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Environmental Efficiency among Corn Ethanol Plants

Abstract

This study evaluates the environmental efficiency of seven recently constructed
ethanol plants in the North Central region of the U.S., using nonparametric data
envelopment analysis (DEA). Environmental efficiency is measured and decomposed
into its technical and allocative sources. Results show that, on average, plants in our
sample may be able to reduce GHG emissions by a maximum of 6% or by 3,116 tons per
quarter. The economic (shadow) cost of reducing greenhouse gas emissions reveals that,
at current activity levels, plants may have room for simultaneous improvement of

environmental efficiency and economic profitability.

Keywords: ethanol carbon footprint; environmental efficiency; shadow cost; data

envelopment analysis.



1. Introduction

The U.S. corn ethanol industry has benefited from government support due to its
potential to achieve a rather wide set of goals: mitigating emissions of greenhouse gases
(GHG), achieving energy security (diversifying energy sources), improving farm incomes
and fostering rural development among others. Continuation of policy support, however,
is being debated due to doubts about the direct and indirect GHG effects of the industry.
Moreover, the capacity of the industry to reduce GHG emissions per gallon of ethanol
produced may also determine the opportunities opened to it in future carbon markets and
in the National Renewable Fuel Standard program. This study provides information
relevant to these issues by measuring the environmental performance of the industry in
terms of GHG emissions per gallon produced and the economic cost (shadow price) of
GHG reductions.

Input requirements and byproducts’ yield per gallon of ethanol produced are critical
in determining environmental performance. Previous studies have addressed the issue of
input requirements and byproducts’ yield of ethanol plants. Using engineering data
McAloon et al. (2000) and Kwiatkowski et al. (2006) measured considerable
improvement in plant efficiency between 2000 and 2006. Shapouri, et al. (2005) reported
input requirements and cost data based on a USDA sponsored survey of plants for the
year 2002. Wang et al. (2007) and Plevin et al. (2008), reported results based on
spreadsheet models of the industry (GREET and BEACCON, respectively). Pimentel et
al. (2005) and Eidman (2007) reported average performances of plants although they do
not clearly indicate the sources of their estimates. Finally Perrin et al. (2009) reported

results on input requirements, operating costs, and operating revenues based on a survey



of seven dry grind plants in the Midwest during 2006 and 2007. This study does not
report however results on the carbon footprint of ethanol plants.

With the exception of Shapouri et al. (2005) and Perrin et al. (2009) all of these
studies reported values corresponding to the average plant (not individual plants) which
prevents comparison of relative performances. In addition, it is generally believed that the
industry has become more efficient and technologically homogeneous since 2005. Since
the data used in Shapouri et al. (2005) was collected in 2002 it may not be representative
of current technologies in the industry. In contrast to Shapouri et al. (2005), Perrin et al.
(2009) surveyed plants in operation during 2006 and 2007 and employed a much more
restrictive sampling criterion (discussed below) which yielded a modern and
technologically homogenous sample of plants. This sample is believed to be more
representative of current technologies and is, hence, our data of choice to assess the
environmental performance of plants. Based on these data the present study evaluates the
environmental efficiency of seven recently constructed ethanol plants in the North
Central region of the U.S. The returns over operating costs (ROOC)* that may be gained
or lost by plants as a consequence of the effort to reach a given environmental target are

also calculated and discussed.

2. Materials and Method
2.1. Data
The environmental performance of a plant is evaluated on the basis of emission of

greenhouse gases associated with its productive activity. Greenhouse gas emissions from

! We evaluate economic performance based on returns over operating costs rather than profits. This is
because capital costs are not included in our analysis.



plants were not directly measured but rather calculated based on observable inputs and
outputs corresponding to each plant. In addition concerns regarding the environmental
impact of ethanol production refer to life cycle’? GHG emissions and not only those
emissions at the processing stage. Therefore we evaluate life cycle GHG emissions
associated with observable inputs and outputs. Our observations consist of 33 quarterly
reports of input and output quantities and prices from a sample of seven Midwest ethanol
plants. Following the non parametric efficiency literature we refer to each observation as
a decision making unit (DMU). Plants produce 3 outputs (ethanol, dry distillers grains
with solubles (DDGS), and modified wet distillers grains with solubles (MWDGS)) using
7 inputs3 (corn, natural gas, electricity, labor, denaturant, chemicals, and “other

processing costs™).

2.2. Ethanol Plants: Characteristics

Table 1 presents some quarterly characteristics of the seven dry grind ethanol plants
surveyed. According to Table 1 the plants produced an average rate equivalent to 53.1
million gallons of ethanol per year, with a range from 42.5 million gallons per year to
88.1 million gallons per year. The period surveyed included from the third quarter of
2006 until the fourth quarter of 2007 (six consecutive quarters). In addition plants could

be differentiated by how much byproduct they sold as DDGS (10% moisture) compared

2 “Life cycle” in this case includes emissions taking place at three stages of the production process: corn
production (farmers), ethanol production (biorefinery), and feedlot (byproducts from ethanol plants are
given a credit for replacing corn as feed in livestock production).

® Results of our survey contained total expenditures in labor, denaturant, chemicals, and other processing
costs. As a result we calculated implicit quantities for these inputs dividing total expenditures by their
corresponding price indexes. Labor and management price index associated to the Basic Chemical
Manufacturing Industries was obtained from http://www.bls.gov/oes/current/naics4 325100.htm#b00-
0002. Denaturant, chemicals and other processing costs were calculated based on the Producer Input Price
Index for “All other basic inorganic chemicals”, http://www.bls.gov/pPl/.
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to MWDGS (55% moisture). Variation on this variable was significant, averaging 54% of
byproduct sold as DDGS, but ranging from one plant that sold absolutely no byproduct as
DDGS to another plant that sold nearly all byproduct (97%) as DDGS.

