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Abstract 
 

Risk plays a vital role in farmers’ decisions on input allocations and, therefore, output 
supply. This paper provides empirical evidence on the estimation of production risk, 
risk preferences and technical inefficiency. An eight-year panel data set is used for 46 
rice farmers from a representative rainfed lowland environment in Central Luzon, 
Philippines. The heteroskedastic and stochastic frontier frameworks are reconciled 
and extended to accommodate the risk preferences of farmers in an analysis of 
production risk. Results show that technical inefficiency is overstated in risky 
production environments where farmers are risk-averse. 
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1. Introduction 

 
Studies of technical inefficiency in agricultural production in developing countries have 

proliferated in recent years, contributing to a much better understanding of its causes 

and extent. The accuracy of the estimates of technical inefficiency may nevertheless 

have been compromised by an inability to distinguish between technical inefficiency 

due to shortcomings in farming practices and sub-optimal outcomes brought about by 

the risk-reducing behaviour of risk-averse farmers. As a result, the extent of technical 

inefficiency may have been substantially overstated in studies of farm performance in 

risky production environments. 

The rainfed lowland farming system, in which rice smallholders operate in the 

Philippines, exemplifies such a production environment. Production risk is pervasive 

and potent in its effect on farming practices. This farming system provides an excellent 

testing ground to assess the relative contributions by technical inefficiency and risk to 

farm performance that is below what would be expected in a risk-free environment. 

The existence of risk in production environments affects decision making by farmers in 

terms of their input-allocation decisions and, therefore, output supply. The degree of 

riskiness of an outcome or event depends on the decision-makers’ attitudes towards 

risk. It is therefore important to analyse how risk affects farmers’ decisions on input 

allocations and, likewise, how it affects farmers’ efforts to achieve technical efficiency. 

The technical sources of production inefficiency and variability in rice production are 

well studied and well known (Anderson and Hazell, (1989)). Most empirical studies 

have been devoted to understanding the causes of low productivity, and explaining 

technical inefficiency effects and the causes of variability of outputs. The pioneering 

work of Just and Pope (1978) paved the way for understanding production under risk 

through the estimation of a heteroskedastic model of production. A shortcoming of their 

approach is that they examined the marginal effects of inputs on production risk 

independently of the effects of inputs on mean output and took no account of the risk 

preferences of decision makers. Aigner, Lovell and Schmidt (1977) and Meeusen and 

van den Broeck (1977) laid the foundation for accounting for technical inefficiency in a 

stochastic frontier production framework. Research in this framework generally ignores 
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the marginal effects on the risk component, despite the fact that the stochastic frontier 

model is consistent with the heteroskedastic model (Jaenicke and Larson, 2001). 

In this paper, we investigate production risk and technical inefficiency in rice 

production in the rainfed lowland environment in the Philippines by reconciling these 

two frameworks and extending them to accommodate the risk preferences of farmers. 

The risk preference function developed by Kumbhakar (2002) is used. Kumbhakar’s 

model allows us to examine production risk by simultaneously estimating production 

risk, risk preferences and technical efficiency in rice production. We provide precise 

estimates of technical inefficiency and production risk, which should prove useful for 

research managers and policy makers. 

The paper is organised as follows. A review of the methodological issues is presented 

in Section 2. In Section 3, the study area is described, the data set is discussed, and the 

empirical model and estimation procedures are outlined. The results are presented in 

Section 4 and concluding remarks are made in Section 5. 

2. Review of Conceptual Issues 

2.1 A stochastic frontier production function with flexible risk properties 

The flexible risk and stochastic frontier production frameworks are now well known, 

and are not described here. We review work related to the Kumbhakar (2002) model. 

Few empirical studies have attempted to combine the analysis of production risk and 

technical inefficiency in a single framework. Kumbhakar (1993) demonstrated a 

method to estimate production risk and technical inefficiency using a flexible 

production function to represent the production technology. The model was estimated 

using panel data and the risk function appears multiplicatively to accommodate 

negative and positive marginal risks with respect to output. The estimation of the 

individual technical efficiencies was also considered. 

