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Introduction

It has been long recognized that regional economies exhibit
interregional linkages, as well as linkages with state and national
economies. Despite these acknowledged interregional relations, many
regional econometric models typically have been unlinked SMSA models
or SMSA models that include only links with the state or national
economies. This is not surprising, as econometric approaches to linking
local economies to a multi-regional economy run into several problems.
First, there is the issue of collinearity that arises from the multitude of
explanatory variables that are typically used to achieve the links. Second,
there is a degrees of freedom problem and overparameterization of
these models. Finally, overfitting during estimation and difficulties in
managing the data base for updating the model arise. All of these
problems tend to degrade the ability of linked models to forecast more
accurately than their unlinked counterparts.

This paper introduces a Bayesian approach to pooling data from
across the SMSA models into a linked, regional forecasting model. We
argue that this approach overcomes the problems mentioned above that
are traditionally encountered in producing linked models. The focus of
our investigation is whether this approach has an advantage over
unlinked models in providing improved forecasts.

Our approach, like that of Garcia-Ferrer [2] represents a "bottom-up”
attempt to build a simple model based on the time-series properties of
the payroll data that will forecast well. This is in contrast to the work of Liu
and Stocks [4] that we would classify as "top-down.” They attempt to
build elaborate models of the individual metropolitan area economies in
order to approach the multi-regional forecasting problem. A set of simple
unlinked models of payroll variation for each of the metropolitan areas
provides a benchmark against that we assess the improvement
attributable to the pooling of multi-regional information.

The paper proceeds as follows. Section 2 examines the time-series

data for payroll in eight Ohio SMSAs demonstrating that there exists a fair
amount of comovement over time. Simple OLS models using leading
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indicator variables provide benchmark forecasts that will be used to judge
the improvement derived from our techniques. Section 3 describes and
motivates the Bayesian prior proposed in the new technique. This
estimator is shown to be a compact and efficient way to pool information
from the multi-regional economy. Section 4 presents the results from
forecasting experiments using three alternative estimation techniques.
We compare the simple OLS model with a ridge regression model and
the Bayesian pooling model. The ridge comparison is included in order
to verify whether any reduction in forecast error truly arises from the
Bayesian pooling information rather than shrinkage alone.

Analyses of the Data for Eight Ohio SMSAs

Our data represent quarterly total payroll data based on employment
covered by unemployment insurance in each of the eight Ohio SMSAs:
Akron, Canton, Cincinnati, Cleveland, Columbus, Dayton, Toledo, and
Youngstown. These data are available from the Ohio Bureau of
Employment Services, Labor Market Information Division. The data cover
the period 1978 first quarter through 1985 fourth quarter and are in
nominal value terms. These data were transformed to indices with a base
of unity during the first quarter of 1982. This transformation was made so
that the parameters of the various metropolitan payrolf relations would
take on magnitudes of comparable size. The requirement that the
parameters be comparable in magnitude is necessitated by our
shrinkage of the parameters from individual metropolitan relations toward
the pooled value of the parameter estimates for all eight metropolitan

Figure 1 shows a plot of these indexed values of payroll for the eight
SMSAs over the time period 1978 through 1985. It seems clear that
these regional economies exhibit very similar patterns, often called
comovements. I is this information concerning common influences from
seasonality, business cycles, etc. that we will attempt to exploit in order to
improve the forecasting performance of the individual metropolitan
payroll relations.

