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Abstract

Systems of equations comprising cost functions and first-order derivative equations are
often used to estimate characteristics of production technologies.  Unfortunately, many
estimated systems violate the regularity conditions implied by economic theory.
Sampling theory methods can be used to impose these conditions globally, but these
methods destroy the flexibility properties of most functional forms.  We demonstrate
how Bayesian methods can be used to maintain flexibility by imposing regularity
conditions locally.  The Bayesian approach is used to estimate a system of cost and
share equations for the merino-woolgrowing sector.  The effect of local imposition of
monotonicity and concavity on the signs and magnitudes of elasticities is examined.
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1. Introduction

The duality approach to applied production economics often involves the estimation of flexible functional form

cost or profit functions.  Examples include Bigsby (1994), Mullen and Cox (1996) and O’Donnell and

Woodland (1995) using the translog functional form, Fisher and Wall (1990) and Shumway and Alexander

(1988) using the normalised quadratic functional form, and Lopez (1980) and Lopez and Tung (1982) using

the generalised Leontief functional form.   Unfortunately, these estimated functions frequently violate the

monotonicity, concavity and convexity conditions implied by economic theory.

A partial solution to this problem involves the imposition of parametric restrictions which ensure that at least

some conditions hold at all non-negative prices (ie. globally).  It is possible to impose global curvature

restrictions, for example, using eigenvalue decomposition methods and methods involving Cholesky

factorisation (eg. Wiley, Schmidt and Bramble, 1973; Talpaz, Alexander and Shumway, 1989; Coelli, 1996).

Unfortunately, the global imposition of regularity conditions forces many flexible functional forms to exhibit

properties not implied by economic theory.  For example, imposing global concavity on a translog cost function

may lead to an upward bias in the degree of input substitutability, and imposing global concavity on a

generalised Leontief cost function will rule out complementarity between inputs (Diewert and Wales, 1987).

An alternative approach which can be used to maintain flexibility involves the imposition of regularity

conditions locally, that is, at a single point, at several points, or over a region of interest, usually the region

over which inferences will be drawn.  Methods which can be used to impose curvature restrictions locally

include the numerical methods of Lau (1978) and Gallant and Golub (1984).  More recently, Chalfant and

Wallace (1992) and Terrell (1996) have used a Bayesian approach.  The Bayesian approach has the important

advantage of allowing us to draw finite sample inferences concerning nonlinear functions of parameters.

Empirical implementation of the Bayesian approach involves the use of Markov Chain Monte Carlo (MCMC)

simulation methods.  The use of MCMC methods has grown rapidly in recent years with the availability of

inexpensive high-speed computers, and with the further development of powerful computer-intensive statistical

algorithms.  These algorithms, which include the Gibbs sampler and the Metropolis-Hastings algorithm, can be

used to draw samples from a marginal probability density indirectly, without having to derive the density itself.

Not surprisingly, MCMC methods have revolutionised Bayesian econometrics, where posterior marginal

densities can be difficult or impossible to derive analytically.
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In this paper we illustrate how MCMC methods can be used to estimate a system of cost and factor share

equations for a sector of the Australian woolgrowing industry.  This empirical application of the MCMC

methodology is motivated by the large number of curvature violations reported in the study by O'Donnell and

Woodland.  Although we retain most of the features of the O'Donnell and Woodland model, and we use their

data set, we estimate a system of cost and factor share equations which has a less complex stochastic structure,

and we focus on only one Australian woolgrowing sector (merino-woolgrowing) instead of three.  These

simplifications allow us to better illustrate the applicability and usefulness of the MCMC technique, and still

allow us to validate the elasticity estimates obtained in O'Donnell and Woodland's earlier work.  Two MCMC

techniques are employed: the Gibbs sampler is used when inequality restrictions are not imposed, and a

Metropolis-Hastings algorithm is used when they are imposed.  Using both techniques not only serves the

purpose of our application, but it demonstrates alternatives for carrying out Bayesian inference in seemingly

unrelated regression equations with equality and inequality constraints on the coefficients.  Our choic of a

Metropolis-Hastings algorithm for imposing curvature restrictions locally has significant computational

advantages over importance sampling and Gibbs sampling algorithms used in other Bayesian studies, including

those by Chalfant and Wallace and Terrell.  Indeed the need to generate enormous numbers of Gibbs sampler

observations (sometimes hundreds of thousands) to obtain a few legitimate draws is easily overcome, a fact that

does not seem to be generally appreciated in the literature.

