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Dynamic Models, Externalities and Sustainability in Agriculture

Oscar J. Cacho ∗∗

Abstract

The goal of sustainability in the management of natural resources and agricultural
systems has received increasing attention during the 1990’s. The many dimensions of
the problem have been extensively discussed in the literature and a recognition of the
interaction  between economic, biological and social objectives have led to an
acceptance of its multidisciplinary nature. When studying sustainability in agriculture,
two aspects which cannot be ignored are (i) any measure must include economic as
well as biological criteria and (ii) the dynamic nature of the production system and the
environment (both physical and economic) must be accounted for.

The goal of sustainable agricultural practices at the microeconomic level is explored in
this paper, in an attempt to link the individual producer behaviour to the regulatory
environment. Particular attention is paid to the dynamic aspect in the context of a
grazing system, where plant and animal populations interact with each other and are
influenced by the environment. An optimal control formulation is used to discuss the
alternative ways in which externalities (such as salinity, soil loss and fertiliser and
chemical run-off) can be incorporated into a model. The problem of valuing
externalities and the role of the discount rate on optimal management strategies are
briefly discussed.
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Dynamic Models, Externalities and Sustainability in Agriculture

Introduction
Definitions of the term sustainability and discussions of its significance abound in the literature. A cursory
review reveals that much of what has been written deals with philosophical issues and questions. Gale and
Cordray (1994) focus on the problem of definition and consensus, they discuss the many meanings of the term
and ask what should be sustained and why, how to measure sustainability  and what the political implications
are. Ruttan (1994) deals with the questions of substitutability between resources, intergenerational transfers
and discount rates. Dalsgaard et al. (1995) present a tentative list of ecological attributes for quantification and
ranking of farming systems in terms of sustainability, including diversity, cycling, stability and capacity. Cai
and Smit (1994) discuss the different spatial scales in which sustainability must be measured (‘from the field to
the globe’) and argue that a different set of analytical questions must be answered depending on the scale being
measured; they contend that achievement of sustainable agriculture must eventually involve an integration of
all the spatial scales. De Wit et al. (1995) discuss general criteria for sustainable livestock production, they
point out to the importance of dynamic processes and emphasise the multi-objective nature of the problem,
which makes it difficult to state that one system is ‘more sustainable’ than another as the score assigned to a
given system may  differ according to the criterion being measured.

When dealing with sustainability in agriculture, there is a general acceptance of the multidisciplinary nature of
the problem steming from the interaction  between economic, biological and social objectives. There also
seems to be general agreement on the fact that, on a local scale, sustainability must be defined and measured at
the system level. That is, we cannot expect a single crop or livestock enterprise to be sustainable by itself, but
we can speak of a given farming system as being sustainable, this would generally include a series of crop
rotations and livestock enterprises. The recent book by Barnett et al. (1995) is one the the first attempts to
measure agricultural sustainability, the book contains papers by several authors who estimate total social factor
productivity from data obtained in long term agronomic experiments; they define sustainability as non
decreasing total social factor productivity and non decreasing profitability (Barnett et al. , 1995).

In this paper the various aspects of sustainability in agriculture are explored by developing a relative simple
dynamic model, the model is used to focus on the problems of discounting, measurement of externalities and
possible ways in which government policies can stimulate the development and adoption of sustainable
production systems. However it is defined, sustainable agriculture is concerned with the ability of agricultural
systems to remain productive in the long run. Definitions of sustainability relevant to this paper include: the
ability of the agroecological system to maintain productivity  in the face of stress or shocks (Conway and
Barbier, 1988); and an improvement in the productive performance of a system without depleting the natural
resource base upon which future performance depends (Pearce et al., 1990; Pandey and Hardaker, 1995).

A General Model
When studying sustainability in agriculture, two aspects which cannot be ignored are (i) any measure must
include economic as well as biological criteria and (ii) the dynamic nature of the production system and the
environment (both physical and economic) must be accounted for (Cacho, 1995). In this section a general
model of resource use in agriculture is presented. The model is based on that of Pandey and Hardaker (1995),
but it is expressed as an optimal control problem in continuous time, it contains one state variable and one
control variable and can be readily extended to account for additional variables. In principle, the farmer's
decision problem is:
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Where J is a discounted cumulative performance measure over the planning horizon T, b is a measure of farm
performance, x is stock of a natural resource (state variable), u is a management decision (control variable), r is
the discount rate and g is the rate of growth (or depletion) of the resource through time. Constraint (4) ensures
that the system is sustainable in the sense that the final stock of the resource is no less than the initial stock.
The Hamiltonian for this problem is:
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and the solution is obtained by solving the system:

( ) ( )∂
∂

λ
H

u
e b u x g u xt

t

rt
u t t t u t t= + =− , , 0

(6)

( ) ( )∂
∂

λ λ
H

x
e b u x g u xt

t

rt
x t t t x t t= + = −− , , &

(7)

( )∂
∂λ
H

g u xt

t
t t= ,

(8)

The transversality conditions, required to obtain a unique solution, are:

( )λ λ( ) , ( ) , ( ) ( )T x T x x T x T≥ ≥ − =0 00 0 (9)

To implement a working model of a specific system, the functions b and g must be defined. A typical example
of g is a soil erosion model, while a common example of b is a profit function. The solution to this problem
yields three optimal trajectories through time (ut*, xt*,λt*) which maximise (1) while ensuring that the final
stock of resources is not below the initial stock (x0).

Conditions (6) and (7) must be satisfied for the interval 0 ≤ t ≤ T, thus (dropping the t subscripts to avoid
clutter) we have:
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where θ λ= ert . Using Cramer’s rule we obtain:
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Expression (13) can be used to proceed with comparative dynamics analysis. By differentiating the function
with respect to the relevant variables, we can study the effects of discount rates, prices, government policies
and biophysical parameters on the rate of resource use. The complexity of the functions involved, however,
precludes the usefulness of further analytical derivations. To carry the anaylsis further it would be necessary to
develop a numerical model.

A Grazing System Model
A simple model, which describes the interaction between animals, pastures and soils in a grazing system, is
developed in this section. The model is then used to discuss ways in which externalities might be accounted
for. Consider a firm which produces a single output (meat) using an intermediary input (grass), a purchased
input (fertiliser) which may cause an externality, and a hired input (labour). The production function is:

M m S G= ( , )
(14)

Where M is meat produced over a given period of time, S is stocking rate and G is pasture cover (grass
available for animal consumption and which protects the soil from erosion). The production function is
assumed to be well behaved (continuous, differentiable and concave in S and G). The objective of the producer
is assumed to be the maximisation of discounted accumulated profits over the planning horizon:
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Where D is soil depth, F is soil fertility, G is pasture mass, S is stocking rate (animals per hectare), N is
nitrogen application, L is labour hired, R is rainfall, PM is the price of meat, WN is the price of fertiliser and WL

Constraints (22) and (23) force the system to be sustainable with respect to
soil depth and soil fertility. It should be noted that the equations of motion (16) to (18
single equations or by detailed simulation models to be solved numerically.
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Labour requirements depend on stocking rate and the amount of fertiliser applied:

( )L t l S t N t( ) ( ), ( )=
(24)

with both lS and lN ≥ 0. The Hamiltonian for this problem is:
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To understand the effects of prices and policy instruments on the stock of resources (D and F) and profitability
of the system, it is necessary to describe the relationships between the biophysical variables in equations (16) to
(18).

Soil Depth

Existing soil depth is expected to have either no effect on soil formation and loss, or to have a positive effect,
for convenience (and following McConnell, 1983) it can be safely assumed that dD = 0. Pasture cover is
expected to decrease the rate of soil erosion by protecting soil from runoff, therefore dG > 0. Rainfall is
expected to have a negative effect on soil depth dR < 0 in the case of large rainfall events which cause soil
runoff, or no effect (dR = 0) for normal rainfall events which cause no soil loss.
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Soil Fertility

In general, there is no reason to expect that current soil fertility should affect its own rate of change, except
when pasture cover prevents leaching of applied fertiliser; since the effect of pasture cover is directly included
in equation (17), it can be safely assumed that fF = 0. Fertiliser application increases soil fertility, therefore fN >
0. Pasture cover is related to the growth rate of grass, which uses soil nutrients, increasing pasture cover,
however,  may also increase the amount of nutrients that are retained in the soil rather than lost to runoff or
leaching; therefore fG > 0 or fG  < 0 depending on the circumstances. To avoid this ambiguity, the function can
be improved by separating nutrient retention by the soil from nutrient use by the pasture.

