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Abstract

In this paper we develop a theoretical model that links dynamic efficiency measurement and 
optimal investment under uncertainty. It is widely acknowledged that uncertainty has an 
impact on the optimal factor use of a profit maximizing firm. This is particularly true for the 
optimal adjustment of the firm’s capital stock. While uncertainty has been considered in the 
static efficiency measurement literature it has been ignored so far in the context of dynamic 
efficiency measurement. This paper targets at closing this gap. For that purpose we take up a 
dynamic efficiency model which embeds a stochastic intertemporal duality model into a 
shadow cost framework and allows for measuring technical and allocative inefficiency. We 
derive hypotheses on how uncertainty affects the measurement of efficiency. The factor 
demand equations, which we derive, may serve as a starting point for an empirical validation 
of these hypotheses. 

Keywords:  efficiency, shadow cost approach, dynamic duality, uncertainty 
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Zusammenfassung

Ziel dieses Beitrages ist es, ein theoretisches Modell zur dynamischen Effizienzmessung so zu 
erweitern, dass unsichere Preise für Produktionsfaktoren bei der optimalen Faktoreinsatz-
menge variabler und fixer Faktoren berücksichtigt werden. Insbesondere bei der Anpassung 
quasi-fixer Faktoren mittels Investitionen spielen unsichere Erwartungen über zukünftige 
Rückflüsse eine große Rolle. Während bereits einige Studien Unsicherheit bei der statischen 
Effizienzmessung berücksichtigen wird dieser Aspekt bei der dynamischen Effizienzmessung 
bislang ignoriert. Das hier verwendete dynamische Effizienzmodell basiert auf einer Kosten-
minimierung für eine gegebene Produktionsmenge und erlaubt, mit Hilfe der jeweiligen 
Schattenpreise und dazugehörigen Faktoreinsatzmengen sowohl allokative als auch technische 
Effizienz zu messen. Es werden Hypothesen über die Wirkung von Unsicherheit bei der 
dynamischen Effizienzmessung abgeleitet. Faktornachfragefunktionen, die aus dem Modell 
resultieren, können als Grundlage für empirische Analysen dienen. 

Schlüsselwörter: Effizienz, Schattenpreise, dynamische Optimierung, Unsicherheit
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1 Introduction 

It is widely acknowledged that structural change is closely related to the efficiency of firms 
within a sector (e.g., Goddard et al. 1993); however, there is a controversial discussion about 
the direction of causality. The classical structure-conduct-performance (SCP) paradigm states 
that there is a direct relationship between the market structure (degree of concentration) and 
the degree of competition among firms (Bain 1951). The SCP paradigm states that a higher 
degree of competition drives monopoly profits towards zero, leading to a higher degree of 
(social) efficiency. The SCP has been criticized for the assumption of an exogenous market 
structure. In reality, market structure is affected by firms’ conduct and performance. This 
criticism has led to the efficiency-structure (ES) hypothesis (Demsetz 1973). According to the 
ES hypothesis, performance causes structure; firms with superior performance and higher 
efficiency increase their market share at the expense of less efficient firms, thereby increasing 
concentration. From this viewpoint, it is essential to understand and empirically analyse 
efficiency, as it is a major driver of structural change. 

Unfortunately, standard efficiency analyses treat the time dimension of structural change in  
an unsatisfactory way. In the simplest case productivity and efficiency indicators are based  
on cross-sectional data and ignore time at all. If panel data are available, time varying 
inefficiency can be estimated in a stochastic production frontier model, examples are given by 
Kumbakhar (1990) or Battese and Coelli (1992). Ahn et al. (2006) present a flexible 
specification of the time varying efficiency term leading to a so called “dynamic frontier”. 
Panel data also allow for a calculation of changes in the total factor productivity (TFP) of 
farms over time, for example by using the Malmqvist TFP index. Moreover, productivity 
changes can be decomposed into technical changes, changes of the technical and allocative 
inefficiency as well as scale effects (e.g., Brümmer et al. 2002). Though this kind of 
decomposition paves the way for a subtle analysis of the economic development of farms it is 
still not a fully dynamic analysis. The crucial point is whether the analysis of efficiency is 
based on a theory of intertemporal decision making or not. With a few exceptions to be 
mentioned below, efficiency analyses do not depart from a static cost minimization or profit 
maximization problem. Thereby intertemporal dependencies of factor allocations are ignored. 
In particular, no special attention is given to adjustments of the capital stock. That means no 
difference is made between investments and adjustments of variable production factors. In 
fact, standard efficiency analyses assume that capital can be adjusted to an optimal level 
instantaneously and without other costs than interest. This view, however, ignores the quasi-
fixed character of capital. Disregarding possible costs attached to adjusting the capital stock 
and dynamic constraints may result in biased estimates of efficient frontiers in the sense that 
firms, which actually behave optimally, may appear inefficient. In what follows we call this 
phenomenon “seemingly inefficient”. For example, it may be optimal for a particular farm to 
stick to an out-dated technology and sacrifice a gain of productivity if investments costs are 
irreversible and future returns are random. Similarly, it could be optimal not to reduce the 
capital stock in response to a decline in marginal capital productivity, because of lacking 
secondary markets for specific assets. Thus if the role of efficiency is considered in a long-
term perspective, i.e., in order to discover its role for structural change a dynamic efficiency 



2 Silke Huettel, Rashmi Narayana and Martin Odening 

SiAg-Working Paper 10 (2011); HU Berlin 

measurement is required allowing a distinction between short term and long-term efficiency. 
This distinction takes into account that decisions on the use of variable inputs are conditional 
on the endowment with quasi-fixed assets and farms incur adjustment costs when changing 
the quasi-fixed production factors. In other words, dynamic efficiency measurement takes into 
account that farmers’ decisions are made in the short run with a view to the long run. 

Acknowledging the necessity to distinguish between variable and quasi-fixed production 
factors brings up another challenge, namely the consideration of uncertainty when deriving 
the “optimal” level of input use. Even in a static framework risk is an issue when measuring 
efficiency (Kumbakhar 2002). However, risk seems to be even more important for decisions 
about fixed factors like investments, because risk unfolds over time and farmers have to build 
expectations on costs and returns over a longer time period. Thus it is not surprising that 
modern investment theory explicitly accounts for risk (e.g., Abel and Eberly 1994; Dixit and 
Pindyck 1994). The impact of risk on optimal investment and the adjustment path of the 
firm’s capital can be twofold. In the presence of uncertainty risk-averse decision makers will 
discount future investment returns at a higher (risk adjusted) discount rate so that investment 
projects, which appear profitable in a deterministic setting, are rejected. Second, even in the 
case of risk neutrality uncertainty is relevant for the investment decision since it creates a 
value of waiting which in turn results in investment reluctance. That means increasing risk 
may widen the optimal range of inaction for capital and other quasi-fixed factors. Note, this 
view is emphasized by the real options approach for analysing investments. 