The outline of the paper is as follows.  In Section 2 we translate a standard economic model of producer

behaviour into a system of empirical cost and factor share equations.  This empirical model takes the form of a

seemingly unrelated regression (SUR) model.  In Section 3 we describe two alternative but equivalent iterative

procedures for obtaining maximum likelihood estimates of the SUR model parameters.  We also describe the

Gibbs sampler and Metropolis-Hastings algorithms, and the manner in which monotonicity and curvature

restrictions can be imposed.  The data are described in Section 4 and the estimation results are presented in

Section 5.  The results present information on parameter estimates, predicted factor shares, estimated

eigenvalues and estimated input-price elasticities.  Eigenvalues are useful for assessing curvature violations,

while input-price elasticities are useful for feeding into studies which examine the welfare implications of

policy decisions and technical change (see, for example, Zhao et al 1999).  The paper is concluded in Section 6

where we review our work and offer suggestions for further research.
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2. Model

Our model is predicated on the assumption that the technological possibilities faced by the firm can be

summarised by the cost function

(1) C(w, q) ≡  
x

min  {w'x: f(x) ≥ q, x ≥ 0}

where x is an I × 1 vector of inputs, w is an I × 1 vector of input prices and q is scalar output.  If the production

function f(x) satisfies a standard set of relatively weak assumptions then the cost function will be nonnegative

for all positive prices and output, and linearly homogenous, nondecreasing (ie. monotonic), concave and

continuous in prices (Chambers, 1988).  Moreover, the Hessian matrix of second-order price derivatives will be

symmetric.  Our interest lies in the properties of monotonicity and concavity, and the manner in which these

properties can be imposed locally on an estimated flexible functional form.

A functional form is flexible if it can provide a local 'second-order approximation' to an arbitrary functional

form.  An excellent discussion of the concept of a second-order approximation can be found in Barnett (1983).

The two most commonly used flexible functional forms are the generalised Leontief introduced by Diewert

(1971) and the translog introduced by Christensen, Jorgensen and Lau (1971).  We follow O'Donnell and

Woodland and assume a constant returns to scale translog functional form, which implies

(2) ln(C/q) =  α0 + αTT +  
i=1

I

Σ αiln(wi) + .5
i=1

I

Σ
j=1

I

Σ αijln(wi)ln(wj)

where C represents total costs, wi represents the price of input i, and T is a time trend which is used to capture

the effects of exogenous technical change.  The factor share equations are obtained using Shephard's lemma:

(3) si = αi  + 
j=1

I

Σ αijln(wj) i = 1, ..., I

where si represents the cost share of input i.  It is clear from equations (2) and (3) that our assumed form of

technical change is Hicks neutral: factor shares are unaffected by technical change while unit costs decrease at

a constant percentage rate.
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Some of the theoretical properties of the cost function (1) can be expressed in terms of the parameters

appearing in equation (2).  Specifically, linear homogeneity and symmetry will be satisfied if

(4)  
i=1

I

Σ αi = 1,    
j=1

I

Σ αij = 0   (i = 1, ..., I), and    αij = αji  (i, j = 1, ..., I).

Monotonicity will be satisfied if the estimated factor shares are positive, while concavity will be satisfied if the

Hessian matrix of second-order derivatives is negative semi-definite.  In turn, the Hessian matrix will be

negative semi-definite if and only if its eigenvalues are non-positive.  In the later section on Bayesin

estimation, that part of the parameter space where monotonicity and concavity hold is denoted by ΓΓ2.  The

unrestricted parameter space is denoted ΓΓ1.

Our empirical model is obtained by embedding equations (2) and (3) in a stochastic framework.  After

incorporating stochastic terms and introducing the firm and time subscripts n and t (n = 1, ..., N and t = 1, ...,

T), our empirical model becomes

sint = αi  + 
j=1

I

Σ αijln(wjnt) + εint i = 1, ..., I-1

(5)

ln(Cnt/qnt) =  α0 + αTTnt +  
i=1

I

Σ αiln(wint) + .5
i=1

I

Σ
j=1

I

Σ αijln(wint)ln(wjnt) + εInt

where εint (i = 1, ..., I) represents statistical noise.  We have adopted the usual practice of dropping one share

equation to avoid singularity of the error covariance matrix.  The share and cost equation errors are assumed to

be independently and identically distributed over firms and time with

(6) E{εint} = 0

and

 (7) E{εintεmks} = 


σim    if n = k and t = s

0    otherwise.
 

The model given by equations (4) to (7) has an identical deterministic structure and a similar stochastic

structure to the model of O'Donnell and Woodland.  Like O'Donnell and Woodland, our stochastic assumptions

allow for within-firm contemporaneous correlation between the disturbances εint.  However, unlike O'Donnell

and Woodland, our cost function combines errors that vary over time and firms with any time-specific

uncertainty that may exist.  As a consequence, our cost function does not have a complicated error components
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structure.  As noted by Just and Pope (1998), this simpler structure is in line with assumptions adopted in most

empirical studies.

3. Estimation Methods

In this section we describe four methods for estimating the parameters of the model given by equations (4) to

(7): two equivalent methods for obtaining maximum likelihood estimates, and two MCMC algorithms (the

Gibbs sampler and the Metropolis-Hastings algorithm).  The maximum likelihood methods we describe do not

allow for the imposition of monotonicity or concavity constraints.  Nor does our Gibbs sampler, which is only

used in this paper to illustrate the MCMC method and to provide a benchmark by which to judge the results of

the maximum likelihood and Metropolis-Hastings approaches.  Our description of a Metropolis-Hastings

algorithm provides details of necessary modifications to the standard approach to ensure that monotonicity and

concavity conditions are satisfied.

