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Abstract

Crop output can be defined as the product of area sown and yield. Given the existence
of separate equations for explaining and predicting area sown and yield, in this paper
we suggest predictors for output and derive expressions for the standard errors of the
predictors. The methodology is applied to wheat production in the Corrigin Shire of
Western Australia.
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PREDICTING OUTPUT FROM SEEMINGLY

UNRELATED AREA AND YIELD EQUATIONS

1. Introduction

Predicting total production of a grain crop, for a given geographical area in a

given time period, is a frequently-faced problem in agricultural economics.  One

approach to this prediction problem is to carry out the following three steps:  (1)

Specify separate yield and area response equations;  (2) from a time series of past

observations, use econometric methods to estimate the parameters of each equation;

and (3) use the estimated equations to make separate predictions of yield and area, and

predict output as the product of predicted yield and predicted area.  The argument for

estimating separate area and yield equations rather than one single equation for output

is usually based on the different decision processes and different variables that tend to

underlie the area and yield equations.  The area that is planted tends to depend upon

price expectations (for the crop of interest as well as those of alternative crops), habit

persistence (usually captured by a lagged dependent variable), input costs and rainfall

at sowing time.  Yield, on the other hand, depends upon climatic factors throughout

the season and a variety of technology factors such as new plant varieties, new

fertilizers and advances in crop rotation practices.  For further discussion of the

specification of area response equations in Australian broadacre agriculture refer to

Anderson (1974), Fisher (1975), Griffiths and Anderson (1978), Sanderson et al.

(1980) and Fisher and Munro (1983).  For further discussion of the specification of

yield equations refer to Guise (1969), Francisco and Guise (1988), Del Valle and Ray

(1990) and Dillon and Anderson (1990).  Two studies which consider the specification

of both area and yield equations are Fisher (1978) and Coelli (1992).
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One difficulty with modelling area and yield separately, and predicting output as

the product of predicted yield and predicted area, is that it is not obvious that the

simple product is an optimal predictor, and an appropriate expression for the standard

error of the prediction error does not seem to be available in the literature.  The object

of this paper is to fill this gap.  Assuming the area and yield equations comprise a two-

equation system of seemingly unrelated regressions (Zellner, 1962), two predictors are

suggested and the corresponding standard errors of their prediction errors are derived.

The methodology is illustrated by predicting wheat output for the Corrigin Shire in

Western Australia.

2. Model and Predictors

To explain previously generated observations on yield and area, assume we

have the two equations

(1) aaa UXA +β=

(2) yyy UXY +β=

where A and Y are T-dimensional vectors containing T past observations on area and

yield, respectively; aX  and yX  are (T × aK ) and (T × yK ) matrices containing past

observations on the explanatory variables that help describe movements in A and Y,

respectively; aβ  and yβ  are ( aK ×1) and ( yK ×1) area response and yield response

coefficients, respectively; and aU  and yU  are (T×1) normally distributed random

vectors with zero means.  Denoting the individual elements of aU  and yU  by atu  and

ytu , we represent the contemporaneous covariance matrix as
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The subscript t in equation (3) denotes the t-th observation (t = 1,2,...,T).  It is also

assumed that the errors are uncorrelated over time in which case the joint covariance

matrix for the complete error vector )( ′′′ yaUU  is given by TI⊗Σ , where TI  is the

T−dimensional identity matrix.  Further, let
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The model described by equations (1) through (4) is a two-equation example of

the standard seemingly unrelated regressions model introduced by Zellner (1962).

The best linear unbiased estimator for β is the generalized least squares estimator
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In equation (6) the symbols ayyyaa σσσ and,  denote the elements of Σ −1 ; the

submatrices yyayaa VVV and,  have been introduced because they appear in subsequent

expressions for predictors and their standard errors.  In practice, the elements in the

contemporaneous error covariance matrix Σ are unknown and are estimated using

least squares residuals.  Details of this procedure and other information about the

seemingly unrelated regressions model can be found in any standard econometrics

text; see, for example, Judge et al. (1988, Ch.11).

