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Abstract: Energy efficiency measurement is crucial when planning energy reduction policies. 
However, decision makers understandably will be reluctant to act in the absence of solid data 
and results supporting a policy position. The main objective of this paper is to propose an 
alternative method to measure farm energy efficiency. This method is based on the Data 
Envelopment Analysis (DEA) approach in a cost framework introduced by Farrell (1957) and 
developed by Färe et al. (1985). We decompose the energy efficiency measurement into two 
components, namely technical and allocative efficiencies. Here, input prices are replaced by 
their energy content. The energy efficiency model is used to explore the optimal input-mix 
that produces the current outputs at minimum energy-consumption. We show that this 
decomposition can help policy makers considerably to design accurate energy policies. The 
presence of uncertainty on data, and more particularly on energy content of inputs, leads us to 
recommend exploiting the methodologies proposed for calculating the bounds of efficiency 
measurement in order to produce more robust results. We expect to alert policy-makers in the 
fact that efficiency is not a fixed value and should be considered with caution. A 2007 
database of French farms specialized in crops is used for empirical illustration.  
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1. Introduction 

With Greenhouse Gas mitigation, energy reduction is a growing concern within the 
international community. Indeed, the European Union has adopted a series of measures to 
increase energy savings since 2002 and the commission adopted an “Energy Efficiency Plan” 
in March 2011. Also, in France, an energy efficiency plan was defined wherein a part is 
dedicated to the agricultural sector. The main idea is to measure farms energy efficiency. By 
referring to the idea of the lowest level of energy to produce output, this measurement should 
highlight their potential in energy savings in order to reduce the energy dependence of 
agriculture.  

The energy efficiency is commonly defined by the ratio between outputs in physical units or 
converted to energy and inputs converted to energy (Patterson, 1996). Therefore, its 
measurement requires not only information on outputs and inputs of farms but also 
information on the energy content of inputs. Concerning agricultural inputs, it is possible to 
distinguish between renewable and non-renewable forms and also direct and indirect energy. 
Direct energy is the direct energy content of an input (the MJ content of diesel oil, for 
instance), whereas indirect energy corresponds to the energy consumed in order to produce 
and transport an input (e.g., fertilizer, pesticides).  

Due to its construction as a single ratio between output and input converted to energy, the 
energy efficiency measurement does not allow us to consider all the possible ways to save 
energy and thus where to focus efforts. However, at least two possibilities can be listed. First, 
savings can be easily made if the waste of resources comes under managerial failures of 
farmers i.e. too much of some inputs are used with respect to what is needed in order to 
produce a constant amount of output. Second, savings are possible if input misallocation 
exists and may need the intervention of a regulator. Consequently, given their importance, we 
must wonder how to measure and decompose these dimensions of energy efficiency and what 
the implications in terms of policy design are. 

Among alternative approaches to measuring and decomposing energy efficiency, we list the 
non parametric estimation techniques especially powerful in evaluating relative performance 
of different decision making units known as Data Envelopment Analysis (DEA). As stated by 
Zhou and Ang (2008) and Zhou et al. (2008), DEA has gained in popularity in energy 
efficiency analysis. Developed by Charnes et al. (1978) following the seminal paper of Farrell 
(1957), DEA involves the use of linear programming methods to construct a non-parametric 
frontier. The best practices located on the frontier form the benchmark against which the 
potential energy saving for those that are not on the frontier can be calculated. Therefore, by 
comparing the practice of different farms, we can identify the amount of energy saving likely 
to be possible. In this case, energy efficiency is thus defined in terms of the ratio between best 
practices compared with actual practice.  
 
In agriculture, various papers deal with the topic of energy efficiency by using the DEA 
framework. Chauhan et al. (2006) measured farmers’ efficiencies with regard to energy 
consumption in rice production in India. Their study helps to identify wasteful consumption 
of energy by inefficient farmers and to suggest reasonable savings in energy consumption. 
More recently, Nassiri and Singh (2009, 2010) and Houshyar et al. (2010) determined the 
amount and efficiency of energy consumption for wheat and paddy production in Iran by 
using the basic DEA method. Nevertheless, in these papers, the question of energy efficiency 
decomposition is absent. Hoang and Rao (2010) are the first to deal with the decomposition of 
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energy efficiency to explore the optimal input-mix that produces the current outputs at 
minimum energy consumption. The authors rely on the same concepts introduced by Farrell 
(1957) in the cost context and developed by Färe et al. (1985). More precisely, we identify i) 
technical efficiency (TE) which measures the farm’s ability to use the best practices given 
existing technologies and ii) allocative efficiency (AE) which measures the ability to make 
optimal decisions in terms of resource allocation. Following partly this methodology, we 
propose to decompose the global energy efficiency. Relatively to these studies, we also 
consider a short-run environment where some inputs are held quasi-fixed in order to take into 
account the nature of some agricultural inputs such as land or family labor rather than long-
run where all inputs are variable. Furthermore, by focusing on inputs reduction in order to 
diminish energy consumption, we can reasonably assume that policy-makers shall exclude 
some inputs from the list (for instance, land, employees or family labor)1.  
 
