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UNCERTAINTY, LEARNING, AND THE
CLASSICAL ROTATION PROBLEM

Carroll Greene*

Introduction

When to cut a growing tree is a well known problem in standard capital
theory dating back at least to 1849 and the solution by Martin Faustmann. The
analogous decision facing a timber owner who is unsure of the future value of
his timber provides an excellent example of decision making under uncertain-
ty. If there is the possibility of learning about future timber values, the
irreversibility of the cutting decision imparts a quasi-option value to holding the
timber another period. Consequently, a timber owner may choose to hold his
timber during periods of price uncertainty, even though he would cut his timber
given the same current and future expected prices if he were more certain of
his expectations.

The first section of this paper briefly reviews the conditions under which
quasi-option value exists. The following section summarizes the standard
tree-cutting problem and some of the ways other authors have incorporated
uncertainty in the standard model. These models have precluded the possi-
bility of learning and hence the quasi-option value of holding timber. In Section
3, an empirical work which does not allow for uncertainty illustrates the
erroneous conclusions which may result. A measure of timber price uncertain-
ty is constructed to verify that the time period in question was one of
uncertainty about future prices. This measure is compared to another com-
monly used measure; the two agree on the major periods of stability and
instability of prices but not on the relative magnitude of the importance of
incorporating learning and uncertainty appropriately in some models. Since
any test of the empirical importance of quasi-option value can be quite
sensitive to changes in the measure of price uncertainty used, specific
assumptions about the stochastic process underlying future timber values
appear to be of primary importance.

Quasi-option Value

The key element in the analysis of the rotation problem with uncertainty and
in many similar problems is the combination of uncertainty and irreversibility.
This section surveys some relatively recent economic literature that has dealt
with these issues. The concepts are not at all new but have received curiously
little attention. Some recent attention may have been prompted by a desire to
refute the conclusions of deterministic models of resource depletion such as
suggested by the Club of Rome and others.

* Published posthumously. Department of Economics, Kansas State Univer-
sity.
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A variety of definitions have been used for irreversibility. Arrow and Fisher
(1974) define irreversibility in a technical context. Cummings and Norton
(1974) describe an option as irreversible if the costs of reversing it are so large
relative to the benefits that reversal will not be undertaken. Flexibility, the
obverse of irreversibility, is defined by Jones and Ostroy (1979) in terms of the
number of options left open at a given level of costs. For our purposes the most
useful definition is that suggested by Henry (1974): “A decision is considered
irreversible if it significantly reduces for a long time the variety of choices that
would be possible in the future.”

As for the effects of irreversibility, Weisbrod (1964) noted that if the costs of
reversing a decision are sufficiently high and/or the duration of its effects
sufficiently long, the option value of preserving the present state should be
taken into account. In his example, when the benefits (demand) for a publicly
provided good are uncertain, the option value of retaining the option to
consume may be important to individuals as well as the usual consumer
surplus. Cicchetti and Freeman (1971) extend this to show there is positive
option value (a risk premium) for risk averse individuals if there is uncertainty
in either demand or supply. However, Arrow and Lind (1970) demonstrate that
with risk averse individuals this risk premium goes to zero, individually and in
the aggregate, as the number of individuals sharing the benefits (and the risk)
of a single investment increases.

In their study of a proposed hydro-electric project on the Snake River,
Fisher, Krutilla and Cicchetti (1972) assumed risk neutrality yet found a bias
against irreversible development; that is, even when a cost/benefit analysis
indicates an investment is optimal, it will generally be preferable to refrain from
investment if disinvestment may be indicated in the near future. The Arrow and
Fisher study (1974) clarifies this by showing that even with risk neutrality a
“quasi-option value” exists where there is some irreversibility and learning can
occur (i.e. information available in one period can affect the next period’s
expectations). This was actually stated much earlier in the context of invest-
ment planning by Hart (1942) who found that “the central problems of
uncertainty can be posed and largely solved under the assumptions of ‘risk
neutrality.” "2 In the remainder of this paper, | shall use “option value” to refer
to the quasi-option value which occurs where there is irreversiblity and the
prospect of learning and is not dependent on risk aversion.