3.1 Maximum Likelihood Estimation

For a model consisting of four inputs, the system of equations given by (5) can be more conveniently written:

(8) yint = xint'ββ i + εint i = 1, ..., 4

where yint = sint i = 1, ..., 3

y4nt = ln(Cnt/qnt)

(9) ββ i = (αi, αi1, ..., αi4)' i = 1, ..., 3

(10) ββ4 = (α0, αT, α1, ..., α4, α11, α12, ..., α14, α22, α23, ..., α44)'

and the definitions of the xint conform to the definitions of the ββ i and are obvious.  Notice from equations (9)

and (10) that the ββ i vectors have many elements in common.  Indeed, the restrictions given by equation (4) and
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the restrictions implicit in equations (9) and (10) together mean that only 11 of the 31 parameters in the ββ i

vectors are 'free'.  Those that are redundant or 'not free' can be obtained from the other parameters and the

restrictions.

Stacking equation (8) by firm, time period and then by equation we obtain

(11)









 y1

 y2

 y3

 y4

   =  









 X1

 X2

 X3

 X4

 







 ββ1

 ββ2

 ββ3

 ββ4

   +  







 εε1

 εε2

 εε3

 εε4

 

where yi = (yi11, yi21, ..., yiN1, yi12, yi22, ..., yiN2, ... , yiNT)' is NT × 1 for all i, and Xi and εεi are similarly

defined, although it is worth noting that Xi is NT × 5 for i = 1, ..., 3 and X4 is NT × 16.  Thus, we can write the

empirical model more compactly as:

(12) y = Xββ + εε

where the definitions are obvious.  The parametric restrictions implied by equations (4), (9) and (10) and our

assumptions concerning the error vector εε can also be written more compactly as:

(13) Rβ β = r

 (14) E{εε} = 0

and

(15) E{εεεε'} = ΩΩ = ΣΣ⊗INT

where Σ Σ = [σim] and R and r are known matrices of order 20 × 31 and 20 × 1 respectively.  The model given

by equations (12) to (15) is a standard restricted SUR model (see Judge et al, 1985, pp.469-473).

To obtain maximum likelihood estimates we note that the restricted Generalised Least Squares (GLS) estimator

for ββ is
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(16) ββ
~

  = ββ
^
  + CR'(RCR')-1(r-Rββ

^
 )

where C = [X'(ΣΣ-1⊗INT)X]-1 and ββ
^
 = CX'(ΣΣ-1⊗INT)y is the unrestricted GLS estimator.  In practice, restricted

Estimated Generalised Least Squares (EGLS) estimates can be obtained by replacing ΣΣ in equation (16) with

an estimator, ΣΣ
^
, constructed using restricted or unrestricted OLS residuals.  Of course, another estimate of ββ

can then be obtained by replacing ΣΣ with a new estimator based on the restricted EGLS residuals (rather than

OLS residuals).  In fact, we can continue to update our estimates of ββ and ΣΣ in an iterative way and, if the

disturbances are multivariate normal, this iterative process will yield maximum likelihood estimates.

The iterative process described above can be time-consuming if the number of restrictions to be imposed and

parameters to be estimated at each step is large.  An alternative but equivalent estimation procedure, which is

not only faster but can also be usefully exploited in our Bayesian approach, involves maximum likelihood

estimation of the subset of 11 free parameters in ββ.  After convergence, the remaining 20 maximum likelihood

estimates are derived using the 20 parametric restrictions Rβ β = r.  To implement the procedure we rearrange

the rows of ββ and the columns of X and R in such a way that equations (12) and (13) can be written in the

following partitioned form:

(17) y = Xββ + εε = [X1  X2] 



ηη

γγ   + εε

 (18)  Rβ β = [R1  R2] 



ηη

γγ   = r

where X1, X2, R1, R2, γγ and ηη are NT × 20, NT × 11, 20 × 20, 20 × 11, 11 × 1 and 20 × 1 respectively.  The

vector γγ contains the subset of 11 free parameters to be estimated in the first stage, and ηη contains the 20

remaining parameters in β β which will be estimated using estimates of γγ and the following equivalent form of

equation (18):

(19) ηη = R 1
-1(r - R2γγ).

Recall that the vector γγ of free parameters contains parameters which cannot be obtained from other parameters

and the restrictions.  To estimate γγ we use (19) to rewrite (17) in the form:

(20) y* = X*γγ + ε ε 
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where y*= y - X1R 1
-1r  and  X*= X2 - X1R 1

-1R2.  The model given by (20), (14) and (15) is an unrestricted SUR

model, with (unrestricted) GLS estimator for γγ given by

(21) γγ^    = C*X*'(ΣΣ-1⊗INT)y*

where C* = [X*'(ΣΣ-1⊗INT)X*]-1.  Again, in practice, EGLS estimates can be obtained by replacing ΣΣ with an

estimator constructed using OLS residuals.  Moreover, if the disturbances are multivariate normal, a maximum

likelihood estimate for γγ can be obtained using the iterative procedure described above.