To obtain an energy efficiency indicator, it is generally necessary to have information about 
energy content of inputs. Several techniques exist to assess these energy contents but no 
single best source has been found. For instance, the French Environment and Energy 
Management Agency (ADEME) choses the Life Cycle Assessment (LCA) perspective. 
Unfortunately, due to the great number of parameters entering this model, the energy input 
content may include uncertainty (Huijbregts, 1998). In some cases, the range of reasonable 
values for energy coefficients is large. These large intervals are the source of confusion, 
misleading conclusions and sometimes discomfort to policy-makers. As stated by some 
authors, even for the same crop or the same input, the coefficient found in literature may vary 
greatly. The variability may also be explained by the complex process involved in their 
elaboration or by the confidentiality mentioned by the manufacturers concerning pesticides 
(Zegada-Lizarazu et al., 2010). Therefore, the question is how to take this uncertainty or 
incomplete information into account when measuring energy efficiency of farms. 

In the previous studies, the DEA technique is applied without considering any potential 
uncertainty. Yet, over the years, DEA literature has grown to include papers dealing with this 
topic. Among other authors, Kuosmanen and Post (2001, 2003), Camanho and Dyson (2005) 
or Mostafaee and Saljooghi (2010) showed that modified DEA models can provide robust 
efficiency measurement in the situation of price uncertainty. In some cases, to deal with 
uncertain price problems, weight restrictions are incorporated in DEA model in the manner of 
Thompson et al. (1986), Thompson et al. (1990) and Charnes et al. (1990)2. Clearly, the uses 
of such restrictions does not solely concern prices but can be extended to any other pertinent 
units. Another contribution of our paper is indeed precisely to consider the uncertainty on 
energy contents of inputs partly in the vein of Camanho and Dyson (2005) and Mostafaee and 
Saljooghi (2010). By addressing this uncertainty, we also expect to provide robust energy 
efficiency. 
 
From a policy viewpoint, in an evidence-based world, the providing of robust results is 
crucial. Indeed, decision makers, understandably, will be reluctant to act in the absence of 
solid data and results supporting a policy position. In the same sense, several scenarios should 
be considered in order to help policy-makers avoid the choice of just one scenario that may 
lead to inadequate policies (for instance, too stringent or not enough). Moreover, our 
benchmarking approach is useful because efficiency measurements are determined from the 

                                                            
1 Another method is a set of weighted non-radial DEA models developed by Zhu (1996) in order to construct 
preference structure over the proportions by which the current input levels can be changed. 
2 For further details about weight-restricted DEA models, see Allen et al. (1997) or Pedraja-Chaparro et al. 
(1997). 
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best practices located on the production frontier. This allows us to identify the most energy 
efficient practices. The measurement decomposition offers different ways of reducing 
inefficiency for policy-makers. Technical inefficiency reflects managerial failures. It can be 
remedied at the Decision Making Unit (DMU) level. In this case, energy use reduction is 
possible by learning the practices of peer or reference units. On the other hand, allocative 
inefficiency involves inputs reallocation towards those that are less intensive in energy and 
may need the intervention of a regulator.  
 
Finally, in this paper, we propose an extended DEA-based measurement of energy efficiency 
with uncertain energy content of inputs partly based on Camanho and Dyson (2005) and 
Mostafaee and Saljooghi (2010). The methodology is applied to a sample of French crop 
farms observed in 2007.  
 
The remainder of the paper is structured as follows. In the following section, we describe the 
methodology used to assess energy efficiency and its components. Section 3 provides a 
description of data sets and retained variables. Section 4 is devoted to our results that will be 
presented as policy implications. Finally, section 5 concludes. 

2. Methodology for measuring energy efficiency with or without 
uncertainty on energy content of inputs  

The notion of energy efficiency (hereafter noted EE) indicates the extent to which a 
production unit minimizes energy to produce a given output vector, given the energy content 
of input it faces. In other words, it assesses the ability to produce current outputs at a 
minimum energy level. After the seminal paper of Farrell (1957), Färe et al. (1985) 
formulated a programming model for EE assessment. This model requires input and output 
values as well as energy content of inputs at each DMU. In the next subsection, we present the 
DEA-like model to measure EE. In the subsection 2.2, we also present the weight-restricted 
DEA methodology for measuring energy efficiency when energy contents of inputs are 
uncertain or bounded. 