Given values for the explanatory variables in the next period, denoted by the

)1( ×aK  and )1( ×yK  vectors ax  and yx , respectively, the problem is to predict next

period's output, which is the product of next period's area a, and next period's yield y,

with the latter two quantities being given by

(7) aaa uxa +β′=

(8) yyy uxy +β′=

The random errors au  and yu  are assumed to be a joint drawing from the bivariate

normal distribution N(0, Σ), consistent with the data generating process for the sample

observations.

Thus, we are attempting to predict

(9) yaq .=

( )( )yyyaaa uxux +β′+β′=

( )( ) yaayyyaayyaa uuuxuxxx +β′+β′+β′β′=
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The choice of predictor and the variance of the prediction error depend on the level of

recognition of parameter uncertainty at the time the predictor is being derived.  Three

cases involving differing degrees of recognition of parameter uncertainty can be

identified.  The three cases are:  (i) assume all parameters )and,( Σββ ya  are known;

(ii) recognize that aβ  and yβ  are unknown but assume Σ is known; and (iii) recognize

that aβ , yβ  and Σ are all unknown.

In case (i) the predictor and the variance of the prediction error are derived

assuming aβ , yβ  and Σ are known, and then the unknown parameters in these

expressions are replaced by estimates.  This is the approach typically adopted in time-

series analysis when autoregressive and/or moving-average models are used for

forecasting.  See, for example, Judge et al. (1988, p.705-713).  Under case (ii), it is

recognized that ya ββ and  (but not the elements in Σ ) are unknown when a predictor

is being chosen, and the variance of the prediction error is derived under this

assumption.  In this case only Σ  and its elements are replaced by estimates to make

the predictor operational.  This is the approach typically taken when deriving best

linear unbiased predictors in generalized least squares models.  See, for example,

Judge et al. (1988, p.343-346). Under case (iii), where we recognize uncertainty in

both ( )ya ββ ,  and Σ , the finite sample properties of the predictors appear intractable.

We therefore do not consider this third case in this paper.  The properties of the

predictors of cases (i) and (ii) are discussed below.

2.1     Case (i):  All Parameters Assumed Known
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The natural choice for a predictor when all parameters are assumed known is the

minimum variance predictor for q that is given by the expectation of equation (9).

That is,

(10) ( )( ) ayyyaa xxqEq σ+β′β′== )(ˆ1

This predictor is an unbiased predictor in the sense that the expectation of its

prediction error is zero.  That is, .0)ˆ( 1 =− qqE   It is made operational by replacing

ayya σββ and,  by their estimates ayya σββ ˆandˆ,ˆ .  Compared with what might be

termed the biased naive predictor ( )( )yyaa xx β′β′ , note the existence of the additional

term ayσ .  A positive correlation between the errors implies that, on average, their

product will be positive, and conversely for negatively correlated errors.  In the

Appendix we show that variance of the prediction error is given by

(11) ( )[ ] ( ) ( ) aayyyyaa xxqqE σβ′+σβ′=− 222
1ˆ

( )( ) 22 ayyyaaayyyaa xx σ+σσ+σβ′β′+

The square root of this quantity is the standard error of the prediction error that can be

used in conjunction with 1q̂  to form a confidence interval for future output.  Since, in

practice, ya ββ ,  and the elements in Σ are replaced by consistent estimates, such a

confidence interval will be a large sample approximate one.
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2.2     Case (ii):  Only Σ Assumed Known

The expression for the prediction error variance in equation (11) recognizes

uncertainty about the values of the future errors au  and yu  but it does not recognize

the sampling error that occurs in the estimation of .and, Σββ ya   To recognize the

uncertainty in ya ββ and  it is natural to suggest the predictor

(12) ( )( ) ayyyaa xxq σ+β′β′= ˆˆ*

However, this predictor is biased because

(13) ( )( )[ ] ( )( )yyaayyaa xxxxE β′β′≠β′β′ ˆˆ

In the Appendix we show that

(14) ( )( )[ ] ( )( ) yayayyaayyaa xVxxxxxE ′+β′β′=β′β′ ˆˆ

Consequently, a predictor 2q̂  that recognizes uncertainty in the estimation of aβ  and

yβ , and that is unbiased in the sense that the expectation of its prediction error is zero,