The Rotation Problem

The previous section specified when the existence of option value may be
anticipated. Given the prevalence of uncertainty and irreversibility, it is logical
to ask if it is important to account for option value in either theoretical or
empirical models. The remainder of this paper will explore that question in the
context of the standard capital theory example of timber cutting, for the
decision facing a private timber owner who is unsure of future timber prices

1 Henry (1974), p. 1006.

2 Hart (1942), p. 115.
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provides a classic example of decision making under uncertainty where one
choice is irreversible.

The tree cutting problem is well known from standard capital theory.
Hirshleifer (1970), Samuelson (1976) and Bierman (1968) present excellent
surveys of various correct and incorrect versions. It is important to distinquish
between those analyses which seek to maximize the present value of only the
timber and those which seek to maximize the value of the timber and the land
on which it stands. The latter is appropriate here3; | assume individual timber
owners recognize the opportunity cost of the land and that timber growing
continues to be the highest valued use of the tand. A third type of model which
seeks to maximize timber volume has been shown to be in error although,
curiously, it is similar to that still used by the Forest Service.*

Assume the timber owner maximizes the present value of his timber
holdings with respect to cutting time. If he cuts his timber he will immediately
replant his land. In the standard problems, timber prices are constant and
growth rates of trees of various ages are known, so the value of a tree t years
old is a function f(t), of t only. If r is the market rate of interest and ¢ the cost of
planting (and replanting), the present value of the timber owner’s returns if
trees are cut at age T is:

1
1_efrT

V() = [f(TMe T -c]

The optimal rotation period is the solution to:

N - gmer-og |
dT (1-eM)2
F T m-mi=o
1-erT
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’m =i+ | AeETocC
1-eT

In other words, the optimal T is where the growth in the value of the tree is just
equal to the interest on the standing timber pius the interest on the present

3 The former evidently stems from the time when timber was grown on
commonly held ground and has no apparent useful interpretation for tree
cutting though still useful for the more general question of when to sell a
growing asset.

4 Hyde (1980), Chapt. 2.
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value of future returns from growing timber on the same land.>

Note that once timber has been cut, even though the land is replanted,
cutting new timber will not be a viable option for a number of years. So holding
timber resuits in a more flexible position for the owner than does cutting timber
in that a wider number of options remain open at a given level of costs.

Papers by Kaplan (1972), Norstrom (1975), and Brock, Rothschild and
Stiglitz (1982) have included uncertainty in the standard model of asset growth
in various ways. These papers formulate the problem as an optimal stopping
problem and use dynamic programming results to show the existence of an
optimal policy and its method of calculation, and to study the effects of
uncertainty.

In Kaplan's model (1972), the asset’s value increases over time but at a
decreasing rate. The amount of the increase is uncertain; its distribution may
be a function of either the current value or age. If itis a function of current value,
Kaplan establishes (Theorem 1) that an optimum policy for a multi-period
problem consists of a critical value such that whenever the assets’ value
exceeds the critical value the asset (tree) should be harvested. If the distribu-
tion of the increase is instead a function of the asset's age then there is a
sequence of similar critical values for each age.

Kaplan’s mode! would not be appropriate for situations where option value
exists since limiting the asset’s value to an increasing function with diminishing
returns either rules out price uncertainty or severely limits the possible
variations in price. '

Norstrom (1975) assumes the tree’s growth is deterministic but its price is
determined by a stationary stochastic process. The value of astand attimetis
P i(t) where the sequence P, Py, Ps,... is a stationary Markov process which
represents the variation in price around its expected value or growth path.
Norstrom considers both the case where the value of land is determined
exogenously and the case where it is determined endogenously by its future
value in growing timber. Comparing his stochastic model to an analogous
deterministic one, he concludes (Proposition 2), “The expected present value
in a stochastic model is at least as great as the present value in the
corresponding deterministic model.”®

In the analysis of Brock, Rothschild and Stiglitz (1982), the timber owner

maximizes only the expected present value of his timber and ignores the
opportunity cost of his land. In additionto a discrete time model which is based

s The model which ignores the possibility of replanting would similarly
conclude that the optimal T is where the growth in the value of the tree is just
equal to the interest on the standing timber or the growth rate of the tree

equalsr.

6 Norstrom (1975), p. 334.
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on a Markov process and similar to Norstrom’s, the authors present a
continuous time model. This model allows for continuous observation of the
value of the tree but it assumes this value follows a stationary diffusion
process. The stationarity assumption in this and in Norstrom’s model is
incompatible with the notion of there being periods of uncertainty and hence is
inappropriate for a mode incorporating option value.