3.2 Bayesian Estimation

The formulation of our empirical model as an unrestricted SUR model (equations (20), (14) and (15)) is

convenient for Bayesian analysis because a number of relevant results already appear in the mainstream

econometrics literature (eg. Judge et al, p.478-80).  We begin by stating Bayes Theorem:

(22) f(γγ, Σ Σ | y*) ∝ L(y* | γγ, ΣΣ) p(γγ, ΣΣ)

where ∝ denotes 'proportional to', f(γγ, Σ Σ | y*) is the posterior joint density function for γγ and ΣΣ given y* (the

posterior density summarises all the information about γγ and ΣΣ after the sample y* has been observed), L(y* | γγ,

ΣΣ) is the likelihood function (summarising all the sample information), and p(γγ, ΣΣ) is the prior density function

for γγ and ΣΣ (summarising the nonsample information about γγ and ΣΣ).  Our interest lies in the posterior density

f(γγ, Σ Σ | y*) and characteristics (eg. means and variances) of marginal densities which can be derived from it.

Our Bayesian treatment of the unrestricted SUR model begins with the assumption that εε is multivariate

normal.  Under this assumption the likelihood function is (Judge et al, p.478)

(23) L(y* | γγ, ΣΣ) ∝ |ΣΣ |-NT/2 exp[-.5 tr(AΣΣ-1)]

where A is the 4 × 4 symmetric matrix with (i, j)th element aij = (y i
* -X i

* γγ)'(y j
* -X j

* γγ), and y i
* and X i

* are

obviously-defined sub-vectors and matrices of y and X.  In addition, we use a noninformative joint prior:
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(24) p(γγ, ΣΣ) = p(γγ) p(ΣΣ) I(γγ∈ΓΓs) s = 1, 2

where p(γγ) ∝ constant, p(ΣΣ) ∝ |ΣΣ |-(I+1)/2 is the limiting form of a Wishart density, the ΓΓs are the sets of

permissible parameter values when monotonicity and concavity information is (s = 2) and is not (s = 1)

available, and I(.) is an indicator function which takes the value 1 if the argument is true.  Thus, I(γγ∈ΓΓ1) = 1

for all values of γγ.  We choose a noninformative prior because it allows us to better compare our maximum

likelihood results with our Bayesian results, whether or not monotonicity and concavity information is

available.  Note that the algebraic form of the prior p(γγ, ΣΣ) is unchanged by the availability of monotonicity

and concavity information, even though the region over which it is defined is different.  The same is true of the

joint posterior density (Judge et al, p.479):

(25) f(γγ, Σ Σ | y*) ∝ |ΣΣ |-(NT+I+1)/2 exp[-.5(y* - X*γγ)'(ΣΣ-1⊗INT)(y* - X*γγ)] I(γγ∈ΓΓs) s = 1, 2

(26)    ∝ |ΣΣ |-(NT+I+1)/2 exp[-.5 tr(AΣΣ-1)] I(γγ∈ΓΓs) s = 1, 2.

We are particularly interested in the posterior marginal densities of the elements of γγ, and the means and

standard deviations of these posterior densities.  Unfortunately, these results cannot be obtained from equations

(25) and (26) analytically.  Instead, we must use MCMC methods to draw a sample from the posterior joint

density f(γγ | y*).  We then use these sample observations to estimate the moments of the marginal densities of

the elements of γγ.  The two MCMC algorithms we use to generate these samples are the Gibbs sampler and

Metropolis-Hastings algorithms.

The Gibbs Sampler

The Gibbs sampler was used for Bayesian estimation without monontonicity and concavity imposed.  That is,

the parameter space for γγ was the unrestricted space ΓΓ1.  Useful introductions to the Gibbs sampler can be

found in Casella and George (1992) and Chib and Greenberg (1996).  In the present context, the Gibbs sampler

is an algorithm which effectively samples from f(γγ | y*) by iterating as follows:

Step 1: Specify starting values γγ  
0, ΣΣ0.  Set i = 0.
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Step 2: Generate γγ  
i+1 from f(γγ | ΣΣ i, y*)

Step 3: Generate ΣΣ i+1 from f(Σ Σ | γγ  
i+1, y*)

Step 4: Set i = i+1 and go to Step 2.    

This iteration scheme produces a chain, γγ  
1, ΣΣ1, γγ  

2, ΣΣ2, ..., with the property that, for large k, γγ  
k+1 is effectively

a sample point from f(γγ | y*) (in this case the chain is said to have 'converged').  Thus, in practice, γγ  
k+1, ...,

γγ  
k+m can be regarded as a sample from f(γγ | y*).  In this paper we set k = 25,000 (the 'burn-in' period) and draw

a sample of size m = 50,000.  These values of k and m were determined using the Z-diagnostic of Geweke

(1992) and the stationarity and interval halfwidth tests of Heidelberger and Welch (1983).  The large values of

k and m are partly due to the fact that the observations generated by the Gibbs sampler are correlated.  A

smaller value of m could have been used if the sample was constructed using only the last observation in m

independent Gibbs chains.