,0)ˆ( 2 =− qqE  is

(15) ( )( ) ayyayayyaa xVxxxq σ+′−β′β′= ˆˆˆ2

Furthermore, from the Appendix we see that the variance of its prediction error is

(16) ( )[ ] ( ) ( ) aaaayyyyyyaa xVxxxVxxqqE ′β′+′β′=− 222
2ˆ

( )( ) ( ) ( ) yyaayyyyaaaayayayayayyaa xxVxxVxxVxxVxxx σβ′+′′+′+′β′β′+ 222

( ) ( )( ) 22 2 ayyyaaayyyaaaayy xxx σ+σσ+σβ′β′+σβ′+
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The first five terms in this expression represent the added uncertainty associated with

estimation of aβ  and yβ ; the last five terms are identical to ( )[ ]2
2ˆ qqE − .  For

computational purposes a partial matrix algebra representation of (16) might be

convenient.  It can be shown that

(17) ( )[ ] ( )[ ] yyyyaaaa xVxxVxzxXIXxzqqE ′′+



 ⊗Σ′′+Σ′=−

−− 112
2ˆ

( ) 22
ayyyaayaya xVx σ+σσ+′+
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After replacing unknown parameters with their estimates, the predictor 2q̂  and

the corresponding standard error of prediction error, calculated as the square root of

(16) or (17), can be used to construct a large sample approximate confidence interval

for next period's output.  Since 2q̂  and its standard error reflect uncertainty in the

estimation of aβ  and yβ , we would expect this predictor to lead to a better

approximation in finite samples than 1q̂  and its standard error.

2.3     Uncorrelated Errors

If it happens that the error for the yield equation is uncorrelated with the error

for the area equation, then the expressions for the predictors and the variances of the

prediction errors simplify considerably.  For the case of known parameters we have

(19) ))((ˆ1 yyaa xxq β′β′=
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(20) ( )[ ] ( ) ( ) yyaaaayyyyaa xxqqE σσ+σβ′+σβ′=− 222
1ˆ

Recognizing uncertainty in the estimation of ya ββ and  yields

(21) )ˆ)(ˆ(ˆ2 yyaa xxq β′β′=

Note that, in this case, the naive predictor is the natural one and that ya ββ ˆandˆ  are the

ordinary least-squares estimators ( ) AXXX aaaa ′′=β −1ˆ  and ( ) YXXX yyyy ′′=β −1ˆ .

Also, using the fact that ( ) 1−′σ= aaaaaa XXV  and ( ) 1−′σ= yyyyyy XXV , the variance of

the prediction error is given by

(22) ( )[ ] ( ) ( )[ ]yyyyaayy xXXxxqqE 122
2 1ˆ −′′+β′σ=−

( ) ( )[ ]
( ) ( )[ ]yyyyaaaayyaa

aaaayyaa

xXXxxXXx

xXXxx

11

12

1

1

−−

−

′′′′+σσ+

′′+β′σ+

Whether one opts for the uncorrelated error version in equations (21) and (22) or

the correlated error version in (15) and (16) will depend on whether there are likely to

be common omitted factors that influence both yield and area.  For those who prefer to

base their decision on an hypothesis test, the Lagrange multiplier test suggested by

Breusch and Pagan (1980) can be employed.  Under the null hypothesis ,0:0 =σayH

the statistic yyaaayT σσσ=λ ˆˆ/ˆ 2  has an approximate chi-square distribution with one
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degree of freedom.  This statistic, as well as the likelihood ratio test statistic value for

the same hypothesis are routinely printed by the computer software SHAZAM (1993).

3. An Example

To illustrate the methodology we used data collected from the Corrigin Shire in

Western Australia.  This Shire is located approximately 200 km east of Perth.  It is a

typical wheat-sheep broadacre farming area with predominantly winter rainfall and an

average annual rainfall of 365 mm.  Equations for wheat yield and for area sown to

wheat were specified.  The explanatory variables used in the area equation were

1. lagged area )( 1−tA :  This variable is typically included in supply response

functions of this nature to reflect partial adjustment towards a desired area, the

partial adjustment being attributable to inability to make short-run changes to

fixed input levels.