Finally, Table 1 briefly characterizes plant marketing strategies. In purchasing input
feedstock, five of the six plants purchased corn via customer contracts. Similarly, in
selling ethanol, five of the six plants used third parties or agents. Byproduct marketing
across plants displayed a higher degree of variance. Marketing of DDGS was split fairly
evenly between spot markets and third parties/agents. An even higher variability was
observed for MWDGS, where no one marketing strategy (spot market, customer contract,
or third party/agent) was significantly more prevalent across plants than any other.

Table 2 displays descriptive statistics of inputs used and outputs produced by the 33
DMUs in our sample. As mentioned before the basic observations in this study
corresponds to a plant in a given quarter; so two quarters of the same plant are considered

as two different observations as are two plants in the same quarter.

2.3. Environmental Performance of Ethanol Plants
2.3.1. Emissions Measurement

No direct measurements of GHG emissions are available in this industry; however
they can be calculated using engineering relationships. A number of computer packages
have been developed to facilitate these calculations (Wang et al. 2007; Farrell et al.
2006). We used the Biofuels Energy Systems Simulator* (BESS). The BESS model

includes all GHG emissions from the burning of fossil fuels used directly in crop

* BESS is a software developed by a team of specialists in the Agronomy Department at the University of
Nebraska, Lincoln (Liska, et al, 2009a, 2009b, http://www.bess.unl.edu/ )
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production, grain transportation, biorefinery energy use, and coproduct transport. All
upstream energy costs and associated GHG emissions with production of fossil fuels,
fertilizer inputs, and electricity used in the production life cycle are also included. Since
these calculations involve modeling of crop production and feedlot and these display
regional differences, BESS includes regional scenarios and an average scenario for the
whole Midwest region. Plants in our sample are scattered across the Midwest and, hence,
we have used scenario 2 in BESS “US Midwest average UNL” which is deemed
representative of the whole region.

The BESS calculations of GHG emissions associated with a dry mill plant are
equivalent to the following linear relationship:

GHG,,, = 0.00668274 X, +0.063015823 Xy, +0.0007445 X,,, +0.000316916 Uy, "
— 0.4197522186 Uy —0.407868 Uyyyoes

Where GHG,,, represents megagrams of life cycle CO2 equivalent greenhouse gases, X,
is bushels of corn used by the plant, ug,.s and uy,,oes are tons of byproduct sold as
dried and modified wet respectively by the plant, x, is the total amount of natural gas

used by the plant measured in MMBTUSs, x

elect

is total amount of kilowatt hours (kwh) of
electricity used by the plant, and ug, is the plant’s ethanol production in gallons.

Eqg. (1) states that a bushel of corn used in a biorefinery is associated with about
0.0067 megagrams of GHG emitted during the production of that bushel. DDGS and
MWDGS have a positive and a negative component. The former is due to additional

energy used in reducing moisture.® The latter are “credits” attributed to byproducts (i.e.

® In particular MWDGS require the use of electricity to centrifuge the wet byproduct and DDGS require the
use of natural gas for heating and drying the wet byproduct after the centrifuge.



reductions in GHG) due to the replacement of corn that would have been fed to livestock
had the byproduct not been sold. The coefficient for ethanol production represents the
combination of emissions associated with depreciable capital (0.0002050 ) and freight for

grain transportation (0.000111916 ), expressed on a per gallon basis.
Eqg. (1) includes outputs u’ :( Joud e ul o ) and a pollution increasing subset of
all inputs used by ethanol plants® denoted by xJ =(x!, X}, X)) » Where subindex p

indicates pollutant. We can now re express Eq. (1) in vector notation. To do so we

partition inputs and outputs into a column vector of pollution increasing inputs and output
al = (xJ Xe elect,uEth) and a column vector of pollution reducing byproducts

U} = (Ubwies » Udpes ) . The level of greenhouse gas emissions associated with a particular
plant j as a function of observable inputs and outputs can be expressed as:

GHG' =¢a’ + pu] (2)
Where o =(0.0066,0.0630,0.00074,0.000316) is the 1x4 row vector of coefficients
associated with pollution increasing categories a’, and 3 =(-0.419752,—-0.407868) is

the 1x2 row vector of coefficients associated with pollution reducing byproducts u .

2.3.2. Characterization of Potential Ethanol Technology From Individual Plant Data

Plants are constrained by a technology transforming a vector of N inputs

X = (X, X,,..., Xy )€ R" into a vector of M outputs u = (u,,U,,...,u,, ) R" . Observed

combinations of inputs used and outputs produced (xj u ) are taken to be representative

® As described before ethanol plants use 7 inputs in production. However only three of them increase life-
cycle emissions of GHGs: corn, natural gas, and electricity.



points from the feasible ethanol technology. In this study we use data envelopment
analysis (DEA) to infer the boundaries of the feasible technology set from the observed
points, following the notation in Fare, et al.

Observations from the technology consist of a sample of 33 DMUSs producing 3
outputs and using 7 inputs. The production technology can be represented by a graph

denoting the collection of all feasible input and output vectors:
GR={ (x,u)eR®:xe L(u)}
Where L(u), is the input correspondence which is defined as the collection of all input

vectors x e R that yield at least output vector u e R".