Battese, Rambaldi and Wan (1997) specified a stochastic frontier production function 

with an additive heteroskedastic error structure. Their model allows for negative or 

positive marginal production risks of inputs, consistent with the Just and Pope (1978) 

framework. Their model is described below. 
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Let the production process be characterised by 

 iii XfY εα += );(  (1) 

where: 

iY  is the scalar output for the i-th farmer; 

iX  is a vector of functions of the levels of K inputs used by farmer i; 

);( αiXf  is the deterministic part of the production frontier; 

α  is a vector of technology parameters to be estimated; and 

iε  is the error term that can take different specifications depending on the nature of the 

analytical model. 

Following the standard stochastic frontier framework, the error specification in 

equation (1) is assumed to have the form: 

 iiiii UXhVXg );();( δβε −=  (2) 

where: 

ii VXg );( β  is the risk function; 

ii UXh );( β  is the inefficiency function; 

β and δ are parameter vectors; 

the Vis are error terms that are assumed to be independent and identically distributed 

standard normal random variables, representing production uncertainty; and 

the Uis are non-negative random variables associated with the technical inefficiency of 

the farmers, and are assumed to be independent and identically distributed truncations 

of the N(µ,σ2) distribution, independently distributed of the Vis. 
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Given that );( βiXh = );( βiXg  in the specification of equation (2), we obtain the 

stochastic frontier production function with flexible risk properties that was proposed 

by Battese, Rambaldi and Wan (1997, p. 270), defined by equation (3): 

 ])[;();( iiiii UVXgXfY −+= βα . (3) 

Given the values of the inputs and the technical inefficiency effect, Ui, the mean and 

variance of output for the i-th farmer are: 

 iiiiii UXgXfUXYE );();(),|( βα −=  (4) 

 );(),|( 2 βiiii XgUXYVar = . (5) 

The marginal production risk with respect to the j-th input is defined to be the partial 

derivative of the variance of production with respect to Xj. This can be either positive or 

negative: 

 0
),(
>

∂
∂

ij

iii

X
UXYVar

 or 0< . (6) 

Accordingly, the technical efficiency of the i-th farmer, denoted by TEi, is defined by 

the ratio of the mean production for the i-th farmer, given the values of the inputs, Xi, 

and its technical inefficiency effect, Ui, to the corresponding mean production if there 

were no technical inefficiency of production (Battese and Coelli, 1988, p. 389). It is 

specified as: 

 
)0,|(

),|(
=

=
iii

iii
i UXYE

UXYE
TE  = 1 - 

);(
);(

α
β

i

ii
Xf

XgU ⋅
 (7) 

We follow Battese, Rambaldi and Wan (1997) in estimating technical efficiency 

assuming that the Vis are independent and identically distributed (i.i.d.) as N(0,1) and 

the Uis are i.i.d. half-normals, N(0, 2
Uσ ), Ui≥ 0. If the parameters of the stochastic 

frontier production function were known, then the best estimator of Ui would be the 

conditional expectation of TEi, given the realised values of the random variable  

Ei= Vi– Ui (Jondrow et al. 1982). It can be shown that the conditional distribution of Ui 

given Vi - Ui is distributed as N( *
iµ , 2

*σ ), where µ* and 2
*σ  are defined by: 
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It can also be shown that E[Ui|(Vi-Ui)], denoted by iÛ , is given as: 
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where )(⋅φ  and )(⋅Φ represent the density and distribution functions of the standard 

normal random variable. Equation (10) can be estimated by using the corresponding 

predictors for the random variable iE  given by 
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= . (11) 

After equation (101) is estimated, then the technical efficiency of the i-th farmer can be 

predicted by 

 −=
∧

1iTE
)ˆ,(ˆ

)ˆ,(ˆˆ

α
β

i

ii
Xf

XgU ⋅
. (12) 