2. lagged yield )( 1−tY :  The yield achieved in the previous year has been included to

pick up the 'catch up' effect.  It appears to be a widely held belief that following a

poor year farmers tend to plant more wheat.  Some argue that the farmers wish to

replace grain reserves run down during the poor year.  Others argue that farmers

wish to catch up on lost income.  Some also argue that during a poor year the

applied fertiliser is not fully utilised, hence another wheat crop is put in the next

year to use up the unused nutrients.  It is also argued that seed-bed preparation

after a poor year is much cheaper due to smaller weed populations, hence

encouraging an increase in plantings.

3. lagged price )( 1−tP :  We assume that, prior to planting, the wheat grower bases

his/her estimate of the likely wheat price at harvest time largely on the price

received for the previous crop.  Based on past studies, and on what he sees as the
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likely behaviour of farmers, Coelli (1992) argues for this choice in preference to

more complex adaptive or rational expectations structures.

4. lagged input prices )( 1−tPI :  An index of input prices lagged by one period was

included with the expectation that a rise in the price of inputs would have a

negative influence upon the area planted.  As the wheat crops are generally

planted in May or June of one financial year and harvested in November or

December of the following financial year, the use of lagged input prices appeared

appropriate.

5. quota dummy )( tD :  A dummy variable which takes the value 1 in the years

1970 and 1971 and 0 elsewhere was introduced to capture the likely negative

effect of quota restrictions that were in place during those years (see Fisher

1975).

6. trend )( tT :  A linear time trend was included in the area equation to attempt to

proxy factors such as the release of land for agriculture and technological change

which may have a systematic effect upon the area planted to wheat in a shire.  A

quadratic effect was initially considered but the squared term was omitted

because of its statistical insignificance.

7. rainfall at sowing time )( tRS :  Breaking rains are likely to be an important

variable influencing farmers' decisions to plant wheat.  Rainfall for the 3-month

period April, May and June has been included, along with its squared term

)( 2
tRS , the squared term being introduced to allow for the possibility of

diminishing returns to breaking rains.  Rainfall was expressed as a ratio, relative

to the average rainfall over the sample period.
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To explain average wheat yield in Corrigin Shire, we used monthly rainfalls and

a  linear trend variable to reflect technological change.  The distribution of rainfall is

important since rainfall during the germination, growing and flowering periods is

necessary, and is likely to have differing effects on yield.  For this reason monthly

rainfalls, from May through to October )10,...,6,5( ttt RRR  as well as their squares

)10,...,6,5( 222
ttt RRR , were included.  The estimated coefficients of the August rainfall

variables were observed to be very small relative to the estimates for the other months,

had very small t-values and were of the incorrect sign.  An examination of the rainfall

pattern over the sample period for June and July indicated good reliable rainfall,

suggesting soil moisture was unlikely to be a limiting factor in August.  The August

rainfall variables were therefore dropped from the yield equation and the system of

equations re-estimated.

The data set consisted of 39 observations for the period 1950-88.  Details of the

data sources are described in Coelli (1992).  Briefly, observations on yields and areas

planted were taken from various publications of the Australian Bureau of Statistics.

Area sown was measured in terms of thousands of hectares; yield was in tonnes per

hectare.  Rainfall figures were those recorded at the Corrigin Post Office.  Before

expressing rainfall as relative to the average over the sample period, it was measured

in the units mm × 10. Wheat price and the general input price index were taken from

the Commodity Statistical Bulletin published by the Australian Bureau of Agricultural

and Resource Economics.

The area and yield equations were initially estimated using 37 observations, the

first observation being dropped to allow for lagged variables and the last observation

being dropped to permit a comparison of actual and predicted values.  The equations
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were estimated as a two-equation seemingly unrelated regression model allowing for

contemporaneous correlation between the errors that may result from common

omitted influences.  The estimated equations, with standard errors in parentheses, are:

tÂ = 9.48 + 0.631 1−tA − 14.3 1−tY + 0.183 1−tP

(8.03) (0.088) (3.0) (0.048)

− 0.239 1−tPI − 12.1 tD + 0.994 tT

(0.049) (3.2) (0.156)

+ 16.6 tRS − 7.30 2
tRS

(11.9) (5.36)
2R  = 0.954

tŶ = −0.186 + 0.0156 tT + 0.434 tR5 − 0.133 25tR

(0.323) (0.0033) (0.209) (0.090)