The frontier of the graph GR and observed levels of inputs and outputs will serve as

references for environmental efficiency assessment.

2.3.3. Environmental Efficiency Measurement
A given DMU (call it j) is deemed more environmentally efficient whenever it
chooses a feasible (subject to the graph) combination of inputs and byproducts (DDGS

and MWDGS) that results in lower GHG emissions while maintaining its ethanol
production level at the observed value denoted by @ . Fixing ethanol production to its

observed level, and assuming variable returns to scale and strong disposability of inputs

and outputs the graph can be denoted by:

GR! (V,S,uéth):{(x,u):ub‘ <zMy, x! 22N, zug, =ul,, > 7' =1, :1,...,33} (3)

j=1



Where z depicts a row vector of 33 intensity variables, M, is the 33x2 matrix of
observed byproducts, u/ is the 1x2 vector of observed byproducts corresponding to the
jth DMU, N is the 33x7 matrix of observed inputs, , x' is the 1x7 vector of observed
inputs corresponding to the jth DMU, ug, is the 33x1 vector of observed outputs, and

E is the observed ethanol production by observation j.

We define the set of all combinations of corn, gas, electricity and byproducts that

result in lower emissions than those actually produced by the jth DMU as:
GHG/ (X;UJE) ={ (xg',ug ) ta XU+ pul <o, x) + pu) } 4)
Where «, is a subset of the vector  previously defined which does not include the

coefficient for ethanol, i.e. &, =(0.006682,0.063015,0.000744) and the rest is as

before.’
From Eq. (4) we can derive an isopollution line in DDGS and corn space, i.e.
combinations of DDGS and corn that result in the same level of emissions keeping

everything else constant. Fig. 1 depicts this set graphically in the corn and DDGS space

(i.e. keeping everything else in the GHG equation fixed). The set GHG, consists of all

those points above the isopollution line as indicated by the arrows with direction

northwest.

"We denote the coefficient associated with ethanol by y =0.000316. Ethanol production and its associated

coefficient are included in both sets. However, since ethanol is fixed at the observed level uéth , the
complete version of the inequality is ¢, er)' +pu) +pul, <a, X,jJ +Au) +yul, which after
elimination is equivalent to the expression in (4).
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In Fig. 1 the feasible technology set is represented by a graph displaying variable

returns to scale and strong disposability of inputs and outputs as indicated by the arrows

moving from the frontier (Upyes = f (X, )) with direction southeast. As clearly seen in
Fig. 1, the set GHG; includes combinations outside the graph and hence not attainable

by DMUs in the sample. The subset of observations in GHG; that belong to the graph

and are hence attainable by DMUSs is depicted by the intersection of both sets delimited

by the bold lines in Fig. 1:

GHG! (xg,ug,ugm)mGR(v,s,ugm) )

The jth DMU could choose any alternative production plan within the area denoted

by the bold lines to produce its ethanol production level, achieving a reduction in

emissions while increasing DDGS or reducing corn or both simultaneously. In this study,
the environmental technically efficient projection of a given observation to the boundary
of the technology set follows a hyperbolic path defined by equiproportional reductions in

inputs and increases in byproducts. The value of the proportionate change necessary to

encounter the boundary, ETEgj , Is defined as the environmental technical efficiency of

plant j:
ETE] (x},ud Uk, ) = min{ﬂ:GHGg (Ax), A7) A GR(V,S,@);&@} (6)

Where A is a scalar defining the proportionate changes and the rest is as before. We

calculated the value of ETE/ (x;ug @) using MATLAB as indicated in Appendix A.

11



Environmental technical efficiency defined in Eq. (6) is illustrated in Fig. 2 by the

distance from (xcj ,Ulpes ) tO point A which corresponds to the environmental technically

efficient allocation in corn and DDGS space.

Note however that point A does not correspond to the minimum feasible GHG level
since it does not coincide with the point of tangency between the isopollution and the
graph (point B). The allocation that achieves the minimum level of GHG emissions
subject to the graph is called the overall environmental efficient allocation.

Technically, we define this minimum feasible level of GHG emissions as:

GHG (ul, )= min{ GHG =a, X, + AU +7Ul, St (,,,) <GR(V,S,ul, ) } )

Xp Uy

Where GHG' (@) denotes minimum emissions attainable by j subject to observed

ethanol production @ X, is the vector of pollution increasing inputs, u, is the vector

p
of byproducts and the rest is as defined before. The empirical calculation of Eq. (7) is

described in Appendix B.

Overall environmental efficiency, Egj , Is measured by the hyperbolic distance

between a given observation j and the isopollution line corresponding to GHG' (uéth) :

The hyperbolic distance is computed through calculation of the reduction of observed

inputs and equiproportional expansion of observed byproducts such that the isopollution

corresponding to GHG' (@) is reached. This is illustrated by Fig. 3 where overall

environmental efficiency is the distance between (xc‘ RTINS ) and point C.

12



The hyperbolic movement from (xcj,ug',DGS ) to C results from the following technical

relationship.

PROPOSITION. The measure of overall environmental efficiency, E; , Isrelated to

minimum GHG in the following manner:

. . . S\ -1 . A
GHG' =Ejax}+(E)) b’  j=12..J (8)
See Proof in Appendix C.

We can decompose Egj into purely technical environmental efficiency ETE;
(represented graphically by the distance between (xc‘ : uéDGs ) and A) and environmental

allocative inefficiency EAE' (represented graphically by the distance between A and C).