2.2 A model with risk preferences 

Neither the stochastic frontier production function defined by equation (3) nor the Just 

and Pope (1978) flexible risk model takes into account the risk preferences of 

individual farmers. While several attempts have been made to estimate production risk 

and technical efficiency in a single framework, a stumbling block has been how to 

incorporate the risk attitudes of producers in the model. The traditional approach to 

modelling behaviour under risk is based on the expected utility hypothesis. Most 

studies have sought to identify farmers’ risk preferences without estimating the source 

of randomness, or to estimate the sources of randomness without simultaneously 

estimating the risk preference structure (Moschini and Hennessy, 2001). 
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In an attempt to estimate production risk and producers’ risk preferences 

simultaneously, Love and Buccola (1991, 1999), Chavas and Holt (1996), and Saha, 

Shumway and Talpaz (1994) considered the risk preferences of producers in a joint 

analysis of input allocations and output supply decisions. Love and Buccola (1991) 

proposed a primal model that allows the preferences of firms and their technology to be 

estimated jointly in the presence of risk. They followed Just and Pope (1978) in using a 

heteroskedastic technology specification with Cobb-Douglas mean and variance 

functions, a constant absolute risk aversion risk preference structure, cross-equation 

restrictions and a nonlinear three-stage least-squares estimator. Their approach is 

restrictive in the sense that constant absolute risk aversion is imposed (Moschini and 

Hennessy, 2001). Saha, Shumway and Talpaz (1994), on the other hand, developed a 

method using an expo-power utility function that imposes no restrictions on the risk 

preference structure. Their results showed that the combined estimation of production 

function parameters with the utility function parameters is more efficient than 

estimating them separately. Chavas and Holt (1996) developed a joint estimation 

method that is able to test for constant or decreasing absolute risk aversion. 

One of the immediate problems of the empirical analysis of producers’ attitudes 

towards risk is that an explicit form of the utility function has generally been assumed. 

Another drawback is that it is necessary to impose distributional assumptions on the 

errors that represent production risk. Even with these assumptions, the main problem 

for an applied researcher is that there are only a few utility functions and probability 

distributions that can be used to derive the risk preference function analytically. They 

are difficult to estimate and the model becomes quite complicated (Kumbhakar, 2002). 

Because the risk preferences of producers have an important bearing on input allocation 

decisions, it is fundamental to consider a model that permits the simultaneous 

estimation of the risk attitudes of producers, production risk and technical inefficiency. 

Kumbhakar (2002) proposed a method that meets this challenge. We introduce a risk 

preference function in a model that follows Kumbhakar’s method and is consistent with 

the Just and Pope flexible risk and stochastic frontier production models. 

Assume that farmers maximise expected utility of profit: 

 )]([ πUEMax  (13) 
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where U(.) is assumed to be a continuous and differentiable utility function of expected 

profit (π), normalised by the output price, p, and defined as: 

 π = Yi – W.Xi (14) 

where W is the column vector of the prices of variable inputs relative to the output 

price. Recall from equation (3) that uncertainty in variable profit comes from 

production uncertainty, given by Vi, as well as technical inefficiency, Ui.  

The first-order condition for the maximisation of )]([ πUE  can be expressed as:  

 jijijjij XgXgwXf ηδλβθα +⋅+⋅−= ),(),(),(  (15) 

where: 

ij

i
ij X

XfXf
∂

∂
=

),(),( αα  is interpreted as the marginal product of input j, defined as the 

change in mean output for a unit change in the variable input, Xj; 

ij

i
ij X

),X(g
),X(g

∂
∂

=
β

α  measures the effect of input, Xj, on output such that Xj is risk-

increasing if 0),( >αij Xg , risk-decreasing if 0),( >αij Xg , and neither risk-

increasing nor risk-decreasing if 0),( =αij Xg ; 

θ =
)]('[

])('[
π
π

UE
VUE  and λ =

)]('[
])('[

π
π

UE
UUE  capture the risk preferences of the producers, such 

that θ < 0 and λ > 0 if producers are risk-averse (the effect of an increase of Ui on profit 

is the opposite of an increase in Vi) and risk-neutral if θ and λ are both zero; and 

ηj represents allocative inefficiency associated with optimisation error. 