+ 0.527 tR6 − 0.196 26tR + 0.360 tR7 − 0.208 27 tR

(0.283) (0.113) (0.255) (0.107)

+ 0.427 tR9 − 0.0597 29tR + 0.153 tR10 −0.0705 210 tR

(0.199) (0.0693) (0.166) (0.0600)

2R  = 0.680

In the area equation all estimated coefficients have the correct signs and, with the

exception of the rainfall variables, are significantly different from zero at a 5%

significance level.  Although we have not been able to obtain precise estimates of the

effects of the rainfall variables, they are retained because of their obvious importance.

A similar remark can be made about the various rainfall variables in the yield

equation.  Few are significantly different from zero, but all are obviously important,

and they do have the correct signs.  Evidence on the existence of contemporaneous

correlation between the errors was not conclusive.  The Lagrange multiplier test
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statistic value of 3.07 was less than the 5% critical value of 3.84 from the χ ( )1
2

distribution, but the likelihood ratio test value of 7.09 was greater.  We retained the

assumption of contemporaneously correlated errors for our calculations of the

predictions and their standard errors.  To check for autocorrelated errors we estimated

each equation separately and computed the values of the Durbin-Watson statistic, and

Durbin's h-statistic.  There was no evidence of autocorrelation.

The estimated area and yield equations were used to predict area and yield for

the next period and to compute values for the various predictors of output and their

standard errors.  Also, the equations were re-estimated an additional 4 times, omitting

the last 5, 4, 3 and 2 observations, respectively.  In each case one-step ahead

predictions were made.

The various results appear in Table 1.  There are a number of observations we can

make.  First, the naive predictor ( )( )yyaa xx β′β′ ˆˆ , the predictor that does not recognize any

parameter uncertainty 1q̂ , and the predictor that recognizes coefficient uncertainty 2q̂ , all

give essentially the same predictions.  The values for 1q̂  are slightly higher than those for

( )( )yyaa xx β′β′ ˆˆ , reflecting a positive value for the error correlation ayσ , and the values for

2q̂  are very slightly less than those for 1q̂ .  In general, we would expect the predictors to

give similar values when the estimated equations are good fits with high 2R 's.  Under

these circumstances that part of the prediction attributable to the systematic components

( )aax β′ ˆ  and ( )yyx β′ ˆ  will be large relative to the covariance between the errors.  The

predictors are likely to yield different predictions when the equations are poor fits, and the

contemporaneous error correlation is high.
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Table 1

One-Step Ahead Predictions for Output With
Corresponding Standard Errors and Confidence Intervals

Year

     1984      1985      1986      1987      1988

Actual Output 175.8 80.3 134.8 128.7 156.9

( )( )yyaa xx β′β′ ˆˆ 144.0 114.0 126.3 124.2 119.5

1q̂ 144.6 114.5 126.8 124.5 119.8

)ˆ(se 1 qq − 23.2 20.4 19.7 19.8 17.4

95% CI (99.1,190.1) (74.5,154.5) (88.2,165.4) (85.7,163.3) (85.7,153.9)

2q̂ 144.5 114.4 126.7 124.5 119.8

)ˆ(se 2 qq − 25.8 23.4 23.2 22.6 19.6

95% CI (93.9,195.1) (68.5,160.3) (81.2,172.2) (80.2,168.8) (81.4,158.2)

Although the new predictors we have derived do not, in this particular case,

yield results very different from the so-called naive predictions, it is important to

assess the reliability of predictions, and the expressions for standard errors that we

have derived are useful for this purpose.  Values for these standard errors, and the

95% prediction confidence intervals derived from them, also appear in Table 1.  With

the exception of the interval derived from 1q̂  in 1988, each interval contains the

corresponding actual output for that year.  Thus, although some of the predictions

miss the mark rather badly, if a proper assessment of the reliability of the predictions

is given, the realizations of output should not generate surprise. Note that the standard

errors for 2q̂  are only slightly greater than those for 1q̂ , indicating that most of the
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prediction uncertainty originates from equation error uncertainty not coefficient

uncertainty.