Overall environmental efficiency can be expressed as:

E) = EAE, ETE] 9)
Therefore, we can define allocative environmental inefficiency residually as:®

EAE' =E}/ETE] (10)
Based on the solution to the problem described in Eq. (7) we calculate overall

environmental efficiency by solving the implicit Eq. (8) for each observation. These

measures of environmental efficiency and their decomposition, Eg. (10), are calculated

for our sample of surveyed dry grind ethanol plants and reported in Table 3. The

minimum feasible GHG for each DMU as defined by Eq. (7) is calculated fixing ethanol

production at observed levels.

8 Environmental allocative inefficiency was illustrated in Fig. 2 by the distance between the iso-pollution
corresponding to combination A and iso-pollution corresponding to point D .

13



2.4. ROOC and Environmental Targets: Trade off or Complementarity?

From Eq. (2) there is a clear relationship between GHG and the combination of inputs
and byproducts. But there is also a relationship between combinations of inputs and
byproducts and the level of ROOC. Therefore, in general, a change in GHG levels
through reallocation of inputs and byproducts would bring about a change in ROOC. For
a given level of ethanol production, the shadow price of GHG mitigation is the change in
ROOC per unit change in GHG levels. The change in ROOC denotes the plant's
maximum willingness to pay (WTP) for a permit to emit GHG. We define the shadow

price of a ton of GHG as:

WTP ) -]

SV = : _ = _ :
"¢ GHG/-GHG! GHG/-GHG/

(11)

Where WTP is willingness to pay for changing emissions from GHG/ to GHG/. GHG/
denotes the original level of GHG and 7/ the corresponding level of ROOC. GHG,/' is
the “targeted” level of GHG and 7] denotes ROOC at this targeted level. GHG level will
be targeted at the minimum GHG (i.e. GHG/ =GHG'), or alternatively at the level
corresponding to maximum achievable ROOC by firm j, 7!, which we designate as

GHG,)

2.4.1. Shadow Cost from Observed to ROOC Maximizing Allocation
We define the ROOC maximizing combination of inputs and byproducts (subject to a
given level of ethanol production to make it comparable with the GHG minimizing

combination) as the allocation that solves the following problem:

14



) (rj,pj,rE"th,GR(V,S,@)):Max{ rE"thLE+r"ub—pjx} s.t.(ub,x)eGR(V,S,lE) (12)

Where ., is the observed price of ethanol obtained by observation j, @ is the
observed level of ethanol production by j, u, is the 2x1 column vector of variable outputs

(DDGS and MWDGS), r’ represents the 1x2 vector of observed prices of variable
outputs (byproducts)® obtained by observation j, x is the 1x7 vector of variable inputs
(corn, natural gas, electricity, labor, denaturant, chemicals, and “other processing costs™),

and p’ represents the 1x7 vector of observed prices of variable inputs paid by j.

Quantities of labor, denaturant, chemicals and others needed to calculate GR are
obtained implicitly dividing total expenditures in these categories by their price indexes
described in footnote 2. Prices for these categories in equation (12) are also those in

footnote 2. We will denote the allocation that solves Eq. (12) with ethanol fixed at the
observed level by {(xﬂ,uﬁ)} . The level GHG! is calculated by inserting these values into
).

We define the shadow value of GHG emissions associated with moving from the

observed allocation to the ROOC maximizing allocation as:

) -7

GHG! —GHG'

SVGJHG = (13)

An alternative shadow cost to Eg. (13) is that which is incurred by moving from the

observed to the GHG minimizing combination of inputs and byproducts.

® Three DMUs in our sample did not sell dried byproducts (they sold 100% MWDGS). Since we did not
have reported DDGS prices for those three observations to calculate maximum ROOC we used average
prices of DDGS obtained by other DMUs in the same quarter.

15



2.4.2. Shadow Cost from Observed to GHG Minimizing Allocation

The GHG minimizing combination is computed by solving Eq. (7) with ethanol
production fixed at observed levels and minimum GHG denoted by GHG’. ROOC
associated with this allocation (calculated by multiplying the GHG minimizing inputs and
outputs times their respective prices) is designated as 7 .

We define the shadow value of GHG related to a change from the observed to the
GHG minimizing point as:

ey

GHG' —GHG'

SVGJHG = (14)

Finally we consider the shadow value of GHG related to a change from the GHG

minimizing to the ROOC maximizing point.

2.4.3. Shadow Cost from GHG Minimizing to ROOC Maximizing Allocation
Such a change is illustrated in Fig. 4 in the corn and DDGS space. In Fig. 4 the GHG

minimizing combination is represented by point B (the isopollution line is denoted by
GHG'). If relative prices are those corresponding to the slope of 7 then ROOC
maximization is achieved at point A and this requires a decrease in corn and DDGS with

respect to the GHG minimizing point. ROOC at A are denoted by 7! and ROOC at B are

7 < 7). Emissions at B are denoted by GHG' and emissions at A are GHG,! > GHG'.

The shadow value associated with a change from the GHG minimizing combination

to the ROOC maximizing one is defined by:

-

GHG,) —-GHG'

SVGJHG =

(15)

16



3. Results and Discussion
3.1. Environmental Performance of Ethanol Plants

Fixing ethanol production at observed levels, measures of environmental efficiency
and their decomposition are calculated for our sample of surveyed dry grind ethanol
plants and reported in Table 3. Results reveal that DMUs are very efficient from a
technical point of view and that most environmental inefficiency comes from allocative
sources. Therefore DMUs seem to have room for GHG reductions mainly by changing
input and output combinations subject to the graph. In particular, the average DMU may
be able to reduce emissions by 6% which amounts to 3,116 tons of CO2 equivalent
GHGs per quarter (or 0.46 pounds per gallon of ethanol produced).