Producers are said to be fully efficient if Ui = 0, in which case the risk preference 

function is given only by θ. 

According to Kumbhakar (2002), the derivation of the risk preference function depends 

on neither the specific parametric form of the utility function nor any distributional 

assumption on the error term representing production risk. It is based on the second-
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order approximation of the marginal utility of profit, U′(π), rather than the utility of 

profit, U(π), and the specific probability distribution of production risk. The parameters 

of the risk preference functions are estimated by assuming a parametric form of the 

absolute risk aversion function, allowing the identification of increasing, constant and 

decreasing absolute risk aversion. 

For the purpose of understanding the basic framework, the algebraic representation of 

the risk preference functions, θ  and λ, are presented as follows. Let 

 )(πU  = iiii UXgVXgU ),(),()( δβµπ −+  (16) 

where iii XWXf ⋅−= ),( αµπ . 

A second-order approximation of U′(π) at Vi = Ui = 0 yields the following forms of risk 

preference functions (Kumbhakar, 2002, p. 11): 
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where: 

)ˆ,( βiXg and )ˆ,(2 βiXg  are estimated values from the variance functions; and 

a, b and c are the first three central moments of Ui based on the assumptions of the 

standard frontier model with Ui distributed as half-normal, defined by: 

 uaUE πσ/2)( == ; 

 22 2)( ubUVar σ
π

π −
== ; and  

33 )1/4(/2}){( ucaUE σππ −==− . 

AR is the Arrow-Pratt measure of absolute risk aversion (Arrow 1971; Pratt 1964) 

defined by: 
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A farmer is said to be risk-averse, risk-neutral or a risk taker if AR>0, AR=0 or AR<0, 

respectively. Absolute risk aversion is useful for comparing the attitudes of farmers 

towards a given activity at different levels of wealth. Consequently, DR measures the 

downside risk aversion, which is defined by: 

)(
)(

π
π

U
UDR
′
′′′−

= . (20) 

If DR is positive, farmers are averse to downside risk, and “generally avoid situations 

which offer the potential for substantial gains but which also leave them even slightly 

vulnerable losses below critical level” (Menezes, Geiss and Tressler, 1980, p. 921). 

Equations (19) and (20) are related: 

 2ARARDR +
π∂
∂−

= . (21) 

In this framework, a parametric form of AR has to be assumed, which subsequently 

allows testing for different forms of risk preferences.  

By expanding (17) and substituting the values of θ and λ, we have: 

fj(Xi,α ) = Wj- 

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ii

ii

ββ
ββ  gj(Xi, β) + ηj. (22) 

From equation (22), it can be seen that input allocations are affected by the presence of 

technical inefficiency and production risk by means of θ and λ. If technical inefficiency 

were neglected in the model, information on input allocation and predicted values of the 

risk preference function would be misleading. Thus, the absolute, relative and downside 

risk aversion measures are invalid (Kumbhakar, 2002). Similarly, neglecting production 

risk can lead to inaccurate measures of technical efficiency. 
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The parameters of the mean function, risk function, inefficiency function and AR 

functions can be estimated using a multi-step procedure or maximum-likelihood 

estimation. Kumbhakar (2002) proposed a multi-step procedure to estimate a model 

with production risk and risk preferences that is followed in this paper. 

3. Empirical Application 

3.1  The study area and data 

The data consist of an eight-year panel of 46 farms. They were collected by the 

International Rice Research Institute (IRRI) as part of a research activity undertaken by 

the Rainfed Lowland Rice Research Consortium. A farm survey was conducted to 

gather information on the resource base of farmers, rice crop management, including 

the amounts of inputs and output, and general characteristics of farm households 

residing in four villages (Calibungan, Canarem, Mangolago and Masalasa) within the 

municipality of Victoria in the province of Tarlac, Philippines. The farmers were 

randomly selected in each village from a total list of farmers obtained from the 

municipality of Victoria. Monitoring rice production practices of the 46 sample farmers 

was initiated in 1990 and continued until 1997. For each year, crop production data 

were obtained for all fields that were operated by the sample farmers. 