Notice from Steps 2 and 3 that in order to make the Gibbs sampler operational we need the conditional

densities f(γγ | ΣΣ, y*) and f(Σ Σ | γγ, y*).  To obtain (the kernel of) the conditional posterior pdf f(γγ | ΣΣ, y*) we use

(25) and view ΣΣ as a constant, yielding

(27) f(γγ | ΣΣ, y*) ∝ exp[-.5(γ γ - γγ^  )'X*'(ΣΣ-1⊗INT)X*(γ γ - γγ^  )] I(γγ∈ΓΓ1)

where γγ^  is the GLS estimator given by equation (21).  Thus, f(γγ | ΣΣ, y*) is proportional to the density function

of a multivariate normal random variable with mean vector γγ^  and covariance matrix [X*'(ΣΣ-1⊗INT)X*]-1.

Finally, to obtain the kernel of the conditional posterior pdf f(ΣΣ | γγ, y*) we use (27) and view γγ as a constant,

yielding

(29) f(ΣΣ | γγ, y*) ∝  
1

|ΣΣ |(NT+I+1)/2  exp[-.5 tr(AΣΣ-1)]

Thus, f(ΣΣ | γγ, y*) is proportional to an Inverted Wishart density function with parameters A, NT and I (see

Zellner, 1971, p.395).

Terrell has modified this algorithm to impose monotonicity and concavity constraints over a specified grid of

prices.  For each parameter vector generated by the Gibbs sampler (ie. for each γγ  
k), monotonicity and concavity
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constraints are evaluated at each price point in the grid.  The parameter vector is included in the sample if the

constraints hold and rejected otherwise.  This modification has the effect of changing the conditional density in

equation (27) to a truncated multivariate normal density that is only positive in the region ΓΓ2.  Unfortunately, it

is often necessary to generate extremely large numbers of parameter vectors before obtaining just one vector

that can be included in the sample, and this limits the practical usefulness of the approach.  The Metropolis-

Hastings algorithm is an alternative MCMC algorithm which does not suffer this disadvantage.

The Metropolis-Hastings Algorithm

A description of the Metropolis-Hastings algorithm can be found in Chib and Greenberg.  In the present

context, a Metropolis-Hastings algorithm which allows us to impose monotonicity and concavity at a particular

set of prices proceeds iteratively as follows:

Step 1: Specify an arbitrary starting value γγ  
0 which satisfies the constraints.  Set i = 0.

Step 2: Given the current value γγ  
i, use a symmetric transition density q(γγ  

i, γγ  
c) to generate a candidate for the

next value in the sequence, γγ  
c.

Step 3: Use the candidate value γγ  
c to evaluate the monotonicity and concavity constraints at the specified

prices.  If any constraints are violated set α(γγ  
i, γγ  

c) = 0 and go to Step 5.

Step 4: Calculate α(γγ  
i, γγ  

c) = min(g(γγ  
c)/g(γγ  

i)), 1) where g(γγ) is the kernel of f(γγ | y*).

Step 5: Generate an independent uniform random variable U from the interval [0, 1].

Step 6: Set γγ  
i+1 = 



 γγ  

c if U < α(γγ  
i, γγ  

c)

 γγ  
i if U ≥ α(γγ  

i, γγ  
c)

  

Step 7: Set i = i+1 and go to Step 2.    

Again, this iteration scheme produces a chain, γγ  
1, γγ  

2, ..., with the property that, for large k, γγ  
k+1 is effectively a

sample point from f(γγ | y*).  Thus, the sequence γγ  
k+1, ..., γγ  

k+m can once again be regarded as a sample from

f(γγ | y*).  Importantly, this sequence satisfies monotonicity and concavity at the specified prices.  In this paper

monotonicity and concavity constraints are imposed at 23 price points: the quantity-weighted averages of

observed input prices in each time period t = 1, ..., 11, 13, …, 24.  In Step 3 the monotonicity constraint is

evaluated using the signs of the predicted factor shares, while the concavity constraint is evaluated using the
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maximum eigenvalue of the estimated Hessian matrix.  We use a burn-in period of k = 100,000 and draw a

sample of size m = 200,000.  Again, these values of k and m were set using the convergence diagnostics of

Geweke and Heidelberger and Welch.

Notice from Steps 1, 2 and 4 that in order to make the Metropolis-Hastings algorithm operational we need an

arbitrary starting value γγ  
0 which satisfies the constraints.  We also need the transition density q(γγ  

i, γγ  
c) and the

kernel g(γγ).

For starting values we used αi = 0.25 (i = 1, ..., 4) and αij = 0 for all i ≠ j.  All other parameters were set equal

to their maximimum likelihood estimates.  These starting values satisfy monotonicity and concavity but may be

some distance from the mean of f(γγ | y*) (so a reasonably long burn-in period is needed to ensure the

convergence of the MCMC chain).