The average DMU in our sample, at observed allocations, displays a GHG intensity
of about 46 gCO2e/MJ. At the GHG minimizing allocation, the average DMU in our
sample displays a GHG intensity of 43 gCO2e/MJ which is 6.5% lower than observed
levels. This intensity is, for example, 55% lower than the target standard established by
California by 2019 (86.27 gCO2e/MJ). It is of interest to know what reallocations of
inputs and byproducts may actually achieve this improvement and we will go back to this

point in detail later.

3.2. ROOC and Environmental Targets
Shadow costs associated with moving from observed to ROOC maximizing
allocations are reported in Table 4. Given the rather large variability across observations

both the median and the average are reported as measures of central tendency. Table 4

17



displays some observations that are unusually high and others unusually low. These
disproportionate deviations from the average are due to changes in inputs that affect
ROOC but do not affect emissions, i.e. labor, denaturant, chemicals, and other processing
costs. These inputs are labor, denaturant, chemicals, and other processing costs. We
classify as “outlier” any observation whose value exceeds the average by more than 3
times the standard deviation.

Since there seems to be a great deal of variability in shadow prices of GHG across
DMuUs we have plotted a histogram that shows the approximate distribution of these
values in Fig. 5. The histogram does not take into account those observations deemed as
outliers. We have superimposed to the histogram a normal density function that smoothes
out the distribution. An important conclusion we can extract from Table 4 and Fig. 5 is
the fact that almost all DMUs reduce GHG emissions by moving from observed to
maximum ROOC (negative shadow values). This suggests that, under our convexity
assumptions, most DMUs (including the arithmetic average and the mean of the normal
density function) may be able to increase ROOC and reduce GHG simultaneously which
would in turn imply that these DMUs face no trade off between economic and
environmental goals at current combinations of inputs and byproducts.

The fact that DMUs can rearrange inputs and byproducts in such a way that they can
both increase ROOC and reduce emissions prompts the following questions:

= What inputs are reduced or increased and which byproduct is reduced or increased

in such a rearrangement?

=  Why are plants not exploiting these reallocations that achieve greater ROOC?

18



The answer to the first question for the average plant is provided in Table 5. The
average DMU would achieve greater ROOC and lower GHG simultaneously mainly by
reducing the use of corn, natural gas, and electricity per gallon of ethanol produced,
reducing the production of MWDGS, and increasing production of DDGS. A part of
these reductions is achieved through elimination of inefficiencies that would take the
DMUs to the technological frontier but for the most part they are achieved through
rearrangements along the surface described by the boundary of the graph, Eq. (3).
Rearrangements displayed in Table 5 imply giving up MWDGS to increase DDGS and
reduce inputs. They are feasible in the sense that they achieve an allocation already
achieved by some other DMU in the sample or a convex combination of allocations
observed in the sample.

The answer to the second question is not as straightforward. As noted in the
discussion of the first question our DMUs may be able to increase ROOC and reduce
GHG mainly by reducing corn, natural gas, and electricity per gallon of ethanol produced
and per ton of DDGS produced.'® The apparent engineering (in)ability to maximize
ethanol and DDGS yields when compared to other DMUs in the sample seems to drive
the difference between observed production plans and ROOC maximizing plans for many
DMuUs. A note of caution is in place here.

There are many potential reasons for the failure of DMUSs to attain the ROOC-
maximizing allocation. First plants may not face market conditions that allow them to
reallocate byproducts from dry to wet or viceversa. A rather significant livestock

production relatively near the plant has to be in place for DMUs to be able to sell a

19 Reductions in MWDGS may come as a surprise. However given relative prices it appears this was a
convenient reallocation for many DMUs.

19



significant portion of their byproduct as wet. These market constraints are not captured
by our analysis. Second the graph is assumed to be convex in our calculations. Under the
assumption of convexity any difference in performance is attributed to efficiency
differences rather than to technological constraints. However there may be indivisibilities
in the construction and later modifications (expansions or contractions) of plants that
result in non-convexities of the graph, i.e. scaling up or down of production in any
proportion may not be feasible or may be very expensive once capital costs are accounted
for. These non-convexities would prevent plants from choosing the ROOC-maximizing
allocation depicted by the convex graph, rendering economic inefficiencies.

Shadow costs associated with moving from observed to GHG minimizing allocations,
Eqg. (14), for each DMU, average, and median are reported in Table 6. Nine DMUs lose
ROOC while reducing GHGs, thus facing positive shadow values of GHGs, meaning a

cost. Seventeen DMUs increase ROOC while reallocating to the minimum GHG level.
The fact that the average willingness to pay for a change in allocation (72 —7') is

positive while average change in GHG is negative, results in negative average shadow
values. Table 6 indicates that the average DMU may be able to increase ROOC while
reducing GHG which again seems to suggest unexploited opportunities to improve both
fronts. In particular the average DMU may be able to increase ROOC by about $39 per
ton of GHG reduced. The seventeen firms with negative shadow prices would
presumably be willing to sell permits at any small price, since there is no ROOC lost
from reducing their own GHGs.