The agricultural sector is dominant in the economy of Tarlac. Rice is the main crop 

planted during the wet season, accounting for almost 90 per cent of the total cropped 

area. In 1997, the total area planted to rice was approximately 103,000 hectares with a 

total output of 389,000 tonnes. The average rice yield was 3.8 tonnes per hectare. 

There are two distinct seasons in the province. The wet season usually starts in late May 

and ends quite abruptly in mid-October. The average annual rainfall in Tarlac from 

1977 to 1997 was about 1,620 mm, with most of the rains occurring during July to 

September. Overall, the rainy season provides four months of more than 200 mm per 

month. The dry season occurs from November to April, with an average rainfall of less 

than 100 mm per month.  

There are two major land types in the study area. In this study, we use the farmers’ 

classification of land type. In Tarlac, land type can be classified into upper bantog 

(upper fields), lower bantog (medium fields) and lubog (lower fields). The bantog 

fields are drought-prone on the upper part of the toposequence while the lubog fields 
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are generally prone to flood and submergence. Overall, bantog is the most common 

land type, accounting for about 76 per cent of the total area under rice. Soil types are 

classified as Panaratin, Kadagaan and Pila, which are sandy, clay and heavy clay soils, 

respectively. Of the total operational landholdings, clay soils covered about 50 per cent 

of the area monitored. Sandy soils are most dominant in the upper fields while clay 

soils are dominant on the medium and lower fields. 

The average operational holding of the sampled farms during 1990 to 1997 was about 

2.7 hectares. Landholdings are fragmented, with more than three parcels per household, 

on average, and an average area per parcel of almost 0.8 hectare. Eighty per cent of the 

land was planted to rice in the first season. As rainfall is inadequate for a second crop of 

rice, rainfed fields are left fallow in the second season. 

The major inputs used in rice production are fertiliser, labour and chemicals. Fertilisers 

are applied in both the seedbeds and the main fields. The main sources of labour are 

family, hired and exchange labour. Herbicides are applied in the main fields to control 

weeds, especially in the upper land types. 

3.2 Empirical model  

Following the Kumbhakar (2002) approach outlined in Section 2.2, we specify a model 

for panel data: 

 ]UV)[;X(g);X(fY ititititit −+= βα  (23) 

where: 

Yit represents the quantity of freshly threshed rice paddy (in tonnes) of the i-th farmer in 

the t-th year; and 

);( αitXf  and );( βitXg are the quadratic mean production function and the risk 

function, where, for example, );( αitXf  is defined by 

kitjit
j k

jkjit
j

jit XXXXf ∑∑∑
≤=

++=
5 55

1
0 5.0);( αααα . (24) 

There are five input variables that are defined as follows: 
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X1 is the total area planted to rice (in hectares); 

X2 is fertiliser (as nitrogen, phosphorus and potassium, or NPK) (in kilograms); 

X3 is total family, exchanged and hired labourers growing, harvesting and threshing rice 

(in person-days); 

X4 is herbicide applied (in grams of active ingredients); and 

X5 denotes the year in which the observation on rice production is obtained. 

The elasticity of mean output with respect to input Xj, given Ui=0, is given by 


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Descriptive statistics of the variables included in the model are presented in Table 1. 

The average production of rice was approximately 6.5 tonnes per household, which 

translates to a mean yield of about 3.1 tonnes per hectare. Rice production is highly 

variable, with output per household ranging from 92 kilograms to 31.1 tonnes. Average 

fertiliser use was 187 kilograms per household, which is equivalent to approximately 89 

kilograms per hectare. The average labour use was approximately 51 person-days per 

hectare. 

[TABLE 1 HERE] 

The marginal production risk at the frontier is given by 
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Equations (15), (24) and (26) are used to express the first-order conditions for input Xj: 
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where θ and λ, as previously defined, contain the estimated values of );( βitXg , values 

of the first, second and third central moments of Ui, and the AR and DR functions. We 

choose a linear form of the absolute risk aversion function: 

 *10 Π+= γγAR   (29) 

where Π* is the initial wealth plus mean profit. The value of non-farm income and the 

estimated value of household assets are used as a proxy for initial wealth. An explicit 

form of the downside risk aversion function of the producers can also be estimated. 