2.1. The energy efficiency and its decomposition into technical and allocative 
efficiency within a conventional DEA model 

To graphically illustrate the energy, technical and allocative efficiency concepts, suppose, in 
Figure 1, seven DMUs (A to G) which produce y with two inputs x1 and x2. The segments 
linking DMUs A, B, C and D form the technically efficient frontier. We use DMU F to 
illustrate the efficiency concepts. The ratio 0f/0F gives the technical efficiency. This means 
that it is possible to find another DMU or to build a composite DMU (f in our case) which 
produces the same output level with the least input level.  
Let us introduce information on the energy content of inputs (w1 and w2) and assume that 
these contents are fixed and known. Consider 1 1 2 2EC w x w x   as the iso-energy line, that is 

to say, the line showing all combinations of inputs with the same energy consumption. For 
instance, the iso-energy line of F is 1 1 2 2 .F F FEC w x w x   Technical efficiency is equivalent to 

the ratio between the iso-energy line TEC and that of observed plan .FEC  

Now, suppose that DMU F has eliminated its technical inefficiency by moving to point f 
(linear combination of A and B). This point is not energy efficient when it is compared to 
DMU C located at the tangency point between the iso-cost line and the isoquant. DMU C is 
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the least energy-intensive production plan. Thus, given the energy contents of inputs, the 
composite DMU f and F appears allocatively inefficient contrary to C. The ratio 0f’/0f gives 
the allocative inefficiency which measures the extent to which a technically efficient point 
falls short of achieving minimum energy content because it fails to make the substitution (or 
reallocation) involved in moving from f’ to C. The allocative efficiency measurement can also 
be expressed in terms of a ratio between the minimum energy at point C and the used energy 
at the technically efficient point f: min / .TEC EC

 
Finally, we have the relationship:  

 
 

0f’/0F = (0f/0F) × (0f’/0f) 
or 

Energy efficiency = Technical efficiency × Allocative efficiency                (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Energy, allocative and technical efficiency measurements in the input space 

In the previous discussion, for simplicity, we do not consider the fact that some inputs may be 
quasi-fixed. However, in the short-term or following decision-makers’ preferences, input 
adjustment is not possible (or undesirable) for all inputs. In such situations, the quasi-fixed 
inputs will be treated as a parameter. With this distinction, the decision-maker or policy-
maker is able to distinguish what can be achieved in a relatively short time3. For readers 
interested in methodological issues, appendix A.1 details the theory and DEA models that we 
implement to compute the energy, allocative and technical efficiency scores.  

                                                            
3 In fact, we will have an equivalent of short-run cost-minimization problem (Färe et al., 1985). 
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2.2. The extended DEA models to account for imprecision on energy content of 
inputs 

Our efficiency measurements are not meaningful in the case where energy content of inputs is 
uncertain or imprecise. For this reason, it is desirable to develop a framework for energy 
efficiency measurement adapted to this topic. As suggested by Cooper et al. (1996), to 
compute input cost efficiency when knowledge of exact price does not exist, it is possible to 
introduce constraints with lower and upper bounds on the admissible values. In this way, we 
could use the knowledge of upper and lower bounds whose relative energy content is 
expected to vary. In order to exploit this information, the Assurance Region (AR) approach 
introduced by Thompson et al. (1986) and redefined by Thompson et al. (1990) or the Cone 
Ratio approach proposed by Charnes et al. (1990) can be used. Usually expressed in the form 
of lower and upper bounds, the assurance region or Cone Ratio methods put constraints on the 
ratio of inputs (outputs) weight or multipliers. Several authors propose studies built on these 
methodologies, for instance Camanho and Dyson (2005). In the same vein of these two 
authors, we adopt two perspectives viz. optimistic and pessimistic and thus assess two energy 
efficiency scores: one with the most favorable energy content scenario (the energy content is 
minimal) and one other with the least favorable energy content (the energy content is 
maximal). Note here that optimistic and pessimistic notions are relative to each unit. For 
instance, a pessimistic situation for an evaluated unit is not necessarily so for another unit. 

To graphically illustrate these notions (for  methodological details, see the annex A.2.), 
consider the case where only the maximal and the minimal energy content for all DMUs can 
be identified, e.g. for two inputs 1 and 2 we have min min max max

1 2 1 2, ,   .andw w w w  The energy 

content (or weight) ratios underlying the energy efficiency evaluation would be restricted to 

the following range: 
min max
1 1 1
max min
2 2 2

.
w v w

w v w
 

 

The slope of the iso-energy underlying the evaluation of CE could vary between the slope of 
max
1

' min
2

 i.e. 
w

E E
w  

 
and the slope 

min
1

' max
2

i.e. .
w

E E
w    The optimistic EE measurement assesses 

each DMU by comparison to the most favorable iso-energy line. In Figure 2, the optimistic 

EE frontier corresponds to the segments linking ', , and B C E E  (the energy content ratio of 

the iso-energy line is as close as possible to the marginal rate of substitution between the 
inputs). Conversely, the pessimistic frontier measurement assesses each DMU by comparison 
to the least favorable energy content scenario. It corresponds to the segment linking 

',  and E E   for the pessimistic frontier.  In the case of DMU F the optimistic EE is 

measured by 0f ”/0F whereas pessimistic EE is measured by 0f’/0F. Intuitively, F which has 
adopted a more 2-intensivex  input mix is seen as a farm with a more significant cost reduction 

potential if min
1w  and

 
max
2w

 
are retained rather than max

1w
 
and

 
min
2 .w   
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Figure 2: Optimistic and pessimistic energy efficiency measurements in the input space 

3. Data and variables 

 

This study is based on data provided by SOLAGRO, a French non-profit organization which 
promotes sustainable energy and agriculture, and respect for the environment. With the 
financial support of the French Environment and Energy Management Agency (ADEME), 
SOLAGRO and other partners proposed a tool, namely PLANETE, used to analyze the 
energy efficiency of farms. Energy efficiency measurement is expressed as the ratio between 
outputs and inputs converted to common energy units (the joule). The data set concerns 133 
crop farms4 investigated during the year 2007. The sample presents homogenous 
characteristics i.e. i) the same production (cereals), ii) the quasi similar pedo-climatic 
conditions by being all located in the same geographical area (center-west of France) and iii) 
the identical production system (conventional). Even if this sample of farms is not 
representative, the results can help to explore, on the basis of the decomposition of energy 
efficiency, the different ways that can be used to reduce energy consumption. The results can 
also incite caution to policy-makers before taking decisions. 