The transition density q(γγ  
i, γγ  

c) is assumed to be multivariate normal with mean γγ  
i and covariance matrix

[X*'(ΣΣ
^ -1⊗INT)X*]-1 (the estimated covariance matrix of the restricted SUR estimator γγ^).  In practice, it is

commonplace to multiply the (arbitrarily chosen) covariance matrix by a constant h in order to manipulate the

rate at which the candidate γγ  
c is accepted as the next value in the sequence.  In this paper we set h = 0.05 in

order to obtain an acceptance rate of approximately 0.4.  This constant was chosen by trial and error.

Finally, the kernel g(γγ) of the marginal density f(γγ | y*) can be obtained by integrating Σ Σ out of the joint

posterior (26) (see Judge et al, p.479):

(32) f(γ γ | y*) ∝ |A|-NT/2 I(γγ∈ΓΓ2) = g(γγ).

4. Data

The data were originally collected by the Australian Bureau of Agricultural Economics (ABARE) as part of its

Australian Sheep Industry Surveys (ASIS).  Our sample consists of 310 time-series and cross-section

observations on Australian merino woolgrowers, covering the periods 1952-53 to 1962-63 (t = 1, ..., 11) and

1964-65 to 1975-76 (t = 13, ..., 24).  Each observation in the original data set is a record of the average

financial and physical characteristics of a group of firms.  These obervations were used to construct
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observations on output (q), total cost (C), input prices (w) and input quantities.  Inputs were grouped into one

of four broad categories: land, capital, livestock and other inputs (including labour, equipment, materials and

services).  A more complete description of the data can be found in O'Donnell and Woodland.

5. Results

The results were generated using SHAZAM (White, 1978) and the R version of CODA (Best, Cowles and

Vines, 1995).  In this section the results are examined in terms of estimates of the unknown parameters,

predicted factor shares, eigenvalues of the estimated Hessian matrix of second-order derivatives of the cost

function, and estimates of the own- and cross-price elasticities of input demand.

Parameter Estimates

Maximum likelihood estimates of the structural parameters ββ are presented in Table 1, along with the means of

the Bayesian samples obtained with and without the inequality constraints imposed.  These samples were

generated using the Metropolis-Hastings and Gibbs algorithms, respectively.  The numbers in parentheses are

either the estimated standard errors of the maximum likelihood estimates or the standard deviations of our

MCMC samples.

Our maximum likelihood estimates are similar to the estimates obtained by O'Donnell and Woodland.  Thus, it

appears that our specification of a less complex stochastic structure, and our focus on only one woolgrowing

sector instead of three, has had little or no effect on the signs or magnitudes of the slope coefficients or their

standard errors.  Note that all coefficients are statistically different from zero at usual levels of significance.

Also note, from the estimated coefficient of the time variable in the cost function, that the annual proportional

reduction in unit costs as a result of technical change is estimated to be 3.2%, only slightly higher than the

estimate of 2.9% reported by O'Donnell and Woodland.

The strong similarity between the maximum likelihood and Gibbs estimates presented in Table 1 reflects our

use of a noninformative prior.  The location and shape of the likelihood function L(y* | γγ, ΣΣ) governs the

location and shape of the posterior density f(γγ, Σ Σ | y*) and, of course, our maximum likelihood and Gibbs
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results have been obtained using these two functions.  The standard deviations of the Gibbs samples are slightly

higher than the estimated standard errors of the maximum likelihood estimates.  These differences arise

because, unlike the standard deviations of the Gibbs samples, the estimated standard errors of the maximum

likelihood estimates do not account for the uncertainty associated with the estimation of the variance-

covariance matrix ΣΣ.  For this reason, and because the maximum likelihood and Gibbs estimates are very

similar, we shall ignore the maximum likelihood estimates in the remainder of this paper.

Finally, there is a reasonable similarity between the Gibbs and Metropolis-Hastings estimates presented in

Table 1.  In fact, only the coefficient of the constant term and the first- and second-order coefficients associated

with the livestock input (α3 and α33) appear to change significantly with the imposition of the monotonicity

and concavity constraints.  Violations of these constraints are assessed below in terms of predicted factor shares

and the eigenvalues of the estimated Hessian matrix.

Predicted Factor Shares

Monotonicity requires that the predicted cost shares be positive.  The observations in our Gibbs sample were

used to check this requirement at our 23 sets of quantity-weighted average input prices.  The distributions of

the predicted factor shares were uniformly found to lie between zero and one, indicating that monotonicity was

satisfied without the imposition of constraints.

Eigenvalues

For the estimated cost function to be consistent with economic theory it must be concave, requiring that the

estimated Hessian matrix of second-order derivatives be negative semi-definite.  Since the Hessian matrix is

singular, a necessary and sufficient condition for negative semi-definiteness is that the maximum eigenvalue is

exactly zero (singularity implies that at least one eigenvalue must be zero).

Each observation in our Gibbs sample was used to construct an observation on the maximum eigenvalue of the

Hessian matrix evaluated at a particular point (ie. a particular set of average input prices).  The process was

repeated for each of our 23 sets of average input prices, and the means and standard deviations of these 23

samples are presented in Table 2.  When rounded to three decimal places, the means of the sample
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distributions of 8 out of 23 maximum eigenvalues are non-zero, implying there is positive probability that

concavity is violated for at least 35% of the price vectors, somewhat lower than the proportion of concavity

violations reported by O'Donnell and Woodland.