It is well known that uncertainty affects the optimal adjustment path of quasi-fixed inputs 
over time, though the sparse literature on dynamic efficiency analysis invariably assumes 
static expectations on future costs and returns. The objective of this paper is to incorporate 
risk into a dynamic efficiency model. To our best knowledge such an attempt has not been 
made so far and thus it closes a gap in the existing literature. The basic idea, which we will 
pursue for this purpose, is to bridge models of investment under uncertainty and 
(deterministic) dynamic efficiency analysis. 

The next section provides an overview of the existing literature related to the consideration of risk 
in efficiency measurement and non-parametric as well as parametric measurement of dynamic 
efficiency. Section 3 presents a theoretical framework of a dynamic efficiency model under 
uncertainty and hypotheses. Section 4 concludes and discusses proposals for further research. 

2 Literature review 

The impacts of risk or uncertainty on firms’ decision making and their efficiency has been an 
issue for a long time, for instance Kumbhakar (1993; 2002), Caudill and Ford (1993), Battese 
et al. (1997) or Wang (2002). All these studies share the aim to account for production risk in 
the efficiency measurement approach. Kumbhakar (1993) measures production risk and 
technical efficiency using a static Stochastic Frontier Analysis (SFA) where risk may also 
cause a deviation from the efficient frontier. Kumbhakar (2002) generalizes this model by 
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distinguishing between production risk and risk aversion. Thereby the risk preference function 
consists of two parts, one associated with production risk and one with technical inefficiency. 
The findings reveal these two parts with a stronger production risk part. Alternative 
specifications have been investigated by Caudill and Ford (1993), Wang (2002) or Battese et 
al. (1997). Besides this strand, Chambers and Quiggin (2002) use a state-contingent approach 
to account for risk since producers may face possible states characterized by different price 
levels. Stochastic production frontiers presume one common state of nature and deviations are 
assigned to random errors or inefficiency. Thereby, possible responses to a set of states are 
disregarded through which differing responses the producers may appear inefficient even 
though the decision has been rational. Empirical evidence is found by O’Donnell and Griffiths 
(2006) and Chavas (2008). Also Nauges et al. (2009) find evidence on the defined states of 
risk while rejecting the classical SFA model. O’Donnell et al. (2010) even show using 
simulated data that under state-contingent risk the classical SFA approach leads to wrong 
estimates of the technical inefficiency. 

Even though there is large literature about how risk may be considered in the efficiency 
measurement approaches, various shortcomings remain. First, there is no demarcation between 
inputs in the production process and all inputs are treated like variable inputs. Second, the 
explicit role of time and the adjustment of the farms over time are not considered in static 
efficiency models. Third, it is not taken into account whether quasi-fixed inputs have to be 
adjusted in the long run. The adjustment process of quasi-fixed inputs over time may generate 
additional transitory costs in the decision making process. Static efficiency approaches assume 
that firms adjust to the long-term optimal values immediately and efficiency is measured by 
relating the observed input and the optimal long-term value. Disregarding the long-term optimal 
adjustment to the optimal input level may cause inaccurate measures of efficiency. Dynamic 
efficiency approaches account explicitly for the optimal path of adjustment over time and 
measure efficiency by relating the observed input and the optimal adjustment path of the input 
over time. Though, it is not surprising that Gardebroek and Oude Lansink (2008) suggest that 
dynamic efficiency measurement is more appropriate than the static one. 

While static efficiency measurement has a long history, dynamic efficiency measurement is a 
rather novel research area. Dynamic efficiency measurement strives for a cross-fertilization of 
dynamic models of decision making and traditional efficiency analysis. Nemoto and Goto 
(1999, 2003) develop a dynamic DEA model that takes into account adjustment costs. 
Ouellette and Yan (2008) take up this model and generalize it. Their model distinguishes 
between variable inputs that can vary in the short run and quasi-fixed (nondiscretionary) 
inputs that can vary only in the long run. Inter-temporal adjustment restrictions are incorporated 
into a static cost-minimizing DEA model. These restrictions reflect an optimization over 
several periods where a DMU (decision making unit) balances the cost of an investment 
(acquisition costs plus adjustment costs) and the expected reduction of variable costs due to 
this investment. The resulting dynamic DEA allows for a decomposition of overall economic 
efficiency into static and dynamic efficiency.  
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Silva and Stefanou (2003, 2007) develop non-parametric dynamic measures of technical, 
allocative and economic efficiency in the short run and in the long run. Short run measures 
indicate whether variable inputs are employed efficiently in the production process, whereas 
long run efficiency captures both variable and quasi-fixed factors. The starting point of their 
model is an inter-temporal cost minimization problem in which capital is treated as a quasi-
fixed factor. The dynamic nature of the decision problem is addressed in the production 
technology specification via a convex adjustment cost function for a change in quasi-fixed 
factors. The authors derive lower and upper bounds for each efficiency-measure and apply 
their model to a panel data set of U.S. dairy farms. They show that the allocation decisions of 
inputs with adjustment processes over time such as capital or labour are a main source of farm 
specific inefficiency. Oude Lansink and Silva (2006) refer to the theoretical framework of 
Silva and Stefanou (2003) and measure dynamic efficiency in the short and long run by means 
of a directional distance function approach. They apply their model to horticultural firms and 
their findings reveal that in the short and long run allocative efficiency is higher than technical 
efficiency with lower values in the long run. They further show that the allocation of quasi-
fixed factors is less optimal than the allocation of variable factors which provides evidence for 
the presence of adjustment costs. 

Rungsuriyawiboon and Stefanou (2007, 2008) pursue a similar approach which will be 
explained in detail in the next section, since their model forms the starting point for our 
exposition. The authors establish a dynamic efficiency model by integrating the static shadow 
cost approach and the dynamic dual model of inter-temporal decision-making. Based on an 
inter-temporal cost minimization problem they derive the optimal dynamic factor demand 
functions for the variable inputs and quasi-fixed inputs. The incorporation and the decompo-
sition of economic efficiency are achieved by a shadow cost approach. In essence, it is 
distinguished between actual costs and behavioural (or shadow) costs of a firm. The actual 
cost function refers to the perfect minimization of cost with respect to the observed prices, 
whereas the behavioural or shadow costs are associated with the observed input levels of the 
firm chosen to be the cost-minimizing level with respect to the shadow prices. In the presence 
of inefficiencies, shadow costs for production factors will deviate from actual (market) prices. 
They find overcapitalization of U.S. electric utilities and a relative underuse of the variable 
production factors. 

