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Abstract

It is pointed out that the Chebychev confidence intervals and

maximum p-values advocated by Davis and Espinoza for

sensitivity analysis of equilibrium displacement models are

unnecessary. Desired probability intervals and probabilities can be

accurately estimated without resorting to gross approximations.
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A Unified Approach to Sensitivity Analysis in

Equilibrium Displacement Models: Comment

In a recent paper in this Journal, Davis and Espinoza (DE) argue for a

distributional approach to sensitivity analyses in equilibrium displacement models

(EDMs). They advocate placing a subjective probability distribution on a parameter

vector θ, and using simulation to estimate the corresponding probability distribution

of an EDM outcome vector Y* = f(X*, θ), conditional on values of some exogenous

shifters X*. Our interest stems from a paper of ours (Zhao et al) which also argues for

such an approach.

There are two aspects of the DE paper that we think are worthy of comment.

The first is a conceptual matter. They use the term "posterior" distribution to describe

the subjective probability distribution on Y*, and refer to their procedure as a special

case of Bayesian or mixed estimation. However,  the essential ingredients in Bayesian

estimation are a prior distribution, a likelihood function, and a posterior distribution.

From Bayes' theorem, the posterior distribution is proportional to the product of the

prior and the likelihood. In DE's analysis there is no likelihood function which is

combined with the prior distribution on θ via Bayes' theorem to obtain a posterior

distribution on θ. The distribution on Y* is simply that which is induced by the

distribution on θ, through the transformation Y* = f(X*, θ). Thus, in this sense,  the

distribution on Y* is still a prior distribution not a posterior distribution.

Our second point is more substantive and has considerable relevance for

applications. DE go on to say: "Because the actual distributions of the *
xaP 's (Y* in our

notation) are not known, the distribution free Chebychev inequality is used to
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construct a minimum 95% confidence interval around each mean and develop

maximum p-values." (p.875) We believe that the distribution for Y* is known (or at

least accurately estimated), and hence the Chebychev inequality is unnecessarily

imprecise. We suggest alternatives to the "confidence intervals" and  "p-values"

calculated by DE.

Draws from the joint probability distribution for the elements in θ are used to

compute draws or observations from the joint probability distribution for the elements

in Y*. The distribution of θ could be a posterior or a prior distribution, depending on

whether sample data are available or not. In DE's example it is a prior distribution. A

marginal distribution for one of the elements in Y* is estimated by constructing a

histogram of the draws of that element. The preciseness of the histogram as an

estimate of the marginal probability distribution is controlled by the number of draws.

We can make the histogram as accurate as we please by increasing the number of

draws. In other words, the distribution of Y* is  known, although not analytically. The

distribution of Y* is implicitly specified by specifying the subjective distribution for θ,

and the relationship between Y* and θ. Let *
iY  be the element of Y* in which we are

interested. DE are interested in finding an interval (a, b) such that P(a < *
iY  < b) =

0.95.  We prefer to use the term "probability interval", rather than "confidence

interval", to describe intervals like (a, b). The term confidence interval has

traditionally been used for inference about an unknown parameter in a repeated-

sampling theory framework, not for intervals from subjective probability

distributions. Irrespective of what we call it, an accurate estimate of the required

interval can be found without using Chebychev's inequality. Sort the simulated

observations on *
iY  according to magnitude. Discard the first 2.5% and the last 2.5%.
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The first and last values of the remaining ordered observations are the 0.025 and

0.975 empirical quantiles; they define the required interval. This is the approach taken

by Zhao et al.