Pasture Growth

Pasture acts as an intermediary between soils and animals and it has an effect on the rate of resource use. The
rate at which the ‘natural capital’, represented by soils, shrinks or grows is considerably affected by pasture
cover. The function G(t), which has been well studied for many pasture species, is sigmoid in shape (Cacho,

1993), which implies that & ( )G t  is concave in G with a maximum at some value 0 ≤ < ∞G which, in turn,

implies that gG ≥ 0 or gG ≤ 0 depending on the current pasture mass. Animals consume pasture, thus gS < 0,
and gSS < 0 because large numbers of animals will have an additional negative effect on pasture through
trampling. Finally gN, gD and gR > 0 because soil fertility, soil depth and rainfall increase pasture growth rate.

Model Solution

The comparative dynamics of this problem are quite complex and their analytical derivation will not be
attempted. The differential equations (16) to (18) are nonlinear, they could be conveniently represented by
biophysical models of soil, plant and animal dynamics. Numerical solution of the problem could then be used
to gain insight into the dynamics of the optimisation model (15)-(23). Development of a numerical model is a
subject for future research. The effects of externalities, discount rates and uncertainty are discussed in the
remainder of this paper.

Externalities
The role of externalities and the need to measure them in order to reflect the social costs of economic activity
and resource use should be an essential component of any attempt to design sustainable agricultural systems.
Externality costs are easier to measure at a national scale, because the information is more readily available.
Templet (1995) presents an empirical analysis of externalities at the State level in the U.S., he measures the
subsidies created by externalising pollution, energy and tax costs, and finds that failure to spend on pollution
control is positively related to poverty, income disparity and unemployment. He concludes that pollution
spending might be progressive, rather than regressive (as suggested by Baumol and Oates, 1988). Based on
these findings, Templet’s recommendations include (i) that states set environmental standards based on the
assimlative capacity of the environment; (ii) that a combination of direct controls and economic incentives be
used to maintain a threshold level of discharges (using instruments such as emission taxes, tradable permits
and tax exemptions on environmental compliance); (iii) that emission taxes should at least equal the pollution
subsidies calculated in the paper; and (iv) that the functions of economic development agencies and
environmental quality agencies be combined, or linked, to ensure consistent policies. Although one may
disagree with the techniques (linear regression) or the conclusions reached by Templet, his paper raises
relevant questions which can be carried to the local level.

In order to design policies that encourage sustainability and eliminate (or internalise the costs of) externalities,
government agencies need to be able to measure these costs. At the local level, the physical quantities
associated with externalities can be estimated through modelling; variables such a soil erosion, fertiliser
leaching and pesticide drift can be simulated for given environmental conditions and resource levels. The
model presented above can be extended to account for the externalities associated with the fertiliser input and
the meat output, through the effects of stocking rate and pasture cover on soil depth and fertility losses;
assigning monetary values to these losses, however, is not a trivial matter.

Steiner et al. (1995) present an excellent discussion of the measurement of externalities in agriculture and most
of the discussion that follows is based on their paper.
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Fertiliser Externalities

Fertiliser externalities may arise from either the application of excessive amounts of fertiliser or wrong timing
in its application. Fertiliser applied which is not ‘captured’ by the soil may be carried away and affect streams,
lakes, urban drinking supplies and water tables. In Australia, the incidence of blue-green algae blooms, which
contaminate drinking water supplies, is a costly problem caused by excessive nutrients in waterways. Steiner et
al. (1995) classify the cost of fertiliser externalities into (i) regulatory costs, whose measuremennt is
complicated by the fact that fertiliser and pesticides are often found together; (ii) health costs, caused primarily
from exposure to nitrates; and (iii) environmental costs, which include eutrophication, water  turbidity, oxygen
depletion , loss of marine life, and loss of recreational benefits.

Measuring fertiliser externalities at the catchment level is complicated by the distinction between point and
non-point sources. This problem does not arise in the context of a biophysical model where mass balances are
maintained to account for the fate of nutrients to various destinations. The physical amount of fertiliser lost to
the system (E) over a given period of time can be described as:

( )&( ) ( ), ( ), ( )E t N t G t R t= ε
(37)

Fertiliser applied (N) is either incorporated into the soil and accounted for by equation (17), or lost from the
system and accounted for in equation (37). The actual cost of ε will depend on the location of the farm and the
fate of the lost nutrients.