We can resume that several attempts for measuring dynamic efficiency exist. The aforementioned 
contributions to dynamic efficiency measurement share one important feature, namely the 
assumption of static expectations of future prices and returns. This basically means that 
current prices and outputs contain all relevant information and will persist in the future. 
Decision makers are not allowed to anticipate revisions in their expectations and uncertainty 
does not play a role at all. This is, of course, a highly unrealistic assumption. Actually uncer-
tainty turned out to be an important determinant for investment demand and production 
decisions (e.g., Dixit and Pindyck 1994). Contrarily, studies that incorporate risk into 
efficiency measurement are purely static. The model, which we develop in the next section, 
merges these two aspects. 
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3 A dynamic efficiency model with uncertainty 

The model that we propose rests upon two building blocks: first, a static shadow cost 
approach to efficiency measurement and second, the dynamic dual model of inter-temporal 
decision making. We follow Rungsuriyawiboon and Stefanou (2007) in combining these two 
components. The main contribution of this paper is to enhance the deterministic dynamic dual 
model by a stochastic one. In what follows, we first outline the idea of dynamic efficiency 
measurement and the general measurement procedure using a parametric shadow cost 
approach (3.1). Afterwards we derive the theoretical dynamic efficiency model under uncer-
tainty (3.2). Finally, we suggest a functional form for the underlying value function that may 
serve as a vantage point for the derivation of an empirical model (3.3) and present possible 
hypotheses how risk may affect the measurement of efficiency (3.4).  

3.1 The general idea of dynamic efficiency measurement 

As mentioned above, the majority of efficiency studies ignore the existence of adjustment cost 
and the interdependence of production decisions over time. As Gardebroek and Oude Lansink 
(2008) point out, this ignorance may cause inaccurate measures of efficiency and firms may 
be seemingly inefficient. When explicitly considering the role of time and referring to a 
dynamic context, it is useful to distinguish two types of inputs, namely variable inputs and 
quasi-fixed inputs. For the latter a costly adjustment process to the optimal long-run level has 
to be taken into account. Costs attached to the adjustment process may for instance be 
temporary losses in production or transaction costs. If these are not appropriately considered 
in the efficiency measurement they may contribute to the occurrence of seeming inefficiency.1 
They may also add to inefficiency. For instance, in the case of a too rapid adjustment of the 
capital stock a firm may incur higher adjustment costs than compared to the optimal 
adjustment rate (Rungsuriyawiboon and Stefanou 2007). 

Figure 1 illustrates the difference between static and dynamic efficiency measurement. 
Therein tK  is the observed level of a quasi-fixed factor for a farm in a particular time period t. 
The curve starting in '

tK  represents the optimal adjustment path of the quasi-fixed input level 
over time and ''

tK  denotes the long-term optimal value. Static efficiency approaches assume 
that firms adjust to the long-term optimal values immediately and measure efficiency as the 
ratio of observed input ( tK ) and the long-term optimal value ( ''

tK ). In contrast, dynamic 
efficiency approaches account for the optimal path of adjustment and measure efficiency by 
referring to the ratio of observed input ( tK ) and optimal adjustment of the input over time  
( '

tK ). Obviously, referring to '
tK  instead of ''

tK  as the cost minimal level of the capital stock, 
overestimates inefficiency, at least in the short run. This effect could be even more pro-
nounced if uncertainty of future costs or revenues is taken into account because uncertainty 
may also increase investment reluctance. As a result the optimal adjustment path shifts 
downwards and the capital stock at time t is K*. 
                                                           
1  Note, a detailed overview about adjustment costs in the context of quasi-fixed factors can be found for instance 

in Hamermesh and Pfann (1996). 



6 Silke Huettel, Rashmi Narayana and Martin Odening 

SiAg-Working Paper 10 (2011); HU Berlin 

Figure 1. Efficiency measurement over time 

 
Source: Adopted from Gardebroek and Oude Lansink (2008). 

Shadow cost approach 

Now we turn to the first block in order to measure firm specific efficiency in a dynamic 
context. The parametric shadow cost approach as initially introduced by Lau and Yotopoulos 
(1971) and later generalized to panel data setting by Atkinson and Cornwell (1994) has the 
advantage that the decomposition of the cost efficiency into its technical and allocative 
components is not that cumbersome as in the SFA approach (Kumbhakar and Lovell 2003). 
Moreover, within the shadow cost approach no distributional assumptions are necessary with 
respect to the inefficiency term. It is assumed that a representative firm minimizes its shadow 
or behavioural costs. Thereby, the shadow prices are defined as input prices that force a 
technically efficient input choice to be the cost-minimizing choice. In the presence of 
inefficiency, the shadow input prices will differ from the actual prices (that may be observed). 
Since the shadow prices are not observable it is not possible to directly estimate the shadow 
cost function. For this reason the shadow prices are directly related to the actual (observed) 
prices by means of the inefficiency terms. Technical inefficiency is introduced as a deviation 
from the shadow cost optimal input choice. Thus, the firm’s actual cost functions and the 
observed input demand equations are expressed in terms of shadow input prices including 
technical and allocative inefficiency terms. Empirical applications of the shadow cost 
approach in agricultural economics can be found for instance in Maietta (2000), Reinhard and 
Thijssen (2000) or Mosheim and Lovell (2009).  
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Outline of the model derivation 

The major aim of our paper is to combine the shadow cost approach with a stochastic 
dynamic dual model. This involves several steps which are depicted in a flow chart as shown 
in Figure 2. We start from a cost minimization problem for a representative firm assuming 
that it is optimal to minimize factor inputs for a given output level. Such behaviour seems 
reasonable for example for dairy farms under the milk quota regulation. The optimization is 
subject to the equation of motion of capital, the stochastic price development over time and 
the production sequence. Using dynamic programming solves the decision problem and 
applying Shephard’s Lemma yields the optimal net investment and optimal variable input 
demand functions under uncertainty. This standard procedure of the dynamic dual model, 
however, has to be extended in order to capture inefficiency effects. This is achieved by 
means of the shadow cost approach. For this purpose the behavioural or shadow value 
function using shadow prices and quantities and the actual value function using actual prices 
and quantities are defined. The shadow value function guarantees the optimality with respect 
to the shadow prices that may differ from the actual prices by inefficiencies, whereas the 
actual value function gives the condition for optimality under full efficiency. 

First, the behavioural value function (left hand side of the flow chart) is defined using shadow 
prices for the variable inputs ( bw ) and the shadow factor demand for variable ( bx ) and quasi-
fixed factors ( bK ). Shadow prices are related to observed input prices ( w ) by means of an 
allocative inefficiency term . Prices of the variable factors are normalized to a numeraire 
variable such that allocative inefficiency is interpreted as price distortions in relation to the 
numeraire variable in order to identify over- or underuse of variable input factors. The shadow 
factor demand is related to the actual factor level by means of the technical inefficiency term, 
for both the variable and the fixed factors. 

In order to get the variable and fixed factor demand equations in terms of the behavioural 
value function with both inefficiency terms, the behavioural value function is differentiated 
with respect to (a) the shadow prices ( bw ), thereby the allocative inefficiency is incorporated 
into the factor demand equations and (b) the price for the quasi-fixed input (c ), thereby 
technical inefficiency has to be incorporated since the factor demand (variable and quasi-
fixed) optimized with respect to the shadow prices differs from the actual/observed level by a 
technical inefficiency term. Carrying out these two steps yields the optimized actual quasi-
fixed and variable factor demand equations in terms of the behavioural value function (bottom 
of the left hand side in the flow chart in Figure 2). 

Second, the cost minimization problem is solved under actual conditions, i.e. observable 
prices and quantities (right hand side of the flow chart in Figure 2). The resulting optimized 
actual value function may be interpreted as the long-run cost function. The latter is 
differentiated with respect to actual prices in order to get the optimized actual quasi-fixed and 
variable factor demand in terms of the actual value function. 

Then, in a final step, the optimized factor demand equations expressed in terms of the 
behavioural value function are incorporated into the actual value function with the respective 
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inefficiency terms (dotted lines) yielding the actual value function with optimized actual 
prices and quantities in terms of the behavioural value function. The latter value function is 
differentiated with respect to the actual prices. Using the optimized actual factor demand 
equations in terms of the actual value function gives the optimized actual factor demand 
equations expressed in terms of the behavioural value function (bottom of the right hand side 
of the flow chart). This step is necessary to identify the inefficiency parameters in terms of 
observable input prices and levels. The grey shaded boxes thereby indicate the final equations 
that may serve as a base for empirical work. 

Figure 2. Procedure of dynamic efficiency measurement under uncertainty 

 
 

3.2 Theoretical model 

Cost minimization under uncertainty 

We refer to the dynamic intertemporal duality model of Epstein (1981) wherein a firm 
minimizes its variable costs for a planned level output. The dual variable cost function is 
given by 

dynamic efficiency model

behavioural/shadow 
value function

(shadow prices & input levels)

actual                             
value function

(actual prices & quantities)

• optimal quasi-fixed factor 
demand
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value function
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c and w
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actual prices
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demand
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, , , , min
ni

i ni i mi mi ni nix t n
C w t y t K t K t t w t x t  (1) 

subject to  

 , ,i ni mi miy t F x t K t K t  (2) 

where i indexes individuals, t  denotes time2, ( )nx t  denotes the level of thn variable factor in use 
where 1 2, ,..., n

nx t x t x t  with the respective factor prices 1 2, ,..., n
nw t w t w t . 

In addition to the variable costs, the firm also incurs costs of quasi-fixed factors by purchasing 
quasi-fixed factors represented by m mm

c t K t , where mK t  denotes the level of the 
thm  quasi-fixed factor with 1 2, ,..., m

mK t K t K t  and 1 2, ,..., mc t c t c t  being the 

prices of the quasi-fixed factors respectively. y t  represents the expected production level of 
a single output at time t and the representative firm’s technology is described by the 
production function , ,F x t K t K t . Therein mK t  refers to the net investment into 

the respective thm  quasi-fixed factor. The inclusion of the net investment in the production 
function allows to account for the dependency of the output on the size of adjustments in the 
stock of the quasi-fixed factors and reflects the presence of internal adjustment cost in terms 
of foregone output (Stefanou 1989). The production function is assumed to be concave in 

mK t  which implies increasing marginal adjustment costs: the loss in production is assumed 
to be larger for faster adjustments in the capital stock and as a result, the firm will tend to 
adjust more slowly such that 0

mm KK F  and 0
m mK KF  holds (Stefanou 1989). 

The variable cost function C  as given in (1) reflects the least cost variable input 
combination for each quantity of output y t . In line with Epstein and Denny (1983) we 
assume that the producer takes the factor prices as well as the level of output as given in the 
base period 0t . The firm is assumed to minimize its expected discounted sum of all future 
cost over an infinite planning horizon. In contrast to Epstein and Denny (1983), we assume 
that the future costs are uncertain. Formally, the optimization problem is given by the value 
function ( )J . 

0
0

0 , 0 , 0 , 0

min , , , ,
m

rt
n m m m mI t m

J w c y K

E e C w t y t K t K t t c t K t dt  (3) 

where 0E  denotes the expectation operator conditional on information available at present 
time and 0r  is a discount rate. This cost minimization is subject to the evolution of the 
capital stock described by 

                                                           
2  The subscript i is suppressed and the time dependency left out for notational convenience wherever possible. 



10 Silke Huettel, Rashmi Narayana and Martin Odening 

SiAg-Working Paper 10 (2011); HU Berlin 

m m mK t I t K t  (4) 

where ( ) 0mK t . mI t  denotes gross investment, and  refers to the depreciation rate 
which is assumed to be constant over time. Moreover, the optimization in equation (3) is 
subject to uncertain dynamics in all input prices and in the output level. Thus, we summarize 

the latter in a state vector 1 1ln ,  ln ,..., ln ,  ln ,..., lnn mz t y t w t w t c t c t  containing 

the logarithms of the output quantity, the variable factor prices and the quasi-fixed factor 
prices. The evolution of this state vector follows an arithmetic Brownian Motion as follows3: 
dz dt dv  (5) 

where  denotes the drift parameter,  represents the variance-covariance matrix and 
dv is an identically, independently and normally distributed vector term with 0E dv , 

2  E dv dt  and , 0i jE dv dv  for all i j . The firm’s stochastic optimization problem 

as given in equation (3), subject to the constraints (4) and (5) is solved using stochastic 
dynamic programming. The Hamilton-Jacobi-Bellman (HJB) equation for this problem is 
given by (Pietola and Myers 2000): 

, 

,  

min

1, ,
2

mn n m m K m mx I n m m

n m m z

rJ z K

w x t c K t J I t K t

t y t F x t K t K t J

 (6) 

where t J y  is the so called co-state variable associated with the production target 
constraint and is interpreted as the long-run marginal cost (savings) by increasing or 
decreasing the level of the planned output at time t (Stefanou 1989). /

mK mJ J K  denotes 
the partial derivative of J with respect to the mth quasi-fixed factor. These partial derivatives 
can be interpreted as shadow values: the change in the value function induced by a change in 
the firm’s initial stock of quasi-fixed factors. /zJ J z  denotes the partial derivatives of J 
with respect to the state vector z  including the factor prices and the logarithm of the output 
which may also be interpreted as a shadow value. For instance, with respect to the input prices 
they reflect a change in the value function caused by a change in the firm’s initial price level 
(note, the derivative with respect to the logarithm of the output is not explicitly interpreted 
since the shadow value of the output constraint is already accounted for by the co-state 
variable ). Finally, 

'

1 1
'1 ' 1 j j

n m n m
z z jjj j

J  wherein zzJ  refers to the Hessian matrix of J 

                                                           
3  Note that this implies a geometric Brownian motion for y(t), w(t), and c(t). 
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containing the second order derivatives with respect to z t . j and j’ index the respective 

elements of z t . 

The equilibrium condition in equation (6) states that the variable inputs x and investments I 
should be chosen at each time such that the variable production costs n nn

w x t , the 

costs of quasi-fixed factors m mm
c K t , the gain from changing the stock of the quasi-

fixed factors ( ) ( )
mK m mm

J I t K t  and the instantaneous change in the long-run cost 

given by , ,n m mt y t F x t K t K t  are minimized. Note, the last two terms, 

zJ  and 1
2 , arise from the stochastic evolution of the logarithms of the output and the 

input prices.  

According to Shephard’s Lemma, differentiating the HJB equation given in (6) with respect to 
ln mc  and ln nw  yields the respective conditional factor demand equations. Note, because of 
the assumption of an arithmetic Brownian Motion for the state vector we need to differentiate 
with respect to logarithms of the factor prices while applying Shephard’s Lemma. Referring 
to Pietola and Myers (2000), the optimal net investment demand is given by 

1*
,ln ln ,ln ,ln ln

1
2m m m m m m mm K c c m m m K c z c c

m m
K J rJ c K K J J  (7) 

where index m  indicates the quasi-fixed factors other than m with 1, 2, ,m m  m m . 
Thus, according to equation (7), the optimal investment demand for the mth quasi-fixed factor 
is a function of all investments in other quasi-fixed factors indicated by ,lnm mm K c

m m
K J . 

Furthermore, the optimal variable factor demand for the nth variable input is given by 

ln ,ln ,ln ln
1 1

2n m n n nn w K w m z w w
mn

x r J J K J
w  (8) 

From equations (7) and (8) it becomes apparent that uncertain input prices will affect the 
optimal decisions with respect to the variable and quasi-fixed inputs over time.  

Incorporation of technical and allocative inefficiency 

Now we integrate the static shadow cost approach into the intertemporal dual model of cost 
minimization in order to measure economic inefficiency under uncertainty in a dynamic 
context. For this purpose we create two types of cost functions: the behavioural and the actual 
cost function. Using the shadow input prices and quantities we set up the behavioural value 
function which guarantees the cost minimized relation under shadow prices. Further, the 
actual (may be observed) input prices and quantities are used to set up the actual value 
function. By considering the actual used input quantities as the optimal ones, the actual value 
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function becomes the optimized actual value function and represents a fully efficient input 
use. That is, in the presence of perfect efficiency the actual value function is equivalent to the 
behavioural value function, whereas in the presence of inefficiency they differ. As a result, the 
optimized actual value function is expressed in terms of behavioural value function and this 
allows to express the optimized actual factor demand equations in terms of the behavioural 
value function including several inefficiency terms. 

In a first step, we define a behavioural value function (indicated by the superscript ‘b’) quite 
similar to equation (6), but variable costs are now calculated with the shadow input prices and 
quantities. Minimizing the behavioural value function leads to the behavioural HJB equation 
that can be written in terms of the shadow input prices and quantities as follows4.  

, , ,

1, ,
2

m

b b
n m m

b b b
n n m m K m m

n m m

b b b b b
n m m z

rJ w t c t K t y t

w t x t c t K t J I t K t

t y t F x t K t K t J

 (9) 

where 1 1 2 2, ,...,b
n n n n nw w w w w  denotes the shadow prices of the variable factors. n  

denotes the firm specific allocative inefficiency parameter for the thn  variable factor 
(AE parameter). If 1n , then the nth variable factor is allocative efficiently used. Values of 

1n (<1) indicate that the decision maker distributes less (more) of the nth input compared to 
the cost-minimizing allocation. 

m

b
KJ  denotes the marginal value of the behavioural capital 

stock which can be related to the marginal value of actual capital, 
m

a
KJ , by the following 

definition: 
m m

b a
K m KJ J . Herein m  indicates the allocative inefficiency parameter of net 

investments in quasi-fixed factors. 0b t  is the behavioural short run marginal cost of 
production and gives the value of relaxing the production target constraint in terms of the 
shadow (behavioural) factor prices. 

'

1 1
'1 ' 1 j j

n m n mb b
z z jjj j

J  is the stochastic term in the 

behavioural HJB equation. 

b
nx  in equation (9) stands for the behavioural variable factor demand which is assumed to be 

the technically efficient level. The optimized behavioural level is assumed to be the 
technically and allocatively efficient level of the respective variable factor. However, the 
observed variable factor demand nx  may deviate from the behavioural demand due to 

technically inefficient choices. Introducing 1
nx  as a measure of input-oriented technical 

efficiency of variable factor use, behavioural factor demand b
nx  is related to the actual nx  

                                                           
4  Note, equation (9) is the optimized version of the behavioural HJB equation, thus the min-operator does not 

appear here. 
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factor demand such that 1
n

b
n x nx x . Likewise the demand for quasi-fixed inputs may be 

technically inefficient, thus: 1
m

b
m K mK K , where b

mK and mK  denotes the level of 

behavioural and actual net investments in the stock of quasi-fixed factors, respectively and 
1

mK  is the input-oriented measure of the technical efficiency in the quasi-fixed factors. 

In order to reduce the complexity of our model we assume for the subsequent steps that the 
drift rate of the Brownian Motion is zero such that 0 . Thus, the behavioural value 
function in (9) can be rewritten as5  

, , ,

1, ,
2

m

b
n n m m

b b
n n n m m K m m

n m m

b b b b
n m m

rJ w c K y

w x c K J I K

y F x K K

 (10) 

Carrying out the same steps as in the basic cost minimization problem, i.e., applying 
Shephard’s Lemma and differentiating equation (10) with respect to ln mc  and ln n nw , we 
obtain the optimal factor demand equations in terms of the shadow prices and shadow 
quantities. The optimal behavioural net investment demand function for the mth quasi-fixed 
input is given by 

1

,ln ln ,ln ln
1
2m m m m m m

b b b b b b
m K c c m m m K c c

m m
K J rJ c K K J  (11) 

and the optimal behavioural variable factor demand for the thn variable input reads as follows: 

ln , ln ln
1 1

2n m n n

b b b b b
n w K w m wb

mn

x rJ J K
w  (12) 

In the presence of technical inefficiency, the optimal behavioural factor demand equations can 
be expressed in terms of the optimized actual net investment and variable factor demand 
equations (based on the behavioural value function). As these are observed we indicate 
‘observed’ by the superscript o. Note, optimized actual and observable are used inter-
changeably here. 

1

,ln ln ,ln ln
1
2

m

m m m m m m m

o b
m K m

o b b b b b
m K K c c m m m K c c

m m

K K

K J rJ c K K J  (13) 

                                                           
5  The time dependency is suppressed for notational convenience where possible. 
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ln , ln ln
1
2

n

n

n m n n

o b
n x n

xo b b b b
n w K w m wb

mn

x x

x rJ J K
w

 (14) 

Next, we introduce the actual value function (indicated by the superscript a) of the firm’s cost 
minimization problem in order to get the optimized actual factor demand equations (recall 
Figure 2). Here, the optimized version of the actual HJB equation in the presence of 
uncertainty corresponding to the actual input prices and quantities can be written as 

1, ,
2m

a

a a a
n n m m K m n m m

n m m

rJ

w x c K J K y F x K K  (15) 

We assume that the actual input levels are the optimal ones and we replace the actual input 
levels by the optimized actual ones denoted by o

mK  and o
nx . This further implies that actual 

output is the optimized output such that , , 0.o o
n m my F x K K  Note, 1 1

1 1 j j

n m n ma a
z z jjj j

J  

represents the uncertainty in the actual HJB equation. 

The optimized version of the actual HJB equation in (15) is now expressed in terms of the 
actual prices and the optimized actual input levels resulting in an optimized actual HJB 
equation. The optimized actual HJB equation states the perfect efficiency condition, hence 
without inefficiency and is given by 

1
2m

a

o a o a
n n m m K m

n m m

rJ

w x c K J K  (16) 

Taking the derivatives of the optimized actual HJB equation in (16) with respect to ln mc  and 
ln nw  yields the optimized actual net investment demand function for the mth quasi-fixed input 
and the optimized actual variable factor demand function for the nth variable input under 
perfect efficiency as follows: 

1

,ln ln ,ln ln
1
2m m m m m m

o a a o a a
m K c c m m m K c c

m m
K J rJ c K K J  (17) 

ln ,ln ln
1 1

2n m n n

o a a o a
n w K w m w

mn

x r J J K
w  (18) 

In the presence of perfect efficiency, the optimized actual value function is equivalent to the 
behavioural value function. Whereas in the presence of inefficiency, the optimized actual 
value function is not equivalent to the behavioural value function and the deviation is 
accounted in the inefficiency parameters. 
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So finally, we need to express the optimized actual HJB equation in (16) in terms of the 
behavioural value function (recall Figure 2). This step is also necessary to introduce the 
allocative inefficiency parameter of the net investment denoted by m  into the model. For that 
purpose we express the actual and optimized actual terms in the equation (16) by corresponding 
behavioural terms, i.e., we substitute o

mK  by 
m

b
K mK , a

zzJ  by b
zzJ  and 

m

a
KJ  by (1/ )

m

b
m KJ . In 

equation (16), we further replace ( o
nx ) by the optimized actual variable factor demand defined in 

equation (14) and ( b
mK ) is substituted using the behavioural net investment demand equation 

given in (11). The optimized actual HJB in equation (16) is now rewritten in terms of the 
behavioural value function as: 

1

ln ,  ln ,ln ln

,ln ln ln

1

,ln ln

1 1
2 2

n

n m n m m m

m m m n

m

m m m m

a

x b b b b
w K w K c c m m

n mn

b b b b
m K c c w

m m

K b b b
m m K K c c m m

m m m

b
m

rJ

rJ J J rJ c K

K J

c K J J rJ c K

K ,ln ln
1 1
2 2m m m

b b b
K c c

m m
J

 

(19)

In equation (17) the optimized actual net investment demand under perfect efficiency is 
expressed in terms of ,ln ln ,ln ln,  ,  and  

m m m m m m

a a a a
K c c K c cJ J J . To obtain these derivatives we make 

use of the optimized actual HJB equation which is expressed in terms of the behavioural value 
function in equation (19). Taking the derivatives of equation (19) with respect to ln ,mc  with 
respect to first mK  and then ln mc  and finally first with respect to mK  and then ln mc . These 
are then substituted into equation (17) yielding the mth optimized actual net investment 
demand in terms of the behavioural value function under uncertainty. It is given by the 
following equation, note that we have ignored higher than second order derivatives of ( )bJ  
and in order to improve the readability we indicate the factor in use in bold letters. 
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1

,ln , ln

1 1

ln , ,ln ,ln ,ln , ln ,ln

1 1

,ln ,ln ,

1 1 1

1 1

n

n

m

m m m m m m m m

x Kb b
K c K w

n n

K b b b b b b
c K K c K c K c K K c c

m m

K Kb b b b
K c K K c K K

J J c c
r r

J J J J J J

J J c J J c
r r

m

m m m

m m m m

m m

m m m m m m m

m m
m

m m
m m

1 1

ln , ,ln ,ln ,ln , ln ,ln

,ln

1

ln ,ln ,ln , ln ln ,ln

,ln

1
2

1
2

m

m m m m m m m m

n n

n m m m n m

n

K b b b b b b
c K K c K c K c K K c c

m m

b o
K c

x xb b b b
w c K c K w c c

n n mn n

x b
K c

n

K

J J J J
r

K
r

rJ r J J J

J

m m m m

m m

m m

m m

m

m

1

, ln

1

,ln , ln ln ,ln ln ,ln

1 1

,ln ln ,ln ln ,ln ,ln

1

,ln

1 1
2 2

n

n n

m m m n m n

m

m m m m m m m m

b
K w

n

x xb b b b
K c K w c c w c

n m nn n

K b b b b b b
K c K c c c K c K c

m m

K b b
K c K

J c K

J J

r J J J J J J

J J

m

m m

m m

m

m m m

m m

m

1

,ln ,ln

1

,ln ,ln ,ln

1 1

,ln ln ,ln ln ,ln ,ln
1
2

m

m m m

m

m m m m

m

m m m m m m m m

K b b
m m K c K c

m m

K b b b b
m K c K c K c

m mm

K b b b b b b
K c K c c c K c K c

m m

m

c K c K J J

K J J J

J J J J

K

m

m m

m m

m m

m

1 1

ln , ,ln ,ln ,ln , ln ,ln
  1

1 1

,ln ,ln ,ln ,

ln ,

1 1

1
2

m

m m m m m m m m m m

m

m m m m

m

m

m
Ko b b b b b b

c K K c K c K c K K c c
m m m
m m

K Kb b b b
m K c K c K c K K

m

K
c

m

J J J J J J

c J J J J c K
r r

r

m m

m

m m m m m m
m

1 1

,ln ,ln ,ln , ln ,ln

,ln
1
2

m m m m m m m m m

m

b b b b b b
K K c K c K c K K c c

m

b
K c

J J J J

r

m m

m

 

(20)
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Under perfect efficiency, the optimized actual variable input demand equation (18) is 
expressed in terms of ln ,ln ln, and  

n m n n

a a a
w K w wJ J . Note, these derivatives are obtained from 

optimized actual HJB equation as given in equation (19) that is differentiated with respect to 
ln nw  as well as with respect to mK  and ln nw . These are inserted into equation (18) yielding 
the optimized actual variable factor demand for the nth input factor expressed in terms of the 
behavioural value function. Also here higher than second order derivatives of ( )bJ  are 
ignored and we indicate the respective factor in use in bold letters to improve the readability. 

1

ln ,ln ,ln , ln ln ,ln

1

,ln , ln ln ,ln ln ,ln

1

,ln ln ,ln

1

1 1
2 2

n n

n m m m n m

n n

m m m n m n

m

m m m m

x xo b b b b
w w K c K w c w

n n mn n

x xb b b b
K c K w c w w w

n m nn n

K b b
K c K c w

m

x r J r J J J
w

J J

r J J J

n n

n n

n

n
n

1

ln ,ln ,ln

1

,ln ,ln

1

,ln ,ln ,ln

1

,ln ln ,ln ln ,ln
1
2

m m m m

m

m m m

m

m m m m m

m

m m m m m m m

b b b b
c K c K w

m

K b b
m m K c K w

m m

K b b b b
m K c K c K w

m m mm

K b b b b b
K c K c w c K c

m

J J J

c K J J

K J J J

J J J

n

n

n

n

1

,ln

1

ln , ,ln ,ln

1

,ln , ln ,ln

1

,ln ,ln
1

m

m

m m m m

m

m m m m

m

m m m

b
K w

m

K b b b o
c K K c K w

m m

K b b b o
K c K K c w

m m

K b b o
m K c K w m

m

J

J J J K

J J J K

c J J K
r

n

m n

m n

n

m
m

m
m

1

ln , ,ln ,ln

1
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,ln

1
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1
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1
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K b b b o
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For the subsequent steps, we need to normalize the factor prices by one of the variable factor 
prices to satisfy the property of linear homogeneity in prices of the cost function. 

For this purpose, the shadow prices for the variable factors, defined as b
n n nw w  with 

1 1 2 2, , ..., n nw w w , are redefined using the first variable factor price as a numeraire variable: 

1 1
b
n n nw w w  with 1 1 1 1 2 2 1 1 1 1, ,..., n nw w w w w w . In order to measure the 

deviation from the actual prices, the allocative efficiency (AE) parameter 1n  is introduced 
and denotes the price distortions of the thn  variable factor relative to the 1st variable factor: 

1 1
b
n n nw w  with 21 21 1 11, ,..., n nw w . An estimate of the AE parameter for the variable 

factor demand 1n > 1(< 1) means that the ratio of the shadow price of the thn  variable factor 
relative to the 1st variable factor is higher (lower) than the respective actual prices ratio. This 
implies under-use (over-use) of thn  variable factor in relation to the 1st (numeraire) variable 
factor (see Maietta (2000) or Rungsuriyawiboon and Stefanou (2007) for a similar procedure). 

Based on the normalized optimization problem we derive the factor demand for the numeraire 
variable input. In order to achieve this, we single out the numeraire variable in the optimized 
version of the behavioural HJB equation (9): 

1
2

, , ,

1
2m

b
n n m m

n
b b b b b b

n n m m K m
n m m

rJ w c K y

x w x c K J K  (22) 

where 1
bx  denotes the behavioural demand for the numeraire variable factor and b

nx  is the 
behavioural demand for the other variable factors. The conditional behavioural demand for 
the numeraire variable factor under uncertainty can then be expressed as follows: 

1

2

1
2m

b

n
b b b b b b

n n m m K m
n m m

x

rJ w x c K J K  (23) 

Accordingly, the optimized actual (observed) demand for the numeraire variable factor in the 
presence of uncertainty reads as 

1

1

1 1

2

1
2m

o b
x

n
b b b b b b

x n n m m K m
n m m

x x

rJ w x c K J K  (24) 
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3.3 Specification of the value function 

The derivation of estimable decision rules from equations (13), (21) and (24) requires a choice 
of the functional form for the behavioural value function bJ  and the drift function of the 
GBM . Since we refer to stochastic transition equations in our cost minimization problem it 
is not possible to directly refer to the approach presented by Rungsuriyawiboon and Stefanou 
(2007) for measuring dynamic efficiency. As shown by Pietola and Myers (2000) the 
convexity properties of the cost function require fourth order curvature properties on the value 
function. Otherwise the output and price uncertainty would have no influence on the optimal 
decision rules. According to Pietola and Myers (2000), the functional form of the value 
function needs to fulfil the following properties6: 

i. J  is concave in ,w c , 

ii. KJ  is linear in ,w c , 

iii. zzJ  is linear in ,w c , 

iv.  is non-increasing and convex in ,w c . 

Past studies frequently used a simple quadratic approximation of the value function even 
though it is not flexible. Flexibility can be attained by adding additional terms and parameters 
(cf. Epstein 1981) and is required to achieve theoretical consistency of the parameter 
estimates. Thus we suggest the following specification for the value function satisfying the 
four aforementioned properties: 

0

1

ln
,

ln
ln

0 0
ln1 ln ln ln

0 ln2
0 ln

b
K y w c

KK yK

yK yy wy cy

wy ww cw

cy cw cc

wK

J a b b b b

A A
A A A A

A A A
A A A

b

b
b

b

K
y

z K
w
c

K
y

K y w c
w
c

c M K w A K

 (25) 

Therein refers K  to the ( 1)m  vector of quasi-fixed inputs, (ln )yy  denotes the scalar of 
the log output and 0a  is an unknown constant scalar parameter. Note, in the normalised 
specification of the long-run cost function we considered the 1st variable input price as a 
numeraire. Now we consider all variable input prices bw  as normalized. Accordingly, ln bw  

                                                           
6  A detailed proof can be found in Pietola and Myers (2000: 966). 
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denotes the ( 1)n  vector containing the logarithms of the normalized variable input prices 
and ln c  denotes the ( 1)m  price vector of the logarithmic prices for the quasi-fixed factors.  