What are the consequences of using Chebychev's inequality instead? The

minimum 95% probability intervals constructed by DE are likely to be much wider

than necessary, and the probability content of their intervals is likely to be much

greater than 0.95. Consider, for example, a normal random variable Z with a mean of

zero and a variance of one. The precise 0.95 probability interval is (−1.96, 1.96).  An

estimate of this interval that we obtained by drawing 10,000 simulated observations is

(−1.964, 1.957). The "minimum interval" obtained using Chebychev's inequality is

(−4.472, 4.472). The probability content of the minimum interval is P(−4.472 < Z <

4.472) = 0.999992. As an example of a distribution that is not symmetric, consider a

gamma random variable G with scale parameter equal to 1 and shape parameter equal

to 2. This distribution has a mean of 2, a mode of 1 and a standard deviation of 2 . A

precise 0.95 probability interval, obtained by having a probability of 0.025 in each of

the tails, is (0.242, 5.572). An estimate of this interval that we obtained by drawing

10,000 simulated observations is (0.244, 5.536). The minimum interval obtained

using Chebychev's inequality is (−4.324, 8.324), which is not very helpful given the

range of a gamma random variable is (0, ∞). Also,  P(0 < G < 8.324) = 0.9977.

DE calculate maximum p-values to test whether each of Gardner's three

exogenous shifters will result in significant changes in the retail- farm price ratio, and

they claim that these p-values illustrate the usefulness of the proposed approach. We

believe that (i) the term "p-value" is an unfortunate one, (ii) probability statements

about possible values for *
iY  are, indeed, very important, and (iii) probability

statements can be accurately estimated without the imprecision associated with
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Chebychev's inequality. Consider point (ii) first. In empirical applications that utilize

the EDM for aiding research evaluation and priority setting, it is often important to

know whether a model outcome exceeds some break-even point for making a policy

recommendation. For example, it may be important whether the total benefits from a

research program exceed the cost of the research investment, whether the farmers'

share of total benefits is smaller than their share of the levy for funding the research,

or whether farmers have a bigger share of benefits from farm research than they do

from processing research. Assuming certainty about the magnitudes of the research-

related exogenous variables in X*, the answers to these questions depend on the θ

values used in the model. With conventional use of the EDM, fixed parameter values

are often chosen based on the researcher's belief on the most likely values for the

parameters, and conclusions are made regarding the above questions. However, what

if the parameter values used are incorrect? Since we are often uncertain about the

parameter values, there is a chance that we will make wrong decisions. The proposed

stochastic approach in DE and Zhao et al quantifies the uncertainty in the parameters

with a subjective distribution for θ; based on the consequent derived distribution for

*
iY , it allows us to compute the probability of making a wrong decision. A natural

way for presenting information on policy-related statements such as those above is to

give the probability that a statement is true (or false). By doing so, we are placing a

level of confidence on the policy-related conclusions from the EDM. The required

probabilities are easily obtained by calculating the proportion of simulated

observations for *
iY  that fall in the relevant pre-defined region.

The p-values considered by DE are, we believe, a special case of the more

general problem of finding the probability that *
iY  falls in a given interval. The term
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p-value is an unfortunate one because a repeated-sampling concept is being forced

into a subjective probability framework. The marriage is not ideal, but we have a

suggestion which we believe is a precise estimate of the p-value sought by DE.

Suppose interest centers on the point hypothesis H0: 
*
iY  = C. One approach to testing

this hypothesis against a two-tail alternative is to not reject H0 if C lies within a 95%

probability interval (constructed as described above), and to reject H0 if C falls

outside the interval. This approach is similar to what Zellner (Ch.10) describes as

Lindley's procedure. The idea is that, if C falls within a 0.95 probability interval, then

it is a reasonably likely value, and hence cannot be rejected. It also seems to be the

idea DE is conveying. It is equivalent to rejecting H0 if P( *
iY  > C) < 0.025 or P( *

iY  <

C) < 0.025, and not rejecting H0 otherwise. Now, as mentioned above, the probability

that *
iY  lies in any pre-specified interval is accurately estimated by the proportion of

simulated draws that falls in that interval. Thus, probabilities such as P( *
iY  > C) and

P( *
iY  < C) are easy to obtain. Indeed, we think that conveying information to policy

makers in the form of probability statements such as these is preferable to conveying a

relatively arbitrary decision to reject or not reject H0. Both are related of course. The

"p-value" that eluded DE and led them to consider a "maximum p-value" instead is

given by P( *
iY  > C) when E( *

iY ) < C and by P( *
iY  < C) when E( *

iY ) > C. (Strictly

speaking, this comparison should be between C and the median of *
iY , not the mean.

DE give the conditions as E( *
iY ) < 0 and E( *

iY ) > 0, respectively; they are implicitly

assuming C = 0.) Suppose that E( *
iY ) < C and denote the mean and standard

deviation of *
iY  by µ = E( *

iY ) and σ, respectively. To demonstrate that DE's

maximum p-value is an upper bound for P( *
iY  > C), we can write:
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p-value = P( *
iY  > C) = P[( *

iY  − µ) > (C − µ)].

From Chebychev's inequality,

2
* 1

]||[
k

kYP i ≤σ>µ− ,

and hence

2
* 1

])[(
k

kYP i ≤σ>µ− .

Setting k = (C − µ)/σ yields:

p-value = P[( *
iY − µ) > (C − µ)] ≤ 

2

2

)( µ−
σ

C
.

The maximum p-values computed by DE are given by σ2/(C − µ)2. Because these

maximum values can be very much greater than the actual values, they are of limited

usefulness. Consider the first of the two earlier examples where Z ~ N(0, 1), and let

C = 2. In this case P(Z > 2) = 0.023. An estimate of this quantity that we obtained

using 10,000 simulated draws is 0.022. The corresponding maximum p-value is 0.25.

Consider the second example where G is gamma random variable with scale

parameter 1 and shape parameter 2. Let C = 3. In this case P(G > 3) = 0.199, an

estimate from 10,000 simulated draws is 0.200, and the maximum p-value is 2. The

impreciseness of Chebychev's inequality also led DE to obtain several maximum p-

values that were greater than one.

It is useful to quantify the accuracy with which a probability can be estimated.

The estimates we obtained from 10,000 draws were very close to the true

probabilities. However, can we be sure that such estimates will always be this

accurate? The standard deviation of an estimated proportion or probability is

2/1]/)1([ npp −  where p is the unknown probability and n is the number of draws.

The maximum value of this standard deviation over all possible values for p is
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0.5/n1/2. Furthermore, for large n, an estimated proportion p̂ is normally distributed.

Thus, for 10,000 simulated draws, there is at least a 0.95 probability that the

estimation error will be less than 1.96 × 0.5/(10000)1/2 = 0.0098. With 50,625 draws,

the number used by DE, there is at least a 0.95 probability that the estimation error

will be less than 0.0044.

To further demonstrate (1) the effect of using empirical quantiles and

estimated proportions instead of Chebychev intervals and maximum p-values, and (2)

the accuracy with which characteristics of a distribution can be estimated when a

large number of simulated observations are available, we attempted to replicate DE's

illustration from Gardner's model. The results appear in Table 1. In the last 2 columns

we compare the 95% probability intervals obtained using empirical quantiles with

DE's "95% confidence intervals", and the estimated proportions with DE's "maximum

p-values". Standard errors for the estimated characteristics are provided. (See Mood,

Graybill and Boes, p.257 for the standard error of an empirical quantile.) The

simulation was programmed in SHAZAM code, using algorithms found in Rubinstein

for generating beta and gamma random variables.

We successfully reproduced DE's results for their scenario I, but were unable

to do so for their scenario II. After extensive checking and experimentation, we were

led to conjecture that the scenario II discrepancies are caused by at least one unlikely

parameter value obtained by DE. The distribution for the input substitution elasticity

σ in scenario II is truncated normal defined over (0, 1) with location µ = 0.74 and

scale ψ = 0.12247. The smallest draw from this distribution reported by DE was 0.18.

The probability of obtaining a draw this small or smaller is 0.245 × 10-5. The expected

number of draws this small or smaller in 50,625 draws is 0.12; the probability of

getting one or more draws less than or equal to 0.18 in 50,625 draws is 0.13. Thus, a
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value of σ = 0.18 is possible, but it is unlikely, and it did not happen in our

simulation. (Our minimum was 0.27.) Furthermore, our experimentation suggested

that smaller values of σ tend to lead to values of P*
xa,N, P*

xa,W and P*
xa,T which are

larger in absolute value, a result which is consistent with the observed discrepancies.

The larger variances obtained by DE are also consistent with their larger range for σ.

Although our different results warrant an explanation, they do not alter the

points we are making. In Table 1 we have reported our results to more decimal places

than those reported by DE so that the standard errors are meaningful. The small

standard errors show how accurately the characteristics of a simulated distribution can

be estimated. In particular, the estimated end points of the 95% probability intervals

are very accurate indeed, and the intervals are much narrower than those based on

Chebychev bounds. The estimated proportions are also much more useful than the

maximum p-values. For P*
xa,N the maximum p-values for both scenarios are one when

estimates of the desired probabilities are both 0.279, with standard errors of 0.002.

That is, for a retail demand shift, there is a 28% chance that the retail-farm price ratio

will increase, and a 72% chance it will decrease. Furthermore, there is a 95% chance

that the percentage change in the retail-farm price ratio will be between – 47% to

23%. In the sense that zero is a reasonably likely value of P*
xa,N, the hypothesis P*

xa,N

= 0 can not be rejected. For P*
xa,W and P*

xa,T, the prior distributions on the parameters

are such that zero is not a feasible value. We know, a priori, that P(P*
xa,W ≥ 0) =

P(P*
xa,T ≤ 0) = 0. That is, the retail-farm price ratio will always decrease from a farm

supply shift and it will always increase from a marketing supply shift.  Thus, p-values

greater than zero are not meaningful, and the required probabilities are known without

estimation error. As zero is not even a possible value, the hypotheses P*
xa,W = 0 and

P*
xa,T = 0 will be rejected.
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Like DE, we believe that using subjective distributions greatly enhances

applications of the equilibrium displacement model. The contribution of this comment

is to point out that, in such analyses, the very rough probability approximations

obtained from Chebychev's inequality are unnecessary. Precise probability estimates

can be found easily from the relevant proportions of simulated draws. A number of

extensions to DE's analysis are made in Zhao et al. Hierarchical distributions are

suggested as a way of representing potentially diverse views about parameters. Also,

an average sensitivity elasticity is defined and used as a measure of the relative

importance of the individual parameters in θ.
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Table 1.  A Comparison of Summary Statistics, Probability Intervals and p-values

Price 95% Probability

Change Scenarioa Variance Mean Median Mode Intervalb c
jPP )0( ≠

P*
xa,N I(DE) .10 −.14 −.10 −.05 −1.58 1.30 1.0

I(GZ) .102 −.138 −.096 −.05 −0.887 0.394 0.279
(.002)d (.001) (.001) (0.008) (0.006) (0.002)

II(DE) .05 −.10 −.08 −.05 −1.07 0.87 1.0
II(GZ) .0296 −.088 −.0742 −.045 −0.468 0.243 0.279

(.0003) (.001) (.0008) (0.003) (0.003) (0.002)

P*
xa,W I(DE) .006 −.46 −.48 −.49 −0.80 −0.13 0.03

I(GZ) .00541 −.4625 −.4756 −.497 −0.589 −0.273 0.0
(.00006) (.0003) (.0002) (0.001) (0.002) (0.0)

II(DE) .008 −.37 −.39 −.41 −.077 0.03 0.06
II(GZ) .00623 −.3353 −.3525 −.380 −0.4432 −0.138 0.0

(.00005) (.0004) (.0004) (0.0004) (0.001) (0.0)

P*
xa,T I(DE) .005 .53 .52 .50 0.20 0.85 0.02

I(GZ) .00513 .5256 .5155 .502 0.395 0.702 0.0
(.00006) (.0003) (.0002) (0.001) (0.002) (0.0)

II(DE) .007 .42 .43 .44 0.06 0.78 0.04
II(GZ) .00399 .3764 .3890 .408 0.217 0.4645 0.0

(.00004) (.0003) (.0003) (0.001) (0.0003) (0.0)
Notes:
a DE refers to the values obtained by Davis and Espinoza. GZ refers to the values that we calculated.
b These values are the Chebychev Bounds in the DE rows and the .025 and .975 empirical quantiles in the GZ rows.
c These values are upper bounds in the DE rows and sample proportions in the GZ rows. For NP  and WP  the relevant probability is )0( >jPP . For TP  it is )0( <jPP .
d The numbers in parentheses are asymptotic standard errors.


