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FORECASTING ACCURACY OF
ALTERNATIVE TECHNIQUES:
A COMPARISON OF ALABAMA FORECASTS

M. Keivan Deravi*

Introduction

Macroeconomists have always been interested in developing a tool
to forecast macroeconomic aggregates and to perform policy analyses.
Different alternative modeling techniques, at the national and regional
levels, were developed to achieve those ends. Economic base and
input-output models were among the earlier attempts. Both techniques,
however, suffered from certain deficiencies which made their use a
difficult matter. To counteract the deficiencies of the above models, new
types of models known as econometric models or structural models have
been developed. A structural model is a system of reduced form
demand equations which attempt to quantify cause-effect relationships
among economic variables. More specifically, a structural model is a
system of simultaneous equations that specify underlying economic
behavioral and equilibrium relationships for a given set of economic
variables.

Although structural models created a great deal of excitement at the
beginning, their theoretical deficiency, i.e. overidentification problem,
and their dismal forecasting performance undermined their usefulness.
These problems forced the profession to look for alternative modeling
techniques.

The most notable alternatives are Box-Jenkins [1], autoregressive-
integrated-moving-average (ARIMA), and vector autoregression (VAR)
models. The first is a purely time series model and does not rely on any
economic theory. The VAR and ARIMA models, on the other hand, can
be derived by specific economic theory, and VAR is by far the most
successful in capturing the notion of general equilibrium at the aggregate
level. Proponents of VAR claim that the VAR models are superior to the
structural models in terms of both theoretical considerations, i.e.
identification of the model, and the accuracy of forecasts (Sims [11, 13],
Cargill and Morus [2]).

In an effort to evaluate these claims, this paper develops a vector
autoregression (VAR) model and a structural forecasting model for the
Alabama economy. Both models use quarterly data from 1969:1 to
1985:4. The reason for choosing this specific time period has to do with
both data availability and data compatibility. Initially, the models are
estimated over 1969:1 to 1982:4, then a real-time scheme of quarterly
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estimating and forecasting are used to generate out of sample forecasts.
The forecasting errors of the two models for different forecasting
horizons are then used to compare the models' accuracy.

The use of VAR for the purpose of regional modeling, and
comparing its forecasting accuracy to that of regional structural model, is
motivated by two considerations. First, the VAR model has been claimed
by its proponents to offer a number of advantages over traditional
regional structural models. To name a few, it is both more parsimonious
in its use of data and offers theoretical advantages over structural
demand equation representations. Second, the recession of 1982 and
its profound impact on Alabama appeared to have caused some
structural changes in Alabama's economy. This in turn led to large
forecasting errors by the structural models of Alabama, particularly for the
post 1982 period. It is therefore important to try to understand the future
prospects for Alabama's economy and to find out whether the VAR
model can provide a more reliable forecasting mechanism toward that
goal.

The Structural Approach

Structural economic models are defined as a system of equations
that specify behavioral relationships among a given set of economic
variables. In these models, exogenous variables are said to cause
behavioral variables. The behavioral variables, or the endogenous
variables, are linked to exogenous variables by behavioral equations.
Finally, the behavioral equations are linked to each other through
identities. For example, demand and supply equations in terms of
relevant opportunity costs, constitute behavioral equations. The
equilibrium condition, which makes supply to be equal to demand, is
then specified through an identity.

The national structural models evolved from the Keynesian
macroeconomic framework of sectoral demand analysis. For example,
consumption, investment, government expenditures, and net exports
represent the major behavioral equation blocks in the model. National
Income is specified as an identity that defines income as summation of all
four expenditures.

While national modeling may seem to be fairly straightforward,
regional modeling is not as cut and dried. The availability of the data and
their frequency present a major problem. Data on regional imports,
exports, and nonmanufacturing investment are virtually nonexistent. To
overcome these problems, this paper uses an approach known as the
top-down technique. This technique involves constructing regional
models that act as satellites to already existing national models. This is
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accomplished by making certain variables in the regional model
dependent on national variables. National changes are then channeled
into regional variables through these linkages.

The structural mode! developed here attempts to estimate three
major blocks of behavioral equations. These blocks include real Gross
State Product (GSP), total nonagricultural employment (NAE), and
personal income (PYA). For the GSP and NAE block, demand ’type
equations are estimated for the following industries: durable
manufacturing; nondurable manufacturing; mining; contract
construction; trade; services; finance, insurance, and real estate;
transportation, communication, and public utilities; state and local
government; federal government; and the farm sector. GSP and NAE
are then estimated through aggregating individual industries’ output and
employment estimates.