Equation (28) is estimated using non-linear three-stage least squares regression to 

obtain estimates of the mean function, variance functions and risk preference functions. 

The corresponding estimates of technical efficiencies are obtained using equation (12). 

The estimates are presented in the following section. 

4. Results 

In this section, results are presented for the empirical model that is specified above. 

Table 2 contains elasticity results for the generalised flexible risk frontier model, 

defined by equation (3). It shows that the elasticities for area and labour are significant 

at the five per cent level. 

[TABLE 2 HERE] 

The mean values of the output elasticities for area, fertiliser, labour and herbicide are 

about 0.38, 0.14, 0.34 and 0.01, respectively. In calculating elasticities for individual 

farmers at their input values, we found that some elasticity estimates were negative for 

a few farmers, implying some excessive use of inputs. 

The marginal output risk estimates of the inputs are presented in Table 3. On average, it 

can be seen that fertiliser and labour are risk-increasing while herbicide is risk-

decreasing. This implies that fertiliser and labour are estimated to increase the variance 

of the value of output. 

[TABLE 3 HERE] 

We examined the risk preferences of each farmer based on the predicted values of the 

risk preference functions, θ and λ, in equation (15). The risk preference estimates of 



 14

each farmer are presented in Table 4. Results show that all farmers are risk-averse, 

indicated by the negative values of θ and positive values of λ. The mean value of θ 

estimated over the eight-year period is -0.453. The magnitude of the estimates varies 

across farms, with a range of 0.609. The estimated mean value of the λ-parameter is 

0.556, with all estimates positive. The magnitudes of the risk preference functions are 

found to vary from year to year.  

[TABLE 4 HERE] 

It can also be seen from the Table 4 that the values of θ are larger than the values of λ. 

This implies that the risk component has greater influence on decisions on input use 

than the inefficiency component, although the difference is not great. 

The estimated AR function is given as 

AR = -0.059 – 0.0027 Π*  
(0.069)  (0.0016) 

where the figures in parentheses are the corresponding standard errors correct to two 

significant digits. The estimated coefficient, 1γ , is negative and is significant at the five 

per cent level. This implies that the rice farmers exhibit decreasing absolute risk 

aversion. 

The predicted values of absolute and downside risk aversion for each farmer are 

presented in Table 5. The average degree of absolute risk aversion is 0.394 with a 

standard deviation of 0.028. A larger value of AR implies a stronger aversion to risk. 

The predicted values of downside risk aversion are all positive, indicating aversion to 

downside risk. Again, a larger value of DR shows greater downside risk aversion. The 

average value of DR is 0.156 with a standard deviation of 0.021. 

[TABLE 5 HERE] 

The predicted values of Uit are used to estimate the technical efficiencies of individual 

farmers. The annual averages and ranges of estimated technical efficiencies are 

presented in Table 6. The mean technical efficiency is 0.88, with the individual 

technical efficiencies ranging from 0.58 in 1996 (a drought year) to 0.79 in 1993.  
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The frequency distribution table of the technical efficiencies for individual years is 

given in Table 7. On average, most of the farmers have technical efficiency levels of 

more than 0.80 for all years. From the table, it can be seen that the distribution of the 

levels of technical efficiency of farmers were more dispersed in 1996. About 20 per 

cent of the farmers had technical efficiencies between 0.71 and 0.80. 

 [TABLE 7 HERE] 

5. Concluding Comments 

The primary objective of this paper is to provide an empirical application of the 

estimation of production risk, risk preferences and technical efficiency. The models 

used in this paper are consistent with the specification of Just and Pope (1978), Aigner, 

Lovell and Schmidt (1977), Battese, Rambaldi and Wan (1997) and Kumbhakar (2002). 