The elements of the vector ' ' ' '

(1 (2 1))K y w c m n
' b b b bb  represent the first order parameters 

of the respective Taylor series expansion of the value function. Thereby denotes '
Kb  the 

parameters for the elements of K  with dimension ( 1)m , analogously refers '
yb  to the 

parameter vector with respect to log output and reduces to a scalar. '
wb  and '

cb  contain the 
input price parameters and are of dimension ( 1)n  and ( 1)m , respectively. Matrix A  is 

defined as 

((2 1) (2 1))

0 0

0
0

KK yK

yK yy wy cy

wy ww cw

cy cw cc m n m n

A A
A A A A

A A A
A A A

A  and contains the second order para-

meters where the elements except yyA  are itself matrices. KKA  is a symmetric ( )m m -matrix, 

yKA  is a (1 )m -dimensional vector, yyA  reduces to a scalar, wyA  and cyA  are the vectors of 
dimension ( 1)n  and ( 1)m  respectively. wwA  and ccA  are symmetric matrices of dimension 
( )n n  and ( )m m , respectively, and finally, cwA  is a ( )m n -matrix. The zero restrictions 
in matrix A  guarantee that KJ  and zzJ  are linear in the quasi-fixed input prices (see property 
ii. and iii.). 

In the stochastic model compared to deterministic models, we require additional restrictions, 
namely zJ  to be quadratic in ,w c  and zzJ  to be linear in ,w c  (see property iii). This is 

ensured by adding the last two terms 1c M K  and Kw
bw A K . Herein M  is a symmetric 

( )m m -matrix of so called adjustment rates which can be interpreted as costs or losses in 
production attached to an adjustment in the stock of quasi-fixed factors and represent 
indirectly adjustment costs. KwA  is a m n -matrix. 

Using this specification of the value function we are able to derive the factor demand 
equations that may serve as a starting point for an empirical specification. The mth optimized 
actual net investment demand using the behavioural value function as given by equation (13) 
is now specified in terms of the value function (25) as follows: 
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where Km
 denotes the technical inefficiency parameter of the mth quasi-fixed input. Note, 

also here we mark the factor in use boldly to improve the readability. c KM
m m

 represents the 

diagonal elements of the matrix M  and 1
1 m

m
c Km

M
m

 represents the elements of the thm  row 

of the inverse of matrix M . 2
lncm

 denotes the variance term of the respective mth quasi-fixed 
input price. 

Accordingly, the specified version of the nth optimized actual variable input demand function 
using the behavioural value function (21) is given by (note, also here we use the bold index to 
improve the readability): 
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where ,xn n  are technical and allocative inefficiency parameters of the nth variable input, 

1 m m

m
c Km

M  represents the diagonal elements of matrix M  and the technical and allocative 

inefficiency parameters of the quasi-fixed inputs are given by 
1 m

m
K mm

. 1
1 m m

m
c Km

M  

denotes the diagonal elements of the inverse of matrix M , 2
ln1 m

m
cm

 is the variance term of 

the respective quasi-fixed input prices, oKm  denotes the optimized actual net investment 
demand for the mth factor, 2

ln wn
 represents the variance of the nth variable input price and 

1,

m b
mm m m

K  denotes the behavioural net investment demand function for quasi-fixed inputs 

other than m.  

Finally the specified version of the optimized actual demand for the numeraire variable input 
(24) is given by 
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where 2
ln y  is the variance of the logarithmic output, ln ,lnnw y  and ln ,lnmc y  are the respective 

covariances of the output and input prices. Similarly denotes ln ,lnm nc w  the covariance of the 
quasi-fixed and variable input prices. 

3.4 Hypotheses 

The main motivation of the derivation of stochastic factor demand equations was the 
conjecture that uncertainty affects the optimal factor demand which, in turn, might have an 
impact on estimates of a firm’s efficiency. Equations (26) to (28) actually reveal the importance 
of factor price uncertainty in this context. To be specific, the negative sign of the last term in 
equation (26) indicates that volatility in prices of quasi-fixed factors, 2

ln mc , reduces optimal 
investment (i.e. increases disinvestments). A negative investment-uncertainty relationship was 
also derived by Dixit and Pindyck (1994) and was empirically confirmed, for example, by 
Pietola and Myers (2000) and Hinrichs et al. (2008). It is not straightforward to deduce how 
this impact of uncertainty will affect the parameter estimates of technical and allocative 
efficiency. Clearly, there will be an omitted variable bias with respect to the inefficiency 
parameters if uncertainty is not included in an econometric model, but its direction and 
magnitude are hard to tell a priori. However, an intuitive conjecture is that ignoring 
uncertainty leads to an overestimation of inefficiency parameters. The reason is that actual 
capital stocks spuriously appear too small (or too large in the case of disinvestment) if the 
optimal speed of adjustment is overestimated. Referring to Figure 1 this means that the 
optimal adjustment path is shifted downwards due to uncertainty. 

Equation (27) reveals that two different sources of uncertainty play a role for the variable 
factor demand, namely the variance of the quasi-fixed input price and the variable input 
prices. The effect of 2

ln mc  is apparently ambiguous. In contrast, the effect of 2
ln nw  is again 

negative, provided that net investment is nonnegative. In the case of disinvestments this 
negative effect is dampened. 

Inspection of equation (28) shows the variances of the (log) output and the (log) prices of 
variable and quasi fixed factors have a negative impact on the demand of the numeraire 
variable input. This effect can be either amplified or attenuated by positive or negative 
covariances between the stochastic variable, so that it is difficult to affect the net effect of 
uncertainty on the factor demand. 

4 Concluding remarks 

Summing up we have derived a parametric model of dynamic efficiency in a shadow cost 
framework. Our model extends existing approaches since it accounts for non-static expecta-
tions of factor prices. We provide stochastic factor demand equations which can serve as a 
starting point for the econometric estimation of technical and allocative inefficiency as well as 
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short run and long run input demand elasticities. Nevertheless, one has to admit that much of 
the complexity of recent investment models cannot be captured by our approach. For 
example, adjustment costs are expressed by simple adjustment rates that may be transformed 
into a linear accelerator model though it has been emphasized in the investment literature that 
more sophisticated adjustment cost functions are required for an appropriate specification of 
investment demand functions (cf. Huettel et al. 2010). We suggest this cross fertilization of 
investment models and efficiency models a direction for future research. 
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