Concerning output, we retain cereals expressed in tons. For the agricultural inputs, we 
selected chemical fertilizers, pesticides, petroleum, land, labor and machinery. Fertilizers and 
petroleum are the major inputs contributing to the total energy requirements of the crop 
cultivation (Bochu, 2002). Note that fertilizer which encompasses nitrogen, phosphorus and 
potassium represents 49% of total energy consumption. Petroleum, which means petroleum-
based fuels such as diesel, gasoline, liquefied petroleum gas, and natural gas, represents 21 % 

                                                            
4 As DEA is an empirically based estimation technique, it is sensitive to outliers. Outlying observations may be 
attributed to measurement errors. To detect and remove them, we have used the Wilson (1993, 2010) procedure 
included in the software package FEAR proposed by Wilson (2008).  
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of total energy consumption. In our study, we first restricted ourselves to nitrogen-based 
fertilizer since 90% of the energy consumed in fertilizer is due to this input. However, we 
then extended to diesel fuel mainly consumed for land preparation, cultural practices and 
transportation5. We also decided to focus on non-renewable energy and to investigate its 
potential reduction. As a consequence, we will assume that the reduction of land, labor but 
also machinery is not a priority contrary to the most energy consuming inputs. These three 
inputs are considered as fixed. It also becomes useless to convert it into energy, except for 
machinery6. Table 1 provides some descriptive statistics of these variables.  
 

Table 1: Descriptive statistics of inputs and output for the 133 farms 

 
Mean

Standard 
deviation

Min Max

Variable inputs      
- Nitrogen (kg) 26 952 18 556 1 992 91 919
- Petroleum (liter) 18 561 14 931 2 193 91 279
- Pesticides (kg of active ingredient) 662 518 16 3 500

Fixed inputs  
- Land (hectare) 196 113 34 568
- Labor (unit) 1.72 1.11 0.50 6.50
- Machinery (MJ) 7 595 6 520 125 33 949

Output  
- Cereals (Quintal) 10 538 6 720 585 33 529

 
In a first step, nitrogen, petroleum and pesticides were converted from physical to energy 
units by using the coefficients provided by ADEME (2011)7. However, to account for the 
uncertainty, minimum and maximum reasonable values are also given for these coefficients in 
order to compute the upper and lower bounds for energy efficiency. These bounds are based 
on coefficient information reported in the literature. The coefficients reported here are those 
found in Dalgaard et al. (2001) and Zegada-Lizarazu et al. (2010). The various coefficient 
values and the reference in brackets are listed in Table 2.  
 

Table 2: Energy contents of inputs (in MJ/unit) 

Inputs Unit ADEME Min Max 

Nitrogen kilogram 55.57 
(ADEME)

32.2 
(Zegada-Lizarazu et al., 2010)

78.2 
(Zegada-Lizarazu et al., 2010)

     
Petroleum  
 

liter 
 

46.4 
(ADEME) 

35.9 
(Zegada-Lizarazu et al., 2010)

51.5 
(Zegada-Lizarazu et al. , 2010) 

     
Pesticides kilogram 282 

(ADEME)
76 

(Dalgaard et al., 2001)
455 

(Dalgaard et al., 2001)

     

                                                            
5 The seeds are not retained in this study. Fortunately, they represent generally an insignificant part of energy 
expenditure. 
6 This aggregated variable was provided directly by SOLAGRO.  
7 For further details about data, see Bochu (2002). 
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4. Results and policy implications 

The subsection 4.1 will be dedicated to the results and policy implications in the deterministic 
setting and the subsection 4.2 to the one in the uncertain case. 

4.1. The energy efficiency measurement and decomposition in the 
deterministic case  

 

To examine energy efficiency and its components (technical and allocative efficiency) in the 
deterministic case (i.e. when the energy content is known), we first run the linear 
programming models [P1] and [P2a]8 in annexes A.1 and A.2, respectively. At this stage we 
use the energy content of inputs provided by ADEME (2011) and presented in Table 2. Table 
3 provides the scores obtained with these equivalents.  
 