Soil Externalities

Soil loss represents a direct cost caused by decreasing yields, this effect is captured by equations (16) and (18),
an additional cost may occur in the form of loss of land value, which can be accounted for by adding a terminal
value to the land in (15). Soil externalities (off-site effects of soil erosion) may arise when soil is carried into
streams, causing siltation and other problems. Physical estimates of soil runoff can be made using the universal
soil loss equation (Steiner et al., 1995) which could be incorporated into equation (16). Given the physical
erosion rates the off-site damage can then be estimated by multiplying by the damage estimate ($/ton) for the
region. The United States Department of Agriculture (USDA) has developed a set of categories to classify the
off-site effects of soil loss, these include: recreation, water storage, navigation, flooding, roadside and
irrigation,commercial fishing, municipal water treatment, municipal and industrial use and steam power
cooling. The total damage caused by soil erosion in the U.S. was estimated at over US $10 billion in 1989
(Steiner et al., 1995).

Pesticide and Chemical Externalities

The external costs of pesticide and agricultural chemicals can be considerable. These include regulatory costs,
chemical control costs, water pollution, human health and environmental costs (such as increased pest
resistance and damage to fish and wildlife populations). Although the model presented here is not designed to
account for these costs, the use of chemicals could be included by extending the definition of the production
function (14) and the pasture growth function (18) to account for the effects of chemical use.

Salinity

Dryland salinity is an important environmental problem in some regions of Australia. The incidence of dryland
salinity is related to water table dynamics and is strongly affected by land-use patterns. Certain crops and
agricultural practices tend to increase salinity, while trees, some pasture species and deep-rooted crops tend to
decrease it. Direct measurement of sources of salinity at the catchment level is difficult, because of the
complexity of water table dynamics. Once again, modelling may help in this regard, detailed models of water
table dynamics exist and can be incorporated into optimisation models. The inclusion of salinity effects into
our model would require an additional state variable, with its corresponding equation of motion, which could
be based on a physical water balance model.

Uncertainty, Stability and Resilience
Up to this point the discussion has been based on a deterministic model, which is useful to identify relevant
variables and understand the system being studied. However, the fact that the environment is stochastic cannot
be ignored, particularly when dealing with long term models. In an uncertain world, attributes such as stability
and resilience may take precedence over profits. Holling (1986) defines stability as the propensity of a system
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to attain or retain an equilibrium condition, either as a steady state or a stable oscillation, a stable system
tends to return rapidly to its equilibrium position when perturbed and it exhibits low variability and resistance
to change. Resilience, on the other hand, refers to the ability of a system to maintain its structure and pattern
of behaviour in the face of disturbance (Holling, 1986); a resilient system may exhibit high variability and
must be able to adapt to change.

Holling points out that reduced variability achieved through management is likely to lead to smaller stability
regions. He provides examples of policies that reduced the probability of socially or economically undesirable
events (such as control of forest fires) and argues that, although these policies may be successful in their
immediate objectives, they also may produce a system with lower resilience (as an example consider the
devastating forest fires caused by decades of fire control which allow the accumulation of large amounts of fuel
in the forest floor). The importance of resilience is also discussed by Chavas (1993), who uses a dynamic
model to analyse irreversibility and the ability of a system to react to unexpected shocks. He derives an
adaptive value  and stresses the value of strategies which avoid the irreversibility of extinction (from either a
firm or a species standpoint). He argues that "many behavioral decisions involved in sustainability issues may
not be outcomes of an optimizing process" and concludes that empirical analysis of sustainability and resource
policy should not rely exclusively on the assumption of optimising behaviour because, even in the absence of
optimising behaviour, adaptive strategies can improve the resilience of a system. Chavas states that "the
explicit incorporation of this adaptive value in economic analysis appears to be a crucial step in the evaluation
of sustainability issues.

The Role of Discounting
The optimal trajectories produced by dynamic models, and the rate at which resources are exhausted, tend to be
highly sensitive to the discount rate used. The need to include sustainability constraints (21) and (22) in the
grazing model, arises form this sensitivity. The alternative of attaching a terminal value to the resources (D
and F), would generally have neglegible effect for long planning horizons. Through numerical modelling it
should be possible to find terminal resource values that encourage sustainability for given discount rates.

Norgaard and Howarth (1991) argue that, when dealing with sustainability, decisions over time have not been
properly treated by economists, who have failed to distingush between the efficient use of this generation’s
resources and reassignment of resources to the next generation. They present a simple model that accounts for
this transfer, their concept may offer interesting possibilities to modify the standard dynamic economic model.

Conclusions
The understanding and measurement of sustainability and externalities are in their infancy, there is much work
to be done by economists and other scientists. The model presented in this paper provides a formal framework
through which biophysical and economic information can be integrated. The model can be used as a base to
design numerical models which can help us understand the long-term implications of alternative policy
scenarios and determine future research directions.
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