The estimated probability of a concavity violation for each of the price vectors is also reported in Table 2.

These estimated probabilities are calculated as the proportion of times the maximum eigenvalue exceeded zero

when rounded to three decimal places.  Note that there are several price vectors where the probability of

violating concavity is approximately 1.00.  This result suggests that an attempt to impose concavity via a Gibbs

sampling procedure with a truncated multivariate normal density would be doomed to fail; and, hence, our

suggested Metropolis-Hastings algorithm is particularly useful.

Elasticities

The imposition of regularity conditions on our estimated cost function leads to noticeable changes in the

posterior distributions of a number of own- and cross-price elasticities.  To briefly illustrate, Table 3 reports the

means and standard deviations of the estimated pdf's of input price elasticities calculated at the quantity-

weighted average of all input prices in the sample.

Three features of Table 3 are of particular interest.  First, (the means of) all own-price elasticities are correctly

signed and indicate that all input demands are inelastic with respect to their own prices.  Moreover, the only

own-price elasticity which seems to be affected by the imposition of the constraints is the own-price elasticity

for livestock.  The mean of this own-price elasticity decreases from -0.13 to -0.33, to become slightly more

elastic than the estimate of McKay, Lawrence and Vlastuin (1980) (-0.2).  Second, the standard deviations of

the constrained and unconstrained probability density functions are generally similar.  Again, the only notable

exception is the standard deviation of the own-price elasticity for livestock, which falls dramatically with the

imposition of the constraints.  Finally, the two cross-price elasticities which measure the relationships between

the prices and quantities of livestock and other inputs undergo a sign reversal with the imposition of the

constraints.  Thus, livestock and other inputs appear to be substitutes in production, a result which is consistent

with the findings of Watts and Quiggin (1984).



18

A final illustration of the effects of imposing regularity constraints is provided in Figures 1 and 2 where we

present the unconstrained and constrained pdf's of the own-price elasticity for livestock and the cross-price

elasticity between livestock and the group of other inputs.  Note from Figure 2 that the unconstrained

(constrained) cross-price elasticity is positive (negative) with estimated probability zero.

From a statistical standpoint, it is interesting that the imposition of concavity changed the coefficient estimates

very little despite the fact that the unconstrained estimates led to concavity violations at several price vectors.

Furthermore, small differences in the coefficient estimates have led to much greater differences in a few of the

elasticities.

6. Conclusion

This paper uses Bayesian methods to impose regularity conditions on a system of cost and factor share

equations.  The Bayesian methodology represents an alternative to conventional sampling theory techniques

which can impose regularity, but typically destroy the flexibility properties of many of the more popular

functional forms.  The Bayesian approach has previously been used by Terrell to estimate the parameters of a

cost function using the well-known Berndt and Wood (1975) data set.  However, in contrast to Terrell, we use a

Metropolis-Hastings algorithm, rather than the Gibbs sampler, to estimate posterior quantities which satisfy the

regularity conditions.  For problems like ours, with a large number of inequality constraints, the Metropolis-

Hastings algorithm is an MCMC technique with much greater practical usefulness.

Our empirical application has been motivated by the large number of regularity violations reported in the study

by O'Donnell and Woodland.  Thus, our empirical model is based on the translog model of O'Donnell and

Woodland and estimated using (a part of) their data set.  The empirical results we present include parameter

estimates, eigenvalue estimates and estimates of input price elasticities for models with and without regularity

constraints imposed.  Our unconstrained MCMC estimates are almost identical to our maximum likelihood

estimates and the maximum likelihood estimates of O'Donnell and Woodland.  Our constrained MCMC

estimates differ from our unconstrained estimates in several respects: all maximum eigenvalues become exactly

zero in accordance with economic theory, coefficient standard deviations become smaller, and the signs and

magnitudes of coefficients and elasticities associated with the livestock input undergo noticeable change.  This
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last result is consistent with the finding of O'Donnell and Woodland that a large number of their regularity

violations were associated with the livestock input.  Empirically, as far as we are aware, our elasticity estimates

are the only ones available for the Australian wool industry which are consistent with the regularity conditions

of economic theory.  As such, they are a useful input into studies which assign probability distributions to key

parameters for the assessment of welfare effects.  See, for example, Zhao et al.