The sample period covering 1978 first quarter through 1983 third
quarter was used to estimate the models, and the data covering the 1984
and 1985 period were used for out-of-sample forecasting experiments.
A vertical grid in the plots separates the forecast time period from the
period used to fit the models. The fitted models were used to generate
one through three-step-ahead forecasts during the out-of-sample
period. In making these out-of-sample forecasts, the models were re-
estimated using all past data prior to each forecast period. The fitted
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model that generated one-step-ahead forecasts was based on a single
lagged dependent variable and a set of lagged leading indicator variables
that were also lagged one period. The OLS version of this model is
shown in equation (1):

Pit = Bo+ B1Pi.1+ BaSit1+ BaCit_1+ BaA ¢+ Bsly.4+ & )

where:

i = 1,...,8 denoting the eight metropolitan areas;

Pit = payroll in the ith SMSA at time t;

Sijt = housing starts in the ith SMSA at time t;

Cit = unemployment insurance initial claims in the ith SMSA at time t;
At = national domestic auto sales attime t;

Lt = national index of 12 leading indicators at time t;

ejt = a Gaussian disturbance term for SMSA i at time t;

A separate model was used to generate two-period-ahead
forecasts, that were based on the same variables as shown in equation
(1) but a two period lag of these variables was imposed in order to
achieve a two-step-ahead forecast. This is similar to the model that
generated the three-step-ahead forecasts. The OLS versions of these
two models are shown in equations (2) and (3).

Pit = 0tg + 0Py g + 0Py 5 + 033 5 + 044Gy o +

O5ALo + gy o + & @

Pit = 0 + T1Pit-1 + P2 + 1Py + %Sy 3 + 5Cra +

Tehra+ g+ e ®

The models in equations (1) through (3) were estimated and forecast
over the 1984 and 1985 period, along with some simpler variants of
these models. The percentage root-mean-square error (RMSE) of one
through three step-ahead forecasts are presented in Table 1. The
simpler models that were estimated and forecast were (1) an
autoregressive model (labeled AR1 through AR3 in Table 1) containing
only a constant term and the lagged dependent variables, (2) an
autoregressive model containing the national leading indicator variable
and domestic auto sales, (labeled ARL1 through ARL3 in Table 1).
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Equations (1) through (3) are labeled as OLS1 through OLS3 in Table 1.
The simpler models represent an attempt fo analyze by decomposition
the information content contained in the sets of variables representing
national influences, local influences, and autoregressive influences.

Table 1 has been organized in a way to facilitate comparison of the
forecasting ability of the three models at one, two, and three-step-ahead
out-of-sample forecasts. This comparison illustrates a number of points.
First, none of the models perform in an unacceptable way, because all
but one achieve an average forecast error under 6 percent, with most of
them under 5 percent. Youngstown appears to be the most difficult to
forecast, achieving the largest average percentage RMSE over this
period. Second, no single model appears to dominate the others in
terms of forecasting performance; that is, some of the models perform
better at different forecasting horizons for some of the cities. In order to
clearly illustrate this point in Table 1, an asterisk has been placed next to
the minimum percentage RMSE forecast for each of the horizons when
comparing across models. The results indicate that the autoregressive
(AR) model was best in 16 of 48 cases, the autoregressive model with
national leading indicators (ARL) was best in 13 of 48 cases, and the full
model with both national and local leading indicators (OLS) was best in 19
of 48 cases. It should be noted that with regard to this enumeration of
best models, some of the average percentage RMSEs are very slightly
different from one model to the next, making this type of counting
scheme somewhat deceptive. We will compare the out-of-sample
forecast errors from the technique of Garcia-Ferrer [2] to the best
forecasting models shown in Table 1 in order to assess the improvement
in forecasting ability.

The Bayesian Pooling Technique

This section describes and motivates the Bayesian technique for
pooling data information from all eight SMSAs and incorporating it into
the model. The proposed Bayesian estimator could be classified as a
variant on ridge regression that shrinks the vector of estimates toward
values of zero. The Garcia-Ferrer [2] technique uses shrinkage but
shrinks the estimates toward a vector of estimates obtained from a
pooled regression using data from all of the SMSAs.

Let Xj denote the matrix of explanatory variables in the ith

metropolitan area and Yj be the dependent variable vector for SMSA,;.
The estimator proposed by Garcia-Ferrer [2] is shown in equation (4):
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Bz= 0%+ 10X, B+ AB) @

where {5. is the OLS estlmator for metropolrtan area i derived from the
usual formula Bj = X{Xj) X,'Yl, and B is a pooled estimator given by
equation (5):

The expression for § is a matrix weighted average of the individual
metropolitan data information that compactly summarizes the data
variation occurring at the metropolitan area level. This average summary
information about the rest of the region then is mixed with the data
contained in the Xj data matrix and Yj vector for the ith SMSA in order to
achieve the Bayesian estimate for the ith model. Equation (4) shows that
the mixing of this information is again a matrix weighted average of the
information for the individual SMSA contained in Xj and Yj with the pooled
information contained in 5 The Aj parameter controls the relative
weighting of the two types of information, that pertaining to the individual
SMSA, and that representing all SMSAs pooled. This parameter can be
given an interpretation as the relative confidence in the two types of
information, such that when Aj — < the estimator Bz approaches the
pooled estimator ﬁ On the other hand, for very small values of A the
- estimator Bz for SMSA i approaches Bj, the OLS estimator based on the
individual SMSA information.

The value of Aj was determined for each eguation by "integrating
out” the posterior mean of the distribution of the Bz estimator. That is, we
generated forecasts for a range of settings of the Aj parameter for each
SMSA and chose the value of A that produced the minimum average
percent RMSE over the eight quarter forecast period. Since our
objective is to produce a forecasting model, this seems to be a
reasonable procedure.

Garcia-Ferrer [2] note that the estimator 61 is the posterior mean of By
given the following interpretation of our model. Based on the Lindley
and Smith [3] pooling model, we can define Yj=XiBj+uj(i=1, 2...., 8)
that is shown in (6):
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We further assume that:
B] =0+ 8|, i= 1,2,...,8 (7)

where 6 is the mean vector for the individual 8;'s. Assume the §,'s are
independenty distributed, each with a N(O,d)cailk) distribution, where 0 <
d <o, and o, i is an individual variance for each 8;. Further, the uj's in (6)
are assumed normally and independently distributed, with zero mean
and oommgn varianci cﬁ. The probability density function for Bz, given '
the data, % VA =ci/08i, and conditioning on 8 = B, has a posterior mean
given by Bz

Some points must be noted about the estimator 61 shown in (4). K
the estimator were to shrink toward zero instead of the B pooled
estimate, we would have a traditional ridge estimator, that is shown in
equation (8):

Bridge = 04X 0G; B ®)

This suggests that the improved forecasting ability of the estimator é\z
may derive from two sources: first, the ridge or shrinkage aspect of the
estimator may contribute to better forecasts by overcoming the
collinearity problems inherent in these linked models; second, the
shrinkage toward the pooled estimate may contribute toward better
forecasting as this pooled estimate contains important linkage
information about the regional economy in which the SMSA economy is
operating. In order to independently assess these two sources of
forecasting improvement, we will compare the forecasting ability of both a
ridge estimator and the Bz estimator to that from our alternative simpler
models shown in Table 1.

Another point to note about éz is that it differs from more traditional
approaches to improve forecasting by incorporating the information
provided by variables that reflect structural relationships among variables
across SMSAs. Here the approach is to exploit a more limited aspect of
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interregional relationships, the information contained in the statistical
commonality of payroll movements across regions found in the moment
matrices from a stacked cross-section time-series model. This procedure
has the potential to overcome the overfitting and collinearity problems
inherent in more traditional approaches. It should also lead to a much
easier model to maintain and update, because the individual metropolitan
area models remain computationally separate. By this we mean that each
of the metropolitan models incorporate only local explanatory variables in
their explicit equational forms. The mixing of linkage information takes
place at the matrix level during the estimation procedure requiring no
individual computational treatment of the separate SMSA models that
would ordinarily be required in a linked modeling effort.

A Comparison of the Forecasts

We turn our attention to a comparison of the forecasting
performance of the models shown in equations (1) through (3) in Section
2 and the OLS model shown in equation (3) re-estimated using the
Bayesian estimator. In addition, we estimate the OLS model using a ridge
estimator in order to assess how much of the improved forecasting
performance of the Bayesian estimator actually derives from the pooling
information contained in the f§ vector to which the Bayesian estimator
shrinks. General shrinkage toward zero seems likely to provide some
improvement as it is well known that ridge estimators perform well in the
face of collinear data models. It seems reasonable that our SMSA models
contain explanatory variables that are highly correlated because all are
leading indicators of economic performance.

A collinearity diagnostic procedure suggested in Belsley, Kuh, and
Welsch [1] was employed to determine whether near linear
dependencies existed between the columns of the explanatory
variables matrix in the SMSA models. This technique produces a
variance decomposition proportions table based on a singular value
decomposition of the data matrix Xj for each metropolitan area. A
necessary condition for a severe collinearity problem is indicated by a
condition index (that represents the ratio of the largest eigenvalue to
each of the remaining eigenvalues of the data matrix X) in excess of 90.
The condition indices for our eight metropolitan area data sets are
reported in Table 2. The table shows that every SMSA except Akron
exhibits at least four condition indices over 100. Akron exhibits only two
of these large condition indices, still indicating problems. Each of the
large condition indices is indicative of a near linear relationship among the
columns of the explanatory variable matrix X, so that we have at least four
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such relations for each SMSA except Akron. Furthermore, the larger the
condition index, the stronger is the near linear dependency, and every
SMSA exhibits one such relation that is very strong, being associated
with a condition index over 500. It should be noted that the diagnostics
results presented in Table 2 were performed on the largest explanatory
variables model, the OLS model with three lags of the dependent
variable. There are then nine explanatory variables in this model
including the constant term. This will produce nine eigenvalues for the X
data matrix and eight condition indices, where the eight condition indices
are calculated from the ratio of the largest eigenvalue to the eight
remaining eigenvalues.

We now turn to a discussion of the forecasting experiments. These
experiments involved estimating the three models shown in equations
(1) to (3) that produce one-step-ahead, two-step-ahead and three-step-
ahead forecasts with the Bayesian estimator. We varied the value of A
over a large range of values ranging from zero to unity. Analogous to
ridge estimation techniques, we would expect to find a relatively small
value for the optimal setting of A because the larger the value of A
becomes, the more biased the coefficient estimates become. Fairly small
values result in placing a relatively large weight on the non-sample
information or, in the case of our Bayesian estimator, on the pooled
information. The intuition for this large weight associated with a relatively
small value of A is that we are inflating a very small eigenvalue of the X'X
matrix by the magnitude of A that is small, thereby having a relatively large
impact on the outcome of the estimator.

The average percentage RMSE results of our out-of-sample
forecasting experiments are reported in Table 3. In order to focus on the
relative performance of the Bayesian estimator with that of the alternative
estimators shown in Table 1, we have replicated the best out-of-sample
forecast from Table 1 in Table 3 and labeled it as "Best.” In addition, we
replicate the OLS model forecast RMSE in Table 3 to facilitate a
comparison of how much improvement the Bayesian procedure yields
relative to the OLS model. Table 3 also reports the forecast RMSE from
an optimal ridge estimator. Here we followed the same procedure as with
the Bayesian estimator to determine the setting for the ridge parameter A.
This parameter was varied over a range from zero to unity with the optimal
setting chosen as that which produced the lowest average percentage
RMSE over the forecast period.

In order to summarize the Table 3 results, we chose to define a clear-
cut forecasting advantage as at least an average percent RMSE
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difference of 0.03, that is, of course, somewhat arbitrary. Table 3 shows
that the Bayesian or ridge estimators surpassed or tied the forecasting

performance of the best forecasts from Table 1 in 35 of 48 cases. That is,
the "Best” forecast from Table 1 was a clear-cut winner in only 13 of the
48 cases. The ridge estimator appeared to outperform the Bayesian
estimator as the ridge exhibited the lowest average percent RMSE in 13
of the cases whereas the Bayesian estimator did so in only four of the
cases. The ridge and Bayesian estimator were tied or essentially tied for
the lowest percent RMSE in four of the cases.

From the resuilts of the experiments, it seems that there is a gain to
be had from adopting some sort of shrinkage technique, although the
ridge technique appears to be the preferred technique rather than the
Bayesian. In this regard, it should be noted that shrinkage did not appear
to be useful in 10 of the 48 cases because the results were essentially
the same for the OLS and shrinkage estimators.

Conclusions

We find that the Bayesian technique doesn't provide as much of a
dramatic improvement in forecasting performance for the local payroll
models as found in Garcia-Ferrer [2]. An important finding was that
shrinkage leads to improved forecasting ability in these models. The
shrinkage aspect of the Bayesian estimator contributes significantly to
improved forecasting performance for 17 of 48 models examined here.
The 17 cases include 13 cases where ridge was superior plus four cases
where the ridge and Bayesian were equal in performance. The ridge
estimator is being interpreted as representative of the shrinkage aspect
of the Bayesian estimator. On the other hand, the pooling aspect of the
Bayesian estimator leads to improved forecasting in a smaller number of
cases, four of 48. Here weé interpret the four cases where the Bayesian
estimator was a clear-cut winner as those cases where the pooling aspect
of the Bayesian estimator contributed to the improved performance. It
should be noted that Garcia-Ferrer [2] did not separately analyze the
shrinkage and pooling aspects of their proposed Bayesian estimator. It
could be the case that shrinkage accounted for their improved results as
well.

A possible problem that would affect the ability of the pooling
information to contribute to better forecasts is that some of the eight
SMSAs exhibit significantly different variation than others. Pooling
procedures based on statistical measures of comovement that would
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such relations for each SMSA except Akron. Furthermore, the larger the
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difference of 0.03, that is, of course, somewhat arbitrary. Table 3 shows
that the Bayesian or ridge estimators surpassed or tied the forecasting
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the "Best" forecast from Table 1 was a clear-cut winner in only 13 of the
48 cases. The ridge estimator appeared to outperform the Bayesian
estimator as the ridge exhibited the lowest average percent RMSE in 13
of the cases whereas the Bayesian estimator did so in only four of the
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We find that the Bayesian technique doesn't provide as much of a
dramatic improvement in forecasting peformance for the local payroll
models as found in Garcia-Ferrer [2]. An important finding was that
shrinkage leads to improved forecasting ability in these models. The
shrinkage aspect of the Bayesian estimator contributes significantly to
improved forecasting performance for 17 of 48 models examined here.
The 17 cases include 13 cases where ridge was superior plus four cases
where the ridge and Bayesian were equal in performance. The ridge
estimator is being interpreted as representative of the shrinkage aspect
of the Bayesian estimator. On the other hand, the pooling aspect of the
Bayesian estimator leads to improved forecasting in a smaller number of
cases, four of 48. Here we interpret the four cases where the Bayesian
estimator was a clear-cut winner as those cases where the pooling aspect
of the Bayesian estimator contributed to the improved performance. |t
should be noted that Garcia-Ferrer [2] did not separately analyze the
shrinkage and pooling aspects of their proposed Bayesian estimator. It
could be the case that shrinkage accounted for their improved results as
well.

A possible problem that would affect the ability of the pooling
information to contribute to better forecasts is that some of the eight
SMSAs exhibit significantly different variation than others. Pooling
procedures based on statistical measures of comovement that would
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only pool more similar data samples to achieve the pooled estimates
might be helpful.

In conclusion we find that the Bayesian pooling estimator proposed
by Garcia-Ferrer [2] equals or outperforms the forecasting performance of
competing modeis in 35 of 48 cases considered here. However, most of
the improved performance emanates from the shrinkage aspect of this
estimation procedure and not the pooling of information from other
regions. Garcia-Ferrer [2] did not analyze these two aspects of their
proposed estimator and may have achieved improved forecasts for the
same reasons. [f this is true, ridge estimation would provide the same
improvement in forecasting ability, yet be much simpler from a
computational standpoint.
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