Table 3: Energy, technical and allocative efficiency scores 

 Mean 
Standard 
Deviation 

Min Max 
Number of 

efficient farms 
Energy Efficiency 0.626 0.175 0.277 1 12 
Technical Efficiency 0.696 0.171 0.409 1 21 
Allocative Efficiency 0.898 0.097 0.447 1 12 
ADEME score 0.579 0.123 0.277 1  1 

 

Energy efficiency varied across farms from 0.28 to 1. The average overall EE is 0.63 
indicating that, on average, the farms could reduce all the inputs and thus minimize their 
energy consumption by 37%. DEA-based energy efficiency scores are higher than the scores 
computed by ADEME9. This may be due to the fact that ADEME do not consider fixed inputs 
such as land and labor. With respect to the single ratio proposed by ADEME, one of our 
contributions is to propose an energy efficiency decomposition into technical and allocative 
efficiency. According to Table 3, we can identify the two sources of inefficiency. Technical 
efficiency ranged from 0.41 to 1 with an average score of 0.70. Thus, the energy use could 
potentially be decreased by 30% if each farm were technically efficient. Even after 
eliminating mismanagement of resources, most farms have a second means by which to 
reduce their energy consumption that consists in reallocating inputs or changing the input-
mix. Indeed, allocative efficiency ranged from 0.45 to 1 with an average efficiency of 0.90. 
More precisely, through input reallocation, farms can still reduce their energy consumption to 
10% relative to their costs on the production frontier.  

As stated above, this methodology allows us to identify the best performers. Twenty one 
farms are technically efficient but only twelve are both technically and allocatively efficient.  

From a policy perspective, an energy policy based on basic energy efficiency scores will 
consist in helping farms with low scores to moderate energy-consuming input. In other words, 
energy efficiency improving policies may need to be designed targeting the most energy 
inefficient farms.  
                                                            
8 The programs were implemented by using GAMS software. 
9 For non-specialists, the score currently used by ADEME is obtained by dividing the sum of the energy 
consumed (through variable input use) in Mega Joule by the output (cereals) in quintal. We then normalized the 
minimum to one (representing the efficient farm) in order to obtain an efficiency score that can be compared 
with the DEA score. 



10 
 

To illustrate the insights gained from a decomposition of the energy efficiency scores into 
technical and allocative efficiency scores, we propose to consider the cases of three farms (1, 
43 and 80). Table 4 lists their input and output levels whereas Table 5 provides the potential 
reduction of energy used on each component of these three farms.  

 

Table 4: Input and output data for three illustrative farms  

Farm 1 Farm 43 Farm 80
Variable inputs  
- Chemical fertilizers (kg) 10 511 5 625 22 686
- Petroleum (liter) 216 1 525 321
- Pesticides (kg of active ingredient) 9 562 11 273 29 648

Fixed inputs 
- Land (hectare) 160 160 184
- Labor (unit) 1 1 1
- Machinery (MJ) 4 590 6 972 6 883

Energy consumption 1 088 685 1 265 698 2 726 850

Output 
- Cereals (quintal) 5 184 8 046 14 450

Note: Energy consumption is obtained by summing the variable input converted in energy thanks to energy 
equivalent provided by ADEME (2011).  
 

Table 5: Efficiency results and potential reduction of energy in MJ for illustrative farms 

 
Farm 1 Farm 43 Farm 80

Energy Efficiency 0.653 0.872 1
Potential reduction in energy 377 402  161 727  0  

Technical Efficiency 0.771 1 1
Potential reduction in energy 249 802  0  0  

Allocative Efficiency 0.848 0.872 1
Potential reduction in energy 127 600  161 727  0  
 

For example, farm 43 can benefit from energy saving by eliminating only allocative 
inefficiency that corresponds to 12.8% of energy observed i.e. 161 727 MJ. Compared to farm 
43, farm 1 suffers both from an input mismanagement and from an input misallocation: it can 
reduce its energy spent by two means. Its total potential energy saving is equal to 377 402 MJ. 
The energy gains would come from mainly the elimination of technical inefficiency. We also 
have the case of farm 80 that cannot benefit from energy saving. The decomposition proposed 
helps to go further into the design of an energy policy. 

For instance, a more precise energy policy designed towards farm 43 would consist in giving 
it incentives to reallocate its inputs in a way corresponding more to the allocation chosen by 
energy-extensive farms. Such a policy aim is to induce an evolution of farms towards more 
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energy-extensive systems. Consequently, our method helps to identify both farms 
characterized by an energy-extensive system (like farm 80) and farms characterized by an 
energy-intensive system (like farm 1 and 43). Studying the differences between both will help 
the policy-maker to design an appropriate energy policy. 

An energy policy designed towards farm 1 would be more complex than one designed 
towards farm 43 since it would consist in, both, giving incentives to reallocate inputs like 
energy-extensive farms but also to reduce the use of input. The interesting point here is that 
this reduction will generate some gains for the farm since it will allow it to produce the same 
amount of output with less input, hence, at a lower cost. As a consequence, a policy 
specifically designed in order to induce this reduction will not have to go through the price 
system but rather through agricultural consulting. 

Finally, note that in our sample we do not find the case of farms that only suffer from an input 
misallocation. Within the framework of our sample, this means that this is more important for 
the policy-maker to put money into policies aiming at increasing allocative performance 
score, i.e. policies based on incentives rather than on advice. 