Finally, our study offers a number of opportunities for further research.  Perhaps the most interesting of these

involve the specification of a more complex error structure: one possibility is the heteroskedastic error

components structure of O'Donnell and Woodland; another possibility is the truncation of one or more of these

error components in line with the stochastic specifications popular in the frontier literature.  Other obvious

extensions include the use of alternative functional forms and relaxation of the assumption of constant returns

to scale.
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Table 1: Parameter Estimates
                                                                                                                                                                                       

ML
a

Gibbs
b

Metropolis-Hastings
 b

(no inequality (inequality constraints
constraints) imposed)

                                                                                                                                

Constant -0.595 -0.597 -0.840
(0.058) (0.062) (0.050)

α1 Land 0.250 0.250 0.251
(0.005) (0.006) (0.006)

α2 Capital 0.674 0.674 0.664
(0.019) (0.020) (0.017)

α3 Livestock 0.440 0.440 0.344
(0.013) (0.013) (0.008)

α11 Land/Land 0.023 0.023 0.023
(0.001) (0.001) (0.001)

α12 Land/Capital 0.018 0.018 0.018
(0.001) (0.001) (0.001)

α13 Land/Livest. -0.006 -0.006 -0.006
(0.001) (0.001) (0.001)

α22 Capital/Capital 0.115 0.115 0.110
(0.006) (0.006) (0.006)

α23 Capital/Livest. -0.007 -0.007 -0.006
(0.002) (0.003) (0.002)

α33 Livest./Livest. 0.076 0.076 0.057
(0.002) (0.002) (0.001)

αT Time -0.032 -0.032 -0.033
(0.002) (0.003) (0.002)

                                                                                                                                                                                       
a

Numbers in parentheses are estimated standard errors.
b

Numbers in parentheses are standard deviations of the MCMC samples.
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Table 2: Unconstrained Maximum Eigenvaluesa

                                                                                                                                                                          

Estimated Estimated Prob. Estimated Estimated Prob.
Maximum of Concavity Maximum of Concavity

Year t Eigenvalue Violation Year t Eigenvalue Violation
                                                                                                                                                                          

1952-53 1 0.019 1.000 1965-66 14 0.000 0.000
(0.004) (0.000)  

1953-54 2 0.000 0.000 1966-67 15 0.000 0.000
(0.000) (0.000) 

1954-55 3 0.000 0.000 1967-68 16 0.000 0.000
(0.000) (0.000) 

1955-56 4 0.000 0.000 1968-69 17 0.000 0.000
(0.000) (0.000) 

1956-57 5 0.000 0.000 1969-70 18 0.000 0.000
(0.000) (0.000) 

1957-58 6 0.000 0.000 1970-71 19 0.000 0.000
(0.000) (0.000) 

1958-59 7 0.002 0.023 1971-72 20 0.015 0.999
(0.001) (0.003) 

1959-60 8 0.000 0.000 1972-73 21 0.001 0.000b

(0.000) (0.001) 

1960-61 9 0.002 0.006 1973-74 22 0.000 0.000
(0.001) (0.000) 

1961-62 10 0.004 0.286 1974-75 23 0.000 0.000
(0.002) (0.000) 

1962-63 11 0.008 0.925 1975-76 24 0.015 1.000
(0.002) (0.002) 

1964-65 13 0.000  0.000
(0.000)

                                                                                                                                                                          
a

Numbers in parentheses are standard deviations of the MCMC samples.
b

0.00014 before rounding.
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TABLE 3: Estimated Input-Price Elasticities Evaluated at Average Pricesa

                                                                                                                                                                               

 Price of Price of Price of Price of
 Land Capital Livestock Other Inputs

                                                                                                                                                                               

Gibbs (unconstrained)

Qty of Land -0.647 0.493 0.027 0.127
(0.011) (0.010) (0.007) (0.018)

Qty of Capital 0.148 -0.314 0.072 0.094
(0.003) (0.022) (0.009) (0.022)

Qty of Livestock 0.025 0.218 -0.126 -0.117
(0.007) (0.027) (0.024) (0.034)

Qty of Other Inputs 0.022 0.053 -0.022 -0.053
(0.003) (0.012) (0.006) (0.015)

Metropolis-Hastings (constrained)

Qty of Land -0.643 0.496 0.030 0.118
(0.011) (0.011) (0.008) (0.018)

Qty of Capital 0.148 -0.333 0.077 0.108
(0.003) (0.021) (0.008) (0.020)

Qty of Livestock 0.027 0.229 -0.326 0.070
(0.007) (0.023) (0.005) (0.023)

Qty of Other Inputs 0.020 0.061 0.013 -0.094
(0.003) (0.011) (0.004) (0.012)

                                                                                                                                                                               
a

Numbers in parentheses are standard deviations of the MCMC samples.
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Figure 1: Estimated distribution of the own-price elasticity for livestock evaluated at average prices.

0

25000

50000

75000

100000

125000

150000

-0
.0

01
00

-0
.0

00
92

-0
.0

00
84

-0
.0

00
77

-0
.0

00
69

-0
.0

00
61

-0
.0

00
54

-0
.0

00
46

-0
.0

00
38

-0
.0

00
31

-0
.0

00
23

-0
.0

00
16

-0
.0

00
08

0.
00

00
0

0.
00

00
7

0.
00

01
5

0.
00

02
3

maximum eigenvalue

pd
f

0

10

20

30

40

50

60

70

80

90

100

-0.40 -0.36 -0.32 -0.28 -0.24 -0.20 -0.16 -0.12 -0.08 -0.04

unconstrained

constrained



26

Figure 2: Estimated distribution of the cross-price elasticity between livestock and labour and other inputs

evaluated at average prices.
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