The empirical application is based on an eight-year panel data of 46 farmers in a rainfed 

lowland rice environment in the Philippines. Rice production in the rainfed rice 

environment is inherently risky, because of the highly variable rainfall and 

heterogeneous production environment. The study area is representative of the rainfed 

environment in the Philippines. 

We estimated a stochastic frontier production function with flexible risk properties. The 

estimated effects of inputs on the output variance show that labour and fertiliser are 

risk-increasing while herbicide is risk-decreasing. 

We used the technique proposed by Kumbhakar (2002) to estimate the risk preference 

functions of farmers. All estimates of the risk preference functions and risk aversion 

coefficients confirmed that farmers are risk-averse. The results show further that the 

degree of risk aversion varies across farms and over time. The estimates of the risk 

preference functions imply that the risk component has a slightly greater influence on 

the input-use decisions than the inefficiency component. Finally, the technical 

efficiencies of individual farmers were shown to vary over time and across farmers.  
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Table 1: Descriptive statistics of the variables 
 

Variable  Mean Standard 
deviation Minimum Maximum 

Rice harvested (tonnes) 6.47 5.08 0.09 31.1 

Area (hectares) 2.11 1.45 0.20 7.00 

Fertiliser (kilograms) 187.0   168.82 3.36 1030.9 

Labour (person-days) 107.0 76.8 7.8   436.9 

Herbicide (grams) 0.39 0.62 0.0 4.41 

 



 19

Table 2: Output elasticity estimates at mean input levels 

Input Elasticity Standard Error 

Area 0.383* 0.073 

Fertiliser 0.14 0.11 

Labour 0.34* 0.15 

Herbicide 0.010 0.022 
* Denotes significant at the five per cent level. 
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Table 3: Marginal production risk estimates 

Input Coefficient Standard Error 

Fertiliser 0.0038 0.0055 

Labour 0.012 0.020 

Herbicide -0.02 0.75 
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Table 4: Average risk preference estimates for all sample farmers 

θ λ 
Farmer Mean Std Mean Std 

1 -0.656 0.055 0.524 0.014 
2 -0.74 0.16 0.498 0.047 
3 -0.75 0.22 0.494 0.061 
4 -0.379 0.080 0.583 0.013 
5 -0.624 0.030 0.5287 0.0070 
6 -0.194 0.037 0.6010 0.00097 
7 -0.43 0.12 0.544 0.024 
8 -0.536 0.079 0.552 0.017 
9 -0.573 0.062 0.542 0.013 

10 -0.73 0.13 0.506 0.039 
11 -0.301 0.044 0.5935 0.0036 
12 -0.151 0.024 0.60057 0.00038 
13 -0.377 0.072 0.583 0.011 
14 -0.455 0.079 0.570 0.015 
15 -0.154 0.039 0.59815 0.00037 
16 -0.194 0.060 0.5976 0.0027 
17 -0.70 0.18 0.497 0.045 
18 -0.73 0.28 0.486 0.067 
19 -0.76 0.15 0.490 0.043 
20 -0.75 0.13 0.494 0.035 
21 -0.64 0.10 0.525 0.025 
23 -0.446 0.080 0.572 0.015 
24 -0.73 0.26 0.490 0.067 
26 -0.59 0.12 0.532 0.028 
27 -0.51 0.12 0.528 0.019 
28 -0.340 0.043 0.5877 0.0054 
29 -0.418 0.075 0.568 0.012 
30 -0.41 0.12 0.573 0.017 
31 -0.45 0.15 0.563 0.031 
32 -0.20 0.13 0.577 0.011 
33 -0.214 0.058 0.5993 0.0028 
34 -0.242 0.026 0.5871 0.0015 
35 -0.29 0.10 0.5825 0.0084 
36 -0.227 0.045 0.5989 0.0020 
37 -0.60 0.18 0.534 0.039 
38 -0.432 0.071 0.575 0.011 
39 -0.307 0.056 0.5868 0.0059 
40 -0.327 0.093 0.574 0.010 
41 -0.58 0.27 0.530 0.054 
42 -0.174 0.036 0.59349 0.00073 
43 -0.466 0.023 0.5656 0.0044 
44 -0.308 0.024 0.5931 0.0024 
45 -0.499 0.073 0.554 0.014 
46 -0.346 0.075 0.5746 0.0080 
All -0.45 0.22 0.556 0.045 
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Table 5: Predicted values of the absolute and downside risk aversion 