From all of this, a first result emerges. The consideration of only the energy efficiency can 
hide the existing disparities on each component (technical and allocative). Therefore, by 
dissociating the energy efficiency scores into each component, policy-makers can better target 
their energy policies towards farmers. For example, energy policies should help to move 
towards energy-friendly agricultural systems by input reallocation.  

4.2. Extension with energy content uncertainty 

Although this decomposition can help policy-makers, it can be of limited value because it 
assumes exact knowledge of energy contents. This exact knowledge may be difficult to have. 
Solutions to the latter problem involve using averages or specific values. As proposed by 
Cooper et al. (1996), another possibility is to introduce constraints with lower and upper 
bounds on the admissible values of energy contents. We propose to follow this idea and 
therefore to extend the previous analysis to a framework in which the energy content of inputs 
is uncertain. In order to do so, we consider two scenarios: an optimistic and a pessimistic one. 
The optimistic scenario corresponds to the most favorable scenario: the energy contents of 
inputs are minimal (see Table 2). In the pessimistic scenario, they are maximal. In addition to 
model [P1], we used the programming models [P3] and [P4] in order to obtain EE in the 
pessimistic case and in the optimistic one. Optimistic and pessimistic AE are obtained by 
respectively calculating optimistic EE/TE and pessimistic EE/TE. In the uncertain case, only 
AE and EE varied whereas TE was unchanged (i.e. 0.696). The results are summed up in 
Table 6. We recall some statistics from the deterministic case in order to compare with the 
uncertain case.  

Table 6: Efficiency Scores with and without uncertainty  

 Mean 
Standard 
deviation 

Min Max 
Number of 

Efficient farms 
Optimistic EE 0.665 0.170 0.360 1 15 
EE 0.626 0.175 0.277 1 12 
Pessimistic EE 0.549 0.190 0.198 1 11 
Optimistic AE 0.957 0.069 0.621 1 19 
AE 0.898 0.097 0.447 1 12 
Pessimistic AE 0.780 0.132 0.302 1 11 
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A first and direct implication is that AE and EE scores in the deterministic case are upper and 
lower bounded respectively by the optimistic and pessimistic scores. Even in the optimistic 
scenario, inefficiency persists. These findings confirm and justify the interest of potential 
policy intervention. In a perspective of reducing energy consumption, some caution must be 
taken. Some energy efficient farms in the optimistic case become inefficient in the pessimistic 
case. To avoid errors and controversy, an energy policy should appoint the farms efficient in 
both cases like energy-saving target units.   

This is illustrated by Table 7 that relates the specific results for our three illustrative farms.  

Table 7: Efficiency results for illustrative farms under uncertainty 

Farm 1 Farm 43 Farm 80

EE Optimistic  0.721 1 1
TE 0.771 1 1
AE Optimistic 0.936 1 1
EE Pessimistic 0.524 0.561 1
TE 0.771 1 1
AE Pessimistic  0.680 0.561 1

 

In Table 7, we note that the potential reduction in energy of farm 1 increases by 20% from the 
optimistic case to the pessimistic case. This is different for farm 43 for whom it increases 
from 0 to 44%. Furthermore, we see that, for farm 43, the uncertainty relies only on the effect 
of input reallocation contrary to farm 1 that can also reduce the inputs used thanks to better 
management. Policy-makers should beware of farm 43. Indeed, it appears as a target in the 
optimistic case but can still be an energy-saving target unit for inefficient farms in a 
pessimistic one. Finally, farm 80 is among those which stay energy efficient in all cases and 
therefore constitutes an ideal (i.e. well-identified) target for the others.  

A second result is note worthy. When the energy content of inputs is considered as uncertain 
but the minimal and maximal admissible values are available, policy-makers cannot base their 
policies solely on average or specific values. The derivation of upper and lower bounds for 
the energy efficiency and allocative efficiency through the incorporation of weight restrictions 
allows the possibility to rely on the bound values with full knowledge of the consequences. 
Policy-makers can thus design their energy policies according to their risk preferences. A 
risk-neutral policy-maker will base its energy policy on the results obtained from an average 
or specific value of energy input content. Inversely, a risk-averse policy-maker will use the 
pessimistic results whereas a risk-lover will use the optimistic results.  

4.3. Energy efficiency and economic efficiency 

When target units are identified, the question that arises is how to make the farms converge 
towards these targets. In other words, how can we eliminate technical and allocative 
inefficiency to achieve energy efficiency?  
Reducing technical inefficiency does not need input mix change and constitutes a win-win 
strategy for both the farmers and society. Indeed, this reduces simultaneously energy 
consumption and input expenditures. By contrast, allocative efficiency improvement can be 
necessary to achieve energy efficiency but can be inefficient from farmers' viewpoint due to 
reorganization costs. This modification can lead to deviations relative to the cost minimization 
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objective. Hence, changing input mix needs a policy intervention which may be designed to 
modify the price system. More specifically, the slope of iso-cost lines may be different from 
the slope of the iso-energy lines since the price ratio has no reason to be identical to the ratio 
of energy content of inputs. The tangency point between iso-cost line and the isoquant gives 
the equilibrium which will be spontaneously chosen by a cost-efficient farm without energy 
policy. As a consequence, an energy policy aiming at reducing the energy consumption of 
cost-efficient farms must be designed in order to induce the farmers to choose the equilibrium 
corresponding to a lower energy consumption. From an operational viewpoint, such an energy 
policy will consist in subsidizing or taxing the most energy-consuming inputs in such a way 
that the slope of the iso-cost lines coincides with the slope of iso-energy lines. 