Since there seems to be a great deal of variability in shadow prices of GHG across

DMUs we have plotted a histogram that shows the approximate distribution of these
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values in Fig. 5. The histogram does not take into account those observations deemed as
outliers. The presence of outliers is mainly due, as discussed above, to changes in inputs
affecting ROOC but not GHG, i.e. labor, denaturant, chemicals, and other processing
costs. We have superimposed to the histogram a normal density function that smoothes
out the distribution. Despite the variability across DMUSs, the highest frequency of
shadow values (i.e. most of the “mass” of the distribution) appears to be located around
zero. This means that plants are approximately efficient in the sense that they are
operating at levels for which the marginal value of GHG is around zero which is, in turn,
the current GHG price that DMUs face.

According to Table 7 the average DMU achieves minimization of GHG through
substantial reductions in DDGS and MWDGS which in turn allows it to significantly
reduce natural gas and electricity. Finally reductions in corn per gallon of ethanol are also
involved in this GHG minimization. Such reallocations not only achieve reductions in
GHG but also increase ROOC (negative shadow value)

Shadow costs associated with moving from GHG minimizing to ROOC maximizing
allocations, Eqg. (15), for each DMU, average and median are reported in Table 8. All
DMUs increase both ROOC and GHGs in moving from low GHG solution to high
ROOC solution. The average DMU would forfeit $1,726 in ROOC for each ton of GHG
reduced, a very high cost of regulation if that firm were required to reduce GHGs. If
DMUs are forced to reduce GHG emissions below ROOC maximizing levels, these
shadow values indicate that they would be willing to purchase permits if the market value
is in the vicinity of $20 to $30 per ton, rather than reduce one ton of GHG emissions. The

histogram (with superimposed normal density) corresponding to Table 8 is plotted in Fig.
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6. This histogram as the one in Fig. 5 does not take into account those observations
classified as outliers. Again, despite the variability across DMUSs, the highest frequency
of shadow values (i.e. most of the “mass” of the distribution) appears to be located
around a very high value.

The reallocation of inputs and byproducts that would take the average DMU from the
GHG minimizing to the ROOC maximizing combination is displayed in Table 9. The
average DMU achieves increases in ROOC mainly through substantial increases in
DDGS which in turn entails increases in natural gas and electricity, and reductions in
MWDGS. Another very important component of ROOC increases is reductions of corn
per gallon of ethanol produced.

Results for the average DMU in Tables 4, 6, and 8 can be combined to recover the
shape of the relationship between GHG and ROOC. Plotting the three averages in the

GHG and ROOC space yields the graph in Fig. 7. We denote the observed combination

of the average by (GHG',z'), the ROOC maximizing combination by (GHG!, z!), and

the GHG minimizing combination by (GHGj,ﬂ'_j). There seems to be room for

simultaneous improvement of environmental and economic performance, as previously
indicated in discussions of Tables 4 and 6. However, if the average firm were able to
adjust inputs and byproducts to the ROOC maximizing combination, it would face an

intense trade off described just above.

4. Conclusions
The purpose of this study was to contribute to the ongoing debate regarding the merits

and potential of the ethanol industry in the US by investigating the current environmental
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performance at the individual plant level, the potential for improvement in this
performance and its effects on the industry’s overall emissions of greenhouse gases.

Several important conclusions can be drawn from this study. First, our results suggest
that decision making units (DMUs) may have some room for improving environmental
performance. However since plants are technically very efficient, most of this
improvement has to come from changes in combinations of inputs and byproducts along
the frontier (reduction in environmental allocative inefficiencies). By eliminating
allocative inefficiencies the average DMU could apparently decrease emissions by 6%,
which amounts to about 3,116 tons of CO2 equivalent GHG.

Negative shadow values of GHG from observed to ROOC maximizing combinations
reveal that at current operating levels DMUs may be able to increase ROOC and reduce
GHG simultaneously by reaching the “best practice” in the sample. Plants may not be
switching to the ROOC maximizing combination because of capital costs involved in that
reallocation. If such costs exist they are not being accounted for here. However these
costs may be outweighed by revenue opportunities created through carbon reducing
policies, e.g. renewable fuel standards, carbon markets, tax credits for carbon reducing
capital investments, etc.

Additionally once DMUs achieve the ROOC maximizing allocation, our results
suggest that they may face significant ROOC losses if they are forced to reduce GHG any
further. In this case the average DMU in this sample would be willing to pay up to $1,726
for a permit to emit ton of GHG, rather than suffer the ROOC reduction revealed by the

shadow price of reducing carbon from ROOC maximizing to GHG minimizing levels.
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The measurement of corn ethanol plants environmental performance, their potential
for improvement, and ROOC/emissions trade offs conducted in this study should inform
the debate on whether there is a place for corn ethanol as a “clean” substitute for
gasoline. In particular our results suggest that ethanol plants in our sample can produce
energy with considerable lower (52% lower) GHG intensity than gasoline. Moreover
these plants have some room for reducing this footprint even more by reallocating inputs
and byproducts. Such reallocations would achieve a 6.5% reduction in GHG rendering
energy with a GHG intensity 55% lower than gasoline. In turn these reductions may be
achieved at a moderate or none economic cost as strongly suggested by a negative
shadow price of $39 per gallon. Further reductions, however, can only be achieved at

high economic costs.

Appendix A
The measure in (6) can be mathematically implemented through the following
nonlinear programming problem:
Min

Al . — : :
(A1) st. A7) <Mz, uly =My, AX' =Nz, Y 21 =1
j

Where u] is the vector of dried and wet byproducts, M, is the 2xJ matrix of observed
levels of byproducts, z is the Jx1 vector of intensity variables used to weight

observations and construct the piecewise linear boundary of the graph, x’ is the column

vector composed by observed values of all inputs used by observation j, N is the 7xJ
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matrix of observed values of inputs for all observations, and u/,, is the observed level of

ethanol production of the jth DMU.

