term loans) /( principal +
interest on term loans)

Refinancing Status 1 if loan is required for refinancing, 0 otherwise.

The HB and MIP models require the parameters h, and m, to be specified. As was discussed earlier,
in practice, these parameters could be solicited from the user. Since the actual benefits and costs of
external and internal deviations from the hyperplane for current and noncurrent loan applicants were
not available for this study, a set of arbitrary values were selected for these parameters.
Subsequently, four variants of HB model (denoted by HB-1, HB-2, HB-3, and HB-4) and three
variants of MIP model (denoted by MIP-1, MIP-2, MIP-3) were tested. Table 2 presents the
objective coefficients associated with variants of HB and MIP models.

The HB-1 model maximizes the total interior distances from the hyperplane and minimizes the total
exterior distances from the hyperplanes. The HB-2, HB-3, and HB-4 maximize the weighted sum
of interior distances and minimizes the weighted sum of exterior distances from the hyperplane. The
objective is to provide a better balancing of errors between current and noncurrent loans by varying
the objective coefficients assigned to interior and/or exterior deviations. As was discussed earlier,
in contrast to other MP models, the objective function of MIP model has a direct and meaningful
interpretation. For example, the MIP-1 model assumes that the misclassification costs for current
and noncurrent loans are the same, hence, the MIP-1
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Table 2. The Objective Coefficients for Varients of HB and MIP Models

m, h, m, h,
HB-1 1 1 1 1
HB-2 1 1 1 0.5
HB-3 1 1 1 0.25
HB-+4 1.25 1 1 0.25
MIP-1 n.a. 1 n.a. 1
MIP-2 n.a. 0.645 n.a. 0.364
MIP-3 n.a. 2 n.a. 1

n.a.- Not Applicable

model directly minimizes the number of misclassifications for both groups. The MIP-2 model is
similar to MIP-1 model, but the weights are proportionally weighted based on sample size in each
group. The MIP-3 model, however, assumes that the misclassification cost for a noncurrent loan
is twice as much as a current loan.

Overall, we tested eleven models, two parametric and nine nonparametrics models. The next
section discusses the classification results of these models.

Classification Results

The classification performance on the calibration and hold-out samples of alternative models are
presented in Tables 3 and 4. Table 3 presents the classification performance in terms of number
of loans in calibration and hold-out samples, while Table 4 presents the same results in
percentage. The results in Table 4 and 5 show that the classification performance for parametric
models are not significantly different from each other. Both LDA and FLDA models, however,
predict better than a pure naive model (i.e. predict better than the proportional prior probabilities
for current loan, 36.4% and noncurrent loan, 63.6%). But, both MSD and OSD models perform
significantly worse than LDA, FLDA and the naive model for both calibration and hold-out
samples. Among four HB models tested, the classification performance of the HB-4 model in
hold-out sample is worse than the other three HB models. The results in Table 3 and 4 show the
HB-2, HB-3, and HB4 models perform as well as statistical models in hold-out samples.
However, all three MIP models perform marginally better than LDA and FLDA models for
calibration and hold-out samples. The LDA classified correctly 601 of noncurrent loans in the
calibration sample for a correct classification rate of 65%. While, the overall correct
classification rate for LDA is 66% for the calibration sample (Table 4). The MIP-1, MIP-2 and
MIP-3 models classified correctly 622, 609, and 609 of noncurrent loans in the calibration sample
for a correct classification rate of 66%, 68%, and 68%, respectively. The overall correct
classification rate for MIP-1, MIP-2, and MIP-3 are 67%, 67%, and 68% for the calibration
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sample, respectively, which marginally better than LDA and FLDA models. The results in Table
3 and 4 show that the LDA and FLLDA models, however, provide a more balanced discriminant
solutions than MP models. None of the MP models tested here show a higher correct
classification for current loans.

- Conclusions

The purpose of this study has been to compare the alternative statistical and MP credit scoring
models in an empirical setting using the actual credit data. The results indicate that there are only
a small differences in the classifying accuracy of statistical and MP approaches. The results of
this study re-enforce the findings of the experimental studies which claim that the MP models are
as competitive as statistical DA models. As was shown here, the MIP models even outperform
the statistical models. We recommend the use of MP models in an applied environment when
the incorporation of a side condition becomes necessary, or a small sample size is available, or
a large number of explanatory variables is present, or the data set is heavily contaminated. In
these situations, the MP models have the potential to perform better than the statistical DA
models. Since there is no optimal DA model which fits all data sets in all situations, it may be
a good practice to apply the data to alternative parametric and nonparametric DA models and
choose the best model. In many credit scoring applications, even a moderate improvement in the
ability to correctly classify may represent a significant increase in financial contributions.
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Table 3. Classification Results Reported as a Percentage of Loans Classified Correctly and
Incorrectly.

Number of Loans Classified Correctly and Incorrectly

Current Noncurrent Classification®

Data Sample Models Correct Incorrect Correct Incorrect Correct Incorrect

Calibration Sample
LDA 177 259 601 162 778 421
FLDA 183 253 597 166 780 419
MSD 143 293 493 270 636 563
OSD 133 303 528 235 661 538
HB1 123 313 622 141 745 454
HB2 146 290 609 154 755 444
HB3 159 277 594 169 753 446
HB4 171 265 575 188 746 453
MIP-1 107 329 687 76 794 405
MIP-2 147 289 666 97 813 386
MIP-3 132 304 680 83 812 387
Hold-out Sample
LDA 184 134 344 138 528 272
FLDA 184 134 341 141 525 275
MSD 109 209 316 166 425 375
OSD 111 207 338 144 449 351
HB1 130 188 379 103 509 291
HB2 143 175 373 109 516 284
HB3 148 170 365 117 513 287
HB4 161 157 346 136 507 293
MIP-1 116 202 420 62 536 264
MIP-2 142 176 392 90 534 266
MIP-3 134 184 407 75 541 259

3 Current and noncurrent loans.
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Table 4. Classification Results Reported as a Percentage of Loans Classified Correctly and

Incorrectly

Percent of Loans Classified Correctly and Incorrectly

Current Noncurrent Classification®
Data Sample Models  Correct  Incorrect Correct  Incorrect Correct  Incorrect
Calibration Sample
LDA 41 59 79 21 65 35
FLDA 42 58 78 22 65 35
MSD 33 67 65 35 53 47
OSD 31 69 69 31 55 45
HBI1 28 72 82 18 62 38
HB2 33 67 80 20 63 37
HB3 36 64 78 22 63 37
HB4 39 61 75 25 62 38
MIP-1 25 75 90 10 66 34
MIP-2 34 66 87 13 68 32
MIP-3 30 70 89 11 68 32
Hold-out Sample
LDA 58 42 71 29 66 34
FLDA 58 42 71 29 66 34
MSD 34 66 66 34 53 47
OSD 35 65 70 30 56 44
HB1 41 59 79 21 64 36
HB2 45 55 77 23 65 36
HB3 47 53 76 24 64 36
HB4 51 49 72 28 63 37
MIP-1 36 64 87 13 67 33
MIP-2 45 55 81 19 67 33
MIP-3 42 58 84 16 68 32

2 Current and noncurrent loans
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