5. Conclusion and extensions 

In this paper, we highlighted how the Data Envelopment Analysis (DEA) approach could be 
used in order to design more accurate energy policies in the agricultural sector than the 
policies designed with current indicators. Firstly, DEA methods provide information on 
energy efficiency of farms that can help policy-makers to target energy policy towards 
specific farms. Secondly, results indicate that energy inefficiency in the agricultural sector can 
be driven either by mismanagement of input or by misallocation of input mix. DEA methods 
allow policy-makers to design the policies differently depending on the kind of inefficiencies 
that characterizes a farm. If a farm is technically inefficiency, the energy policy will consist in 
giving farms advice in order to reduce the input levels used, given output levels. If it is 
characterized by allocative inefficiency, it will be helpful to study energy-extensive 
agricultural systems in more detail and to compare them to energy-intensive agricultural 
systems in order to implement the most accurate energy policy. Thirdly, an extended DEA 
approach allows us to carry out a robust sensitivity analysis of the basic results given the 
uncertainty of energy content of inputs, and thus to test the need for policy intervention in 
different contexts10. 

Within the framework of our sample, on average, a policy designed in order to induce farms 
to move towards the less intensive-energy farms will save up to 35% of energy. In this case, 
we consider the specific value of energy content of inputs retained by ADEME. Nevertheless, 
the data used to build the technology are sometimes uncertain. In this paper, we also proposed 
to tackle the problems of imprecise data by combining several procedures to derive both 
upper and lower bounds for energy efficiency by considering low and high values for some 
energy coefficients. Hence, energy savings can be included between 28% and 48%. These 
findings help to justify the interest of policy intervention since potential savings exist even in 
an optimistic case. 

The reduction of energy consumption through simple policies is not an easy matter. In order 
to be acceptable, energy policies must economically satisfy the producers who undertake 
them. Farmers cannot afford to jeopardize their year’s income in an attempt to refine the 
energy efficiency of their practices. A comparison between a cost minimization and an energy 
consumption minimization should also be made by policy-makers in order to check the cost of 
the policies to be implemented.  

                                                            
10 Some additional analysis could be relevant to achieve more robust results. Bootstrap procedure as proposed by 
Simar and Wilson (1998, 2008) could help. Some other approaches like robust alternatives to DEA models 
(Cazals et al., 2002; Daraio and Simar, 2006) could also be considered. 
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In the energy analysis process, the measurement of efficiency is the first step. The next step 
consists in highlighting the factors which explain efficiency. In order to do so, the policy-
maker needs more data than the one used in our work. This would allow it to distinguish more 
precisely the part of inefficiency due to the exogenous factors beyond the farmers' control 
from the part reasonably solvable by better management.  

 

Appendix 

A.1. The energy, allocative and technical efficiency models 

Let us consider that K DMUs are observed and we denote  1, , K K  by the associated 

index set. We assume that DMUs face a production process with M outputs, N energy inputs 

and Z non-energy or fixed inputs where  1 , , M
My y y R   is the vector of  outputs, 

 1 , , N
Nx x x R    is the vector of energy inputs and  1 , , Z

Zr r r R   is  the vector of 

fixed inputs. We also define the respective index sets of outputs and  inputs as 

     1, , , 1, ,  and 1, , .M N Q    M N Q  Following Färe et al. (1985), under constant 

returns to scale, convexity and strong disposability on input and output assumptions,  the 

model is defined by the production possibility set T: 
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where 
 
is an intensity vector which ensures that all convex combinations of the observed 

inputs and outputs belong to the production technology set T.
 
This later may be equivalently 

defined using the corresponding input requirement set that represents the set of all variable 
input required to produce a specific output level y for a given level of quasi-fixed input r. That 
is:  
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To measure and decompose energy efficiency we need a functional representation of the 
production technology. An input distance function introduced by Shephard (1953) is used for 

this purpose. The input distance function is defined on the input set  |V y r  as: 

    , , min : |iD x r y x V y r                                                (4) 
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Now, suppose that variable inputs are converted into energy thanks to energy equivalents 
 1, , N

Nw w w R   and policy-makers seek to minimize the energy consumption of each 

DMU. Therefore, we can define the energy function as: 
 

    , , min : , ,EC x r w wx x r y T                        (5) 

 
The energy function is interpreted as the minimal energy consumption given an output vector 
(y), fixed input vector (r) and an energy equivalents vector (w) attributed to input variables. 
 