In order to include option value a model must be flexible enough to vary the
amounts of uncertainty in different periods. Suppose a timber owner has some
knowledge of the underlying model currently generating price. if the process is
stationary, every period’s expected price is the estimated mean, m, and the
uncertainty about the price may be characterized by the estimated variance if
the distribution of prices is symmetric. If the process is not stationary and the
timber owner observes an unusually high price in period t, he may not know
whether he has just observed an outlier of the old distribution, or an observa-
tion from a new distribution. And if a new distribution, is the mean still m and
the variance larger (a mean preserving spread) or has there been a shift in
some underlying parameter so that now the expected value of future prices is
higher? If the latter, the variance and higher moments may or may not equal
those of the original distribution. :

Figure 1 illustrates this scenario in the simple case of a few symmetric
distributions. The distribution labeled A with mean m, and variance s,2is the
original one in which the process starts. B is the mean preserving spread with
mean m, = m, but variance s,2>s,2. C is the distribution with higher
expected value m;>m,, and, in this case, though not necessarily, the original
variance s;2=s,2. Note in particular that, although a Markov transition matrix
may describe the transitions between distributions, expected values of price
generally are not memoryless; i.e. E(P,, / P,=P,, P_,=P,) # E(P,,, /
P.=P,, P, i=P3).7

m1 = m2 P3 P1 P2 m3

FIGURE 1
Three Possible Distributions of P,

7 If transitions between distributions were always equally probable, the
expected value of P, would be constant and thus memoryless.
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The statistical properties of non-stationary stochastic processes are not
neat and a technical description of this whole process, generalized so that
many different distributions are possible, may be unpleasantly complex.
However, the previous attempts at incorporating uncertainty in the timber-
cutting example eliminate the possibility of option value. In the next section a
recent work is used to illustrate the possible consequences when uncertainty
is omitted from an empirical analysis.

Price Uncertainty and Empirical Modeling

Peter Berck (1979) studied the Douglas Fir (DF) timber industry to estimate
the rate of discount used by private entrepreneurs with rational expectations
about future prices. He arrived at the surprising result that they discounted the
future at a real rate of 5%. As he does not incorporate any measure of
uncertainty, his model cannot explain how this could occur when private
corporate returns in the same period were much higher. Samuelson (1976)
referring to similarly low rates often used by the forestry literature comments,
“The notion that for such gilt-edge rates | would tie up my own capital in a 50-
year (much less a 100-year) timber investment, with all the uncertainties and
risks that the lumber industry is subject to, at first strikes one as slightly daft.”®

itis clear from the foregoing discussion of option value that if private timber
owners recognize an option value in delaying the harvest of their timber and if
the period of Berck’s study was one of price uncertainty, then his results are
spurious. In particular, timber owners do have higher rates of discount and,
without price uncertainty, would have supplied larger amounts of timber during
the period studied. Berck’s study used data from 1950-1970. In fact, real DF
timber prices were fairly stable in the period from 1910 until World War 1I; the
year 1948 marks the beginning of a long period of DF timber price instability.
This is illustrated in Figure 2 which shows real prices of DF stumpage from
1910 to 1981.

How might the effects of option value be captured in a model like Berck’s?
The key element appears to be price uncertainty and a very simple approach
might be to measure the error in timber owners'’ price forecasts. Even with this
simplifying assumption we are not too much further ahead as economic theory
has not progressed far enough to specify how economic actors form expecta-
tions about the future. The remainder of this section deals with a simple and
ad hoc measure of uncertainty. It is suggested not because it is the “correct”
measure but because it overcomes some obvious problems in the usual
- approach. It is contrasted to the usual kind of measure in order to emphasize
the importance of further work in this area.

One way of including price forecasts and uncertainty in a model which

seems to tempt some researchers is to design a regression mode to simulate
the decision maker's forecasting process, to use all the observations to

8 Samuelson (1976), p. 473.
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estimate the regression coefficients and then to let the resulting residuals act
as measures of uncertainty. The biggest problem with this approach is that itis
analogous to presuming the decision maker acts on information not yet
observed; observations from the whole period go into forming the equation
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from