After multiplying the constraints times A it is easily seen that this is equivalent to the
following problem:
MinT"
r,z

A2 . . —
(A2) st. ul <Mz, TX) =Nz, D 72" =2, Aul, =M, 7', T=2% 7'= 2z
j

Following Fare et al. problem (A.1) is reformulated into problem (A.2) because the
only nonlinear constraint is an equality constraint (i.e. ' = A?) and is, hence, easier to
program. In particular, these sub vector hyperbolic measures of technical efficiency are
calculated through a nonlinear program implemented with the FMINCON procedure in

MATLAB.

Appendix B
The following program describes the problem:

Min  GHG =0.00668274 x, +0.063015823 X, +0.0007445 x

elect
X,Uppgs sUmwpes

(B.1) — 0.4197522186 Uppgs —0.407868 Uyyypes
St Uppgs < MDDGSZ’ Unwoes = MMWDGSZ’ uéth = MEch’ x = Nz, sz =1
j
Where u,ps IS the vector of dried byproducts, M. iS the 2xJ matrix of observed
levels of DDGS, z is JX1 vector of intensity variables, u,,,5ss 1S the vector of modified
wet byproducts, M ,oes 1S the 2xJ matrix of observed levels of MWDGS |, X is the

vector of all inputs, and N is the 7xJ matrix of observed levels of inputs. This program

was calculated using the LINPROG routine in MATLAB.
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Based on this quantity, we calculate overall environmental efficiency by solving for

EJ implicitly through Eq. (8) for each observation.

Appendix C

Proof:

Let us denote the vector of coefficients of Eq. (1) by («,, ), where «, is the vector of
coefficients for corn, natural gas, and electricity, and g is the vector of coefficients for
both byproducts. In addition, let us define an arbitrary output and input vector by (xp,ub)
where X, =(X,, Xyg+ Xaeer ) N Uy = (Uppoes »Uppgs ) @nd denote the jth DMU’s observed

output and input vector by (x,’,u]).

Let (xp,ub)eGHGé(Eg"xr‘;,ug(Egj )_l)ﬂGR, then (x,,u, )€ GR and since E/ isa
minimum:

(ax X, + ,Bub) = E) (0.00668274) x/ + E/ (0.063015823) x),; + E/ (0.0007445) X/,
—(0.407868) Uyyynes / EJ —(0.4197522186) ubyss / E

Let us denote observations j’s minimum feasible GHG level by GHG' . There are three
cases to consider:

1. Assume (e, X, + BU, ) <GHG', then (x,,u, ) # GR

2. Asume{(ax X, + BUy ) > GLG‘} ,then

{(v, w): (e, v+ Bw)< GHGj} c {(v w): (a, v+ Bw)<(a, X, + B, )} and since the

hyperplanes defining the two sets are parallel, E; can not be a minimum.
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Cases 1 and 2 leave the following case:

3. (e, X, + U, )=GHG' . Therefore (E] e, X} +E}™Bu})=GHG'.
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Table 1. Characteristics of the seven surveyed plants

States lowa, Michigan, Minnesota, Missouri, Nebraska, S. Dakota, Wisconsin
Represented
Smallest 42.5
Annual Average 53.1
Production
gal/year)
03_2006 5
04_2006 6
Number of 01 2007 7
Survey =
Responses by 02_2007 !
Quarters 03_2007 7
04_2007 2
Percent of Smallest 0
Byproduct Sold Average 54
as Dry DGS Largest 97
Corn | Ethanol | DDGS | MWDGS
Primary Spot 0 0 3 1
Market Customer Contract 5 1 0 1
Technique Third Party/Agent 0 5 2 2
Table 2. Descriptive Statistics: Inputs and Outputs
Corn Natural Gas Electricit Ethanol DDGS | MWDGS
(million (thousand (million kv?//h) (million | (thousand| (thousand
bushels) | MMBTUS) gallons) tons) tons)
Average 4.8 361 7,8 13.7 21.3 145
Std Dev 0.9 61 15 2.8 10 154
Min 3.6 297 6.7 10.6 0 0.2
Max 8 569 13.3 22,9 34.2 56.2
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Table 3. Environmental Efficiency Decomposition

Technical Allocative Overall Reduction Reduction
DMU Environmental | Environmental | Environmental of GHG of GHG
Efficiency Efficiency Efficiency (tons)™® (%)™
1 0.977 0.983 0.961 3,268 6
2 1 0.931 0.931 6,227 11
3 0.985 0.970 0.956 3,617 7
4 1 0.951 0.951 3,801 7
5 1 0.993 0.993 567 1
6 0.979 0.993 0.973 2,331 4
7 1 0.948 0.948 4,697 9
8 1 0.947 0.947 4,704 8
9 1 1 1 0 0
10 0.997 0.959 0.956 3,539 7
11 1 0.989 0.989 950 2
12 1 1 1 0 0
13 1 0.940 0.940 8,007 9
14 1 0.949 0.949 4,625 9
15 1 0.944 0.944 4,804 9
16 1 0.974 0.974 2,015 4
17 1 0.985 0.985 1,098 2
18 1 0.938 0.938 5,178 10
19 1 0.987 0.987 1,133 2
20 1 1 1 0 0
21 1 0.947 0.947 4,611 9
22 1 0.967 0.967 2,736 5
23 1 0.974 0.974 2,023 4
25 1 0.985 0.985 1,199 2
26 1 0.970 0.970 2,614 5
27 1 1 1 0 0
28 1 0.917 0.917 7,941 14
29 1 0.956 0.956 3,708 7
30 1 0.961 0.961 3,068 6
31 1 0.964 0.964 2,831 6
32 0.993 0.980 0.973 2,239 4
33 1 0.992 0.992 684 1
34 1 0.914 0.914 8,662 14
Average 0.998 0.967 0.965 3,116 6
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Table 4. Shadow Values of GHG: observed to profit maximizing combination