From these operational definitions of the production set (2) and energy function (5), the 

energy efficiency for a DMU j with a production plan  , ,j j jx r y  is computed via the 

following linear program [P1]:  
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where j
iw

 
is the weight (here, the energy content) of variable input i faced by DMU j. The 

non-zero elements of   identify the reference set of DMU .j  Due to the possible existence of 

positive slack variables to the optimum, some reductions in fixed inputs are possible even if 
there are not variables  to optimize. ix  corresponds to each variable input i  determined by the 

model which allows the production of each y for DMU .j  Therefore, *EC  corresponds to the 

minimum energy consumption required to produce output vector y at input fixed and variable 
input weight w. 

If we denote jEC  the total energy content of the current input levels of DMU j, then its 

energy efficiency is measured as the ratio of minimum energy consumption to the current 
energy: 
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in which “*” indicates the optimality.  1 energy efficiency 100     is the percentage of total 

wasted  energy.   
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In the same spirit of cost efficiency developed by Färe et al. (1985), the energy efficiency 
(EE) incorporates two sources of inefficiency viz. technical efficiency (TE) and allocative 
efficiency (AE). Technical inefficiency reflects managerial failures or a form of wasteful use 
of inputs  that  can be reduced for instance by a better nutrient and fertilizer management 
whereas allocative inefficiency reflects an input misallocation or an inappropriate input mix. 
Consequently, a DMU will only be energy efficient if it is both technically and allocatively 
efficient. 
In order to obtain a decomposition of energy efficiency, we start from operational definitions 
of the production set (3) and input distance function (4). Thus, we measure technical 
efficiency by the basic input-oriented DEA model [P2a]. This model does not require a priori 
specification of input and output weights. Hence, the multipliers may take on unreasonable 
values (Schaffnit et al., 1997). Fortunately as we will see below, the multipliers may be easily 
bounded by using the dual programming problems (called multiplier models). When the 
multipliers involve solely input (respectively output) multipliers, it is called an input 
(respectively output) cone. The dual program to the envelopment models is given by [P2b]11. 
Finally we have: 
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In the model [P2b] the constraints (7) guarantee that such a set of weights yield efficiency 
scores less than or equal to one for all DMUs. As suggested by Cooper et al. (1996) and as in 
Schaffnit et al. (1997) in the cost context, we can also demonstrate that the measurement of 
energy efficiency can be alternatively obtained with the inclusion of weight restrictions in the 
multiplier DEA model [P2b]. More precisely, the restrictions imposed on the weights 
underlying the assessment are the relative values of the energy input content observed at each 

DMU, such that:  , , 1, ,
a a

b b

a bi i

i i

v w
i i N

v w
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where a and b are for example two inputs among 

the set N.  
 
Following the decomposition (1), we can now compute allocative efficiency as the ratio 
between energy efficiency /j j j

i i i i
i i

w x w x
 
 

N N

 and technical efficiency  , , .j
iD x r y  Formally, 

we have: 

                                                            
11 The dual programming with variable and fixed inputs was initially proposed by Banker and Morey (1986) in 
the form of a linear fractional program. 
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A.2. Optimistic and pessimistic energy efficiency models 

As mentioned above, for the optimistic EE model, we focus our attention on the most 
favorable energy content scenario. An optimistic EE model can be written as follows: 
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   denoted (9) provide bounds for variable input multipliers. 

They follow the Cone Ratio/Assurance Region approach first developed in Thompson et al. 
(1986) and defined more precisely in Thompson et al. (1990). Cone Ratio/Assurance Region 
is specified as a set of homogenous inequalities which define an acceptable input weight to 
underline the efficiency assessment. Program [P3] is nonlinear due to constraints (9). 
Fortunately, to obtain an optimistic EE linear model, constraints (9) can be easily rewritten in 
linear form, given by following constraints: 
 

 

max

min

min

max

0

0

a

a b

b

a

a b

b

i

i i
i

i

i i
i

w
v v

w

w
v v

w


  




 


                                                                  (10) 

 
Since the DMU’s evaluation is based on n inputs, there are 2

NC different ratios between two 

inputs, which give a total of 22 NC
 
linear inequality constraints.  

To obtain the EE model under a pessimistic perspective, Camanho and Dyson (2005) also 
propose a method. However, as stated by the authors themselves their model is 
computationally expensive and may not be feasible (p. 441). Therefore, we deviate from their 
methodology and propose another algorithm for the estimation of pessimistic CE which tends 
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towards the Mostafaee and Saljooghi (2012) methodology12. Contrary to these latter, we 
confine our attention to the dual program and hence propose to solve for each DMU the 
following two-level program: 

  
min max
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where F  is a family of 2N sets composed of ( 1)N   relative input energy contents obtained 

from the extreme points min max and 
i i

w w  where 1, , .i N   

For instance, let us consider two inputs a and b and their upper and lower bounds of the 
energy content i.e. min min max max, , , .a b a bi i i i

w w w w  So we have a family of four singleton sets which can 

be written formally: 
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This inner program i.e. the second-level program is performed for each set of the family .F  
Therefore, it allows us to obtain cost efficiency measurements for each set. The outer program 
determines the set of relative energy input content that produces the lowest cost efficiency 
measurement for each DMU. Hence, we adopt for the estimation the least favorable scenario 
within the range of energy input content considered. 
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