Absolute (AR) Downside (DR) 
Farmer Mean Std Mean Std 

1 0.4073 0.0034 0.1658 0.0028 
2 0.4076 0.0063 0.1661 0.0052 
3 0.4130 0.0044 0.1706 0.0037 
4 0.4150 0.0029 0.1722 0.0025 
5 0.3924 0.0071 0.1540 0.0056 
6 0.4123 0.0013 0.1699 0.0011 
7 0.3009 0.0072 0.0906 0.0044 
8 0.4060 0.0050 0.1648 0.0041 
9 0.4008 0.0030 0.1606 0.0024 
10 0.4240 0.0061 0.1797 0.0052 
11 0.4136 0.0024 0.1711 0.0020 
12 0.40758 0.00078 0.16612 0.00063 
13 0.4128 0.0025 0.1704 0.0021 
14 0.4123 0.0010 0.16997 0.00087 
15 0.40171 0.00046 0.16137 0.00034 
16 0.40471 0.00053 0.16379 0.00043 
17 0.3614 0.0053 0.1306 0.0038 
18 0.376 0.011 0.1413 0.0084 
19 0.3968 0.0082 0.1574 0.0065 
20 0.3946 0.0069 0.1558 0.0055 
21 0.4013 0.0057 0.1611 0.0046 
23 0.4140 0.0044 0.1714 0.0036 
24 0.382 0.016 0.146 0.012 
26 0.3892 0.0067 0.1515 0.0053 
27 0.2797 0.0070 0.0782 0.0039 
28 0.4091 0.0021 0.1673 0.0017 
29 0.3831 0.0039 0.1467 0.0030 
30 0.4045 0.0018 0.1636 0.0015 
31 0.3975 0.0052 0.1581 0.0041 
32 0.35282 0.00099 0.12448 0.00070 
33 0.41178 0.00072 0.16956 0.00059 
34 0.3763 0.0019 0.1416 0.0014 
35 0.3818 0.0010 0.1457 0.0010 
36 0.4116 0.0025 0.1693 0.0020 
37 0.4140 0.0055 0.1714 0.0045 
38 0.4180 0.0041 0.1748 0.0034 
39 0.3952 0.0018 0.1562 0.0014 
40 0.36237 0.00152 0.1313 0.0011 
41 0.4101 0.0075 0.1682 0.0062 
42 0.38858 0.00068 0.15099 0.00053 
43 0.4004 0.0043 0.1603 0.0034 
44 0.4133 0.0014 0.1708 0.0012 
45 0.3867 0.0052 0.1495 0.0041 
46 0.3713 0.0031 0.1379 0.0023 
All 0.394 0.028 0.156 0.021 
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Table 6: Annual estimates of technical efficiency 

Year Mean Minimum Maximum 

1990 0.89 0.62 0.97 

1991 0.88 0.77 0.98 

1992 0.90 0.74 0.96 

1993 0.89 0.79 0.97 

1994 0.88 0.76 0.97 

1995 0.88 0.58 0.97 

1996 0.85 0.59 0.95 

1997 0.88 0.71 0.96 

All years 0.88 0.58 0.98 
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Table 7: Relative frequency distribution of farmers in different technical efficiency 
intervals 

 Percentage of farmers (%) 

Year 0.51-0.60 0.61-0.70 0.71-0.80 0.81-0.90 0.91-1.00 

1990  2.27 15.91 22.73 59.09 

1991   11.36 38.64 50.00 

1992   9.09 31.82 59.09 

1993   2.27 54.55 43.18 

1994   4.55 56.82 38.64 

1995 2.27  2.27 56.82 38.64 

1996 2.27  20.45 56.82 20.45 

1997   11.36 40.91 47.73 

 