WTP for change in  |Change in GHG emissions,| Shadow Value of
DMU 1 allocation, 7z — 7! ($) | GHG!-GHG' (tons) GHG ($/ton)

1 948,565 -2,618 -362

2 1,483,022 -5,648 -263

3 2,094,972 -2,728 -768

4 1,223,985 -3,105 -394

5 619,562 120 5,147 - outlier

6 1,263,224 -1,920 -658

7 1,515,535 -4,100 -370

8 2,398,535 -4,405 -545

9 3,199 0 INFINITE

10 850,101 -2,636 -322

11 719,229 -264 -2,726

12 1,382 0 INFINITE

13 2,175,472 -7,709 -282

14 1,597,466 -4,026 -397

15 1,751,089 -4,339 -404

16 825,632 -1,027 -804

17 1,692 0 INFINITE

18 1,540,254 -4,555 -338

19 1,230,951 -488 -2,521

20 258,318 295 877

21 1,797,859 -3,726 -483

22 1,975,711 -2,035 -971

23 781,594 -344 -2,269

24 1,041,712 -332 -3,141

25 2,192,398 -1,990 -1,101

26 9,613 0 INFINITE

27 2,301,210 -7,495 -307

28 1,252,438 -3,075 -407

29 1,439,841 -2,291 -629

30 1,106,262 -1,801 -614

31 727,808 -1,367 -532

32 1,396,934 271 5,154 - outlier

33 1,865,307 -8,663 -215
Average 1,420,685 -3,052 -466
Median 1,439,841 -2,636 -546
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Table 5. Reallocation from observed to profit maximizing combination

Measure

Category Corn

Natural Gas

Electricity

Dry

Wet

Average Change (%)

-5.88

-3.83

-0.41

26.03

-10.23

Table 6. Shadow Values of GHG: observed to GHG minimizing combination

WTP for change in

Change in GHG emissions,

Shadow Value of

bMU allocation, 7} —z' ($) | GHG! -GHG' (tons) GHG ($/ton)
1 659,193 -3,268 -202
2 443,897 -6,227 -71
3 134,209 -3,617 -37
4 -343,266 -3,801 90
5 286,956 -567 -506
6 -526,747 -2,331 226
7 294,875 -4,697 -63
8 610,737 -4,704 -130
9 -18,561 0 INFINITE
10 -886,553 -3,539 250
11 260,637 -950 -274
12 -817,158 0 INFINITE
13 1,728,919 -8,007 -216
14 432,472 -4,625 -94
15 -221,003 -4,804 46
16 -788,455 -2,015 391
17 -842,611 -1,098 767
18 1,041,500 -5,178 -201
19 326,317 -1,133 -288
20 -542,483 0 INFINITE
21 -417,870 -4,611 91
22 1,343,752 -2,736 -491
23 -373,408 -2,023 185
24 -839,949 -1,199 700
25 1,600,339 -2,614 -612
26 -263,194 0 INFINITE
27 307,697 -7,941 -39
28 176,556 -3,708 -48
29 164,586 -3,068 -54
30 -327,399 -2,831 116
31 -649,530 -2,239 290
32 -611,531 -684 894
33 1,046,320 -8,662 -121
Average 138,988 -3,548 -39
Median 176,556 -3,268 -54
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Table 7. Reallocation from observed to GHG minimizing combination

Measure

Category|

Corn

Natural Gas

Electricity

Dry

Wet

Average Change (%)

-3.05

-6.83

-1.35

-33.63

-4.11

Table 8. Shadow Values: GHG minimizing to profit maximizing combination

WTP for change in  |Change in GHG emissions,| Shadow Value of
DMU allocation, ) -7} ($)| GHG/!-GHG/ (tons) GHG ($/ton)

1 289,372 650 445

2 1,039,125 579 1,794

3 1,960,763 889 2,206

4 1,567,251 695 2,254

5 332,607 688 484

6 1,789,971 411 4,355

7 1,220,660 597 2,044

8 1,787,797 300 5,964

9 21,760 0 INFINITE

10 1,736,654 903 1,923

11 458,592 687 668

12 818,540 0 INFINITE

13 446,554 298 1,500

14 1,164,994 599 1,945

15 1,972,092 465 4,240

16 1,614,087 088 1,633

17 844,302 1,098 769

18 498,754 622 801

19 904,634 645 1,403

20 800,801 321 2,493

21 2,215,729 886 2,501

22 631,958 701 901

23 1,155,002 1,679 688

24 1,881,661 868 2,168

25 592,059 623 950

26 272,807 0 INFINITE

27 1,993,513 446 4,474

28 1,075,882 632 1,701

29 1,275,255 777 1,641

30 1,433,661 1,030 1,392

31 1,377,339 872 1,580

32 2,008,466 955 2,104

33 818,987 0 INFINITE
Average 1,243,777 721 1,726
Median 1,220,660 687 1,778
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Table 9. Reallocation from GHG minimizing to profit-maximizing point

Measure

Category

Corn

Natural Gas

Electricity

Dry

Wet

Average Change (%)

-2.75

2.82

0.94

12.45

-97.65
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