4. Summary and Conclusions

Although the problem of predicting output from separate yield and area

equations is a common one, issues relating to choice of an appropriate predictor, and

the standard error of the prediction error, seem to have been neglected in the

literature.  We have attempted to fill this void within the context of the general

seemingly unrelated regressions model.  Results for the case where the errors of the

yield and area equations are uncorrelated emerge as a special case.  In our empirical

example the correlated errors had little bearing on the predictions, but it was clear that

assessment of the reliability of the predictions, through computation of appropriate

standard errors, was important. We have provided the machinery to compute those

standard errors.

Although the results that are derived are exact finite sample results, they lose

their exact finite sample applicability when unknown parameters are replaced with

estimates.  Apart from the use of large sample approximations, there does not seem to

be any easy solution to this problem within a sampling theory framework.  From a

Bayesian perspective, however, estimation of the predictive probability density

function for output, and its mean and variance, does not present a problem.  Research

in this direction is in progress.

Finally, it is worth noting that the methodology introduced in this paper has

wider applicability than is suggested by the empirical example.  It can be used not only

for predicting the product of area and yield, but also for predicting the product of any

two dependent variables within a regression framework, whether or not they can be
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classified as "seemingly unrelated".  For example, for predicting the total quantity of

sawntimber used for dwellings, the Australian Bureau of Agricultural and Resource

Economics (1989) estimates separate equations to explain the quantity of timber used

per dwelling, and the number of new dwellings.  They do not seem to have considered

methodology like ours for the construction of their predictions and associated standard

errors.
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Appendix

To economize on repetitive symbols, let

aaa xz β′= yyy xz β′=

aaa xz β′= ˆˆ yyy xz β′= ˆˆ

Our first task is to derive the prediction–error variance given in equation (11).

Working in this direction, we have

(A1) ( ) ( )22
1ˆ ayyaayya uuuzuzqq σ−++=−

( )

aayyyayyayayaa

yayaayyaayya

uzuuzuzuuz

uuzzuuuzuz

σ−+σ−+

+σ−++=

2222

2

22

22222

Using the fact that all third moments for the bivariate normal distribution are zero, the

expectation of this quantity is

(A2) ( )[ ] ( ) ayyayaaayyya zzuuzzqqE σ++σ+σ=− 2varˆ 222
1

From equation (6) in Bohrnstedt and Goldberger (1969),

(A3) ( ) 2var ayyyaayauu σ+σσ=

and hence
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(A4) ( )[ ] 2222
1 2ˆ ayyyaaayyaaayyya zzzzqqE σ+σσ+σ+σ+σ=−

which agrees with equation (11).

Moving to the predictor which recognizes uncertainty in the estimation of aβ  and

yβ , we wish to evaluate

(A5) ( ) ( )yyaaya xxEzzE β′β′= ˆˆˆˆ ( )
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Now,

(A6) [ ] )ˆ()ˆ()ˆ(ˆˆ ′ββ+β=β′β EEVE ( )[ ] β′β+⊗Σ′=
−− 11 XIX T

Substituting (A6) into (A5) gives

(A7) ( )[ ] 












β′β′′+













⊗Σ′′′=

−−

y

a

y

Taya
x

x
x

XIXxzzE
0

)0(
0

)0()ˆˆ(
11

yayaya zzxVx +′=

which is the result in equation (14).

Finally, to derive the prediction-error variance in equation (16),

(A8) ( ) ( ) ( )[ ]22
2 ˆˆˆ ayyaayyayayayaya uuuzuzxVxzzzzqq σ−−−−′+−=−
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Retaining only those terms with nonzero expectations, we have

(A9) ( )[ ] ( ) )(Var2ˆˆVarˆ 222
2 yaayyaaayyyaya uuzzzzzzqqE +σ+σ+σ+=−

Again utilizing equation (6) in Bohrnstedt and Goldberger (1969) yields

(A10) ( )[ ] yayayaaaaayyyyya xVxzzxVxzxVxzqqE ′+′+′=− 2ˆ 222
2

( )
2

222

2 ayyyaaayya

aayyyayayayyyyaaaa

zz

zzxVxxVxxVx

σ+σσ+σ+

σ+σ+′+′′+

This is the result in equation (16).
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