The personal income block is estimated following the design of the
national income and product accounts. That is, behavioral equations are
specified to estimate Alabama wages and salaries; dividends, interest,
and rent income; nonfarm proprietors' income; transfer payments;
contribution to Social Security; and farm income.

The link between the Alabama model and the national economy is
established primarily through the GSP block. As suggested by theory,
manufacturing, mining, and federal government output are assumed to
constitute export industries, and as such are directly tied to their national
counterparts. The remaining industries are specified as functions of
domestic variables, such as personal income, population, and some
domestic energy and labor costs.

Output data are then used as the primary driver in the NAE block to
estimate employment in each industry. More specifically, employment in
each industry is specified as a function of output, average wage rate, and
in some cases lagged employment for each industry. For the personal
income block, Alabama’s variables are regressed directly on their national
counterparts.

When estimating the individual equations, extreme care is taken to
adhere to economic and statistical theories in their strictest form. All
equations are checked for serial correlation and corrections are made
where serial correlation are detected. The signs of all parameters are
checked to insure they are in line with the theoretical expectation;
variables with reverse signs are dropped from equations.

The VAR Approach

The VAR models’ distinctive advantage over the structural models is
that VAR models estimate behavioral macrorelationships as unrestricted
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reduced forms; all variables are treated as endogenous. In other words,
there are no a priori theoretical or statistical restrictions imposed on the
individual equations. This implies that, as suggested by economic
theory, any variable which appears on the right side of one of the
equations appears on the right side of all the equations in the model.
The approach used in the VAR models follows that of frequency-domain
time series theory. Each estimated parameter is implicitly part of an
infinite dimensional parameter space (Sims [11]).

More specifically, VAR represents a dynamic linear system of
equations for modeling the joint serial correlation of a set of two or more
variables. The primary intention is to imply the relationship between a
number of variables and their past values through a general
autoregressive structure (Cargill and Morus [2]). Formally, it is a set of
equations

N L
(M Yit=a+ X X bjj1Yjt1+uit

=1 1=1

pary

Where Y is a (N x 1) vector of variables, b is a (N x N) matrix of coefficients,
uis a (N x 1) vector of residuals, and a is the constant term. This equation
contains no deterministic (or exogenous) variables with exception to the
constant term.

Equation (1) is an unconstrained version of VAR. The coefficients
or the lag patterns are not restricted, meaning that parameters and the lag
patterns are free to take any value. This, however, can present the
model builder with a potential problem of overparametization. For
example, each equation of a VAR system using a (4 x 1) matrix of
variables and just 4 lags of each variable would have 16 parameters to
estimate. This process can not only exhaust the degrees of freedom,
but can also lead to poor forecasts due to the hazard of reading too much
into estimation results.

To overcome this problem, this paper uses an approach developed
by Litterman [4] and Doan [3]. Litterman and Doan show that forecast
performance of a VAR model can be improved by imposing a prior on the
model to restrict its parameters. This approach, which is based on
Bayesian statistical theory, provides a modeler with guidance on how to
combine prior beliefs (which are known independently of the sample
data) and the sample data with which the model will be estimated.

Although in principal any kind of restriction can be imposed, this
paper uses the one developed by Litterman known as the random walk
prior. The random walk prior is based on the premises that the time series
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model y(t) = Y(t-1) + u{t) is a reasonable speciffication for a large number of
economic relationships.

To employ the random walk prior in the VAR model, the value of the
first own lag in each individual equation is restricted to 1.0. Next,
parameters on all other lag variables, including own lags of more than one
period, are restricted to zero. The third step involves setting tightness of
the prior. This is to set the degree to which the coefficient of the first own
lag is allowed to vary away from the assigned value. A tight prior--for
example, .05--allows little variance from the imposed prior, while an
extremely loose prior--say, 2--allows maximum variance around the prior
mean for the first own lag. Once the value and tightness for the first own
lag is set, then the modeler can repeat the same process for the other
lags. That is, within each equation, different tightness levels, relative to
that of the first own lag, can be assigned to other lag variables (Cargill and
Morus [2]).

In theory, the initial choice of tightness on prior of the first own lag
and other lags is, at best, an educated guess. In practice, however, one
can minimize the amount of guess work by estimating a large number of
models, each with slightly different prior values and tightness levels. The
prior and tightness for the best model, in terms of out of sample forecast,
can then be used as the optimal prior. The relative tightness of other lags
can also be set using the above approach of trial and error.

Following the above approach, this paper attempts to build a VAR
model for Alabama. Two sets of variables constitute the Alabama VAR
model. The first set contains the local variable. Local activities are
presented by total output (or real GSP), total nonagricultural employment
{or NAE), and personal income (or PYA). The second set of data
includes national variables and it contains real GNP, real money supply
(measured by real M1), and the rate of interest (measured by the six
month Treasury bill rates). All the variables are transformed to natural logs
and, when applicable, seasonally adjusted data are used. For
identification of priors and their tightness, a total of nine models are
estimated. These models are different from each other in terms of
tightness of the priors imposed on the coefficients. They are estimated
over 1969:1 to 1982:4, and forecasts are generated from 1983:1 to
1985:4. The models are then evaluated in terms of their out of sample
forecast errors as measured by the room mean square error (RMSE) of
the forecasts. The RMSEs are reported in Table 1.

As shown in Table 1, an unconstrained VAR model (UVAR), a VAR
model! with no priors, is compared with eight Bayesian VAR (BVAR)
alternatives. Two conclusions can be drawn from Table 1. First, a
comparison of the RMSEs suggest that the BVAR specifications provide
better forecasting statistics than the UVAR model. Second, the most
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promising version of the Alabama BVAR is a four lag model with an overall
tightness prior of 0.1 and a relative tightness prior of .05 for GSP and
NAE and .001 for PYA.

Model Evaluation and Comparison

To evaluate the forecast performances, the two models are
simulated using a rolling sample, and out of sample forecasts are
generated. Using the forecast values, forecast errors are computed.
The results are reported in Tables 2 through 4. Forecast errors are
measured in terms of mean absolute percentage errors (MAPE) which is
defined as the mean of the ratio of the residuals over actual values,
expressed as percentages. The advantage of this error over alternative
methods of error measurement is that is is more useful for comparison
purposes regardless of different variable measurement units. As an
arbitrary standard, a MAPE value of less than five percent is perceived as
an acceptable or tolerable margin of error.

Three types of forecast errors are generated starting from 1982:4
using a rolling sample or a real-time scheme of quarterly estimating and
forecasting procedure. Table 2 reports forecast errors for one quarter
forecast horizons. That is, the models are estimated through 1982:4 and
then they are simulated to generate forecasts for 1983:1. Next, the
1983:1 observations are included in the sample and the two models are
reestimated and simulated to generate forecast values for the
proceeding quarter. This process is repeated until all degrees of
freedom are exhausted. The same procedure is used to compute
forecast errors for longer forecast horizons. For instance, Table 3
contains the MAPEs for four quarters forecast horizons while Table 4
reports the long-term forecast errors (from the end point to 1985:4
period).

As can be seen from Tables 1 through 3, both models appear to do
reasonably well. The forecast errors for GSP, NAE, and PYA on the
average are well below the five percent tolerable margin of error. For the
individual subsamples, with exception to GSP forecasts for 1983:3 (end
point 1983:2), no large or unacceptable MAPE is reported.

A comparison of the error statistics also suggest that the errors for
the models are comparable. That is, with regard to GSP and PYA, the
structural model seems to do marginally better than the VAR model. On
the other hand, the VAR appears to generate lower MAPE than the
structural model for the NAE variable. These trends seem to prevail for all
three forecast horizons. The spread between the errors are not,
however, large enough to make any one of the two models clearly
superior to the other one.
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There are, nonetheless, three interesting observations that can be
made from the tables. One, as suggested by the standard deviations of
the MAPEs, the forecast errors from the structural model appear to be
more stable than those of the VAR model. For instance, the standard
deviation of forecast error forecasts from the VAR model for GSP is 183
percent larger than the structural model's for one quarter forecast
horizon; also the spread between the two standard deviations appears
to widen considerably as longer forecast horizons are considered.

Second, starting with 1984:2, the VAR model seems to generate
lower MAPEs than the structural model. This has to do with the fact that
the time period from 1984:1 to 1985:4 was a period of economic stability.
There were no sharp turning points during this period and therefore, the
BVAR is able to generate better forecasts for that specific time period.

This brings us to the third observation regarding the forecasting of
turning points. Cursory examination of the data shows that there wers no
sharp turning points for NAE and PYA. GSP, however, has experienced
some sharp fluctuations in the latter part of 1983 and first quarter of
1984. For instance, GSP grew at -3.48 percent, 5.69 percent, and -1.83
percent in 1983:3, 1983:4, and 1984:1, respectively. A close
examination of Tables 2 through 4 shows that the structural model does a
significantly better job in forecasting these turning points in all three
forecast horizons. The forecast errors for the VAR model are more than
200 percent larger than those of the structural model for these specific
quarters.

Conclusion

The purpose of this paper was to develop two altérnative forecasting
models of the Alabama economy and to compare their forecast's
performances. To that end, structural and vector autoregressive time
series models have been built to observe and forecast Alabama's key
economic variables. Quarterly data, covering 1969:1 to 1985:4 were
used to estimate and simulate the models.

Three conclusions are drawn from the above exercise. First, on an
overall basis, the two models are comparable. Both models generated
reasonable error statistics, well below the five percent critical value. The
margin of forecast accuracy from either of the models, however, is not
large enough to clearly make one superior to the other.

Second, the VAR model does a better job of forecasting during
tranquil economic periods than the structural model. The forecast error
from VAR, however, shows greater variation than its counterparts. And
finally, the structural model seems to do a far more superior job of
forecasting the turning points than the VAR.
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Based on the above considerations, although the structural model is
comparable to the VAR with regard to its long-run forecast accuracy, the
structural model is by far a better tool for forecasting the business cycle.

101



Endnote

*Auburn University at Montgomery.
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MODEL

UVAR (No Priors)
BVAR (2.0, 1.0)
BVAR (2.0, .001)
BVAR (1.0, .05)
BVAR (1.0, .001)
BVAR (0.1, .05)
BVAR (0.1, .001)
BVAR (0.05, .001)
BVAR (0.01, .001)

Table 1

RMSE For Alabama VAR Model
Forecast Horizon, 1983:1 - 1985:4

LNGSP LNNAE
.0322 .0150
.0313 .0147
.0298 .0149
.0267 .0133
.0299 .0149
.0265* .0120*
.0286 .0142
.0279 .0139
.0265 .0128

LNPYA

.0150
.0147
.0090
0131
.0090
.0099
.0090*
.0091
.0091

The first number in the parentheses indicates the degree of tightness for
the first own lag, and the second number is the degree of tightness for
other lags. Tightness for the other lags is in relative terms. For instance,
for the second BVAR model, the tightness for other lags is .002. In all
models, prior means for first own lag and those of other lags are, 1.0, and
0.0, respectively. A similar test, although not reported, indicated that a
four lag model provides the best RMSEs. For this reason, all of the
above models are estimated using four lags for the included variables.
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Table 2
Comparison of Mean Absolute Percentage Errors
One Quarter Ahead Forecast Horizon

GSP NAE PYA
ENDPOINT STR VAR STR VAR STR VAR
82.4 0.23 0.24 .80 1.66 1.94 .68
83.1 0.89 0.35 1.36 2.19 43 .32
83.2 1.69 6.12 221 .36 58  1.32
83.3 1.64 420 2.16 .03 112 223
83.4 .26  3.47 .63 1.54 1.17 .55
84.1 .43 .29 1.65 1.56 57 1.09
84.2 1.36 32 19 .51 .50 110
84.3 1.56 52 216 .40 .92 .74
84.4 .67 .52 .91 1.66 1.23 .78
85.1 .82  1.10 1.18 1.03 113 .63
85.2 1.59 .64 1.51 .65 17 1.13
85.3 2.42 .92 2.05 .43 .92 .02
Average 1.13 1.56 1.54 1.00 .81 .80

Standard
Deviation .68 1.93 .56 .69 .52 .60
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Table 3
Comparison of Mean Absolute Percentage Errors
Four Quarters Ahead Forecast Horizon

GSP NAE PYA
ENDPOINT STR VAR STR VAR STR VAR
82.4 1.16 1.10 156  1.11 .99 77
83.1 1.27 136 154 281 .80 1.10
83.2 1.07 5.29 1.68 .58 .84 .95
83.3 .94 1.68 1.57 .56 .82 2.65
83.4 .88 3.78 1.55 .80 .76 .83
84.1 .96 77  1.83 1.1 .79 1.67
84.2 1.08 .37 1.51 1.49 .68 .59
84.3 1.13 59 1.41 1.10 .60 .80
84.4 1.32 .50 1.36 1.09 .61 .62
Average 1.09 1.68 1.53 1.18 .76 1.11

Standard
Deviation .15 1.72 .09 .67 12 .66
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Table

4

Comparison of Mean Absolute Percentage Errors
Long-Run Forecast Horizon (End Point to 1985:4)

VARIABLE
NAVE
MODEL
ENDPOINT
824
83.1
83.2
83.3
83.4
84.1
84.2
84.3
84.4
85.1
85.2
85.3

Average
Standard
Deviation

GSP
STR

:-l_L
&8

BRANERNNER

—h
w b
N ©

VAR
1.22
2.32
6.38
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NAE

STR
1.50
1.63
1.71
1.60
1.47
1.67
1.64
1.55
1.36
1.64
1.81
2.05

1.63
A7

VAR
1.06
3.47
1.03
1.37
1.60

.75
1.72
1.12
1.09

.63

.85

.43

1.26
.79

PYA

STR

83

VAR
.82
1.07
.76
2,56
1.59
2.51
1.08
.08
.62
1.44
1.22
.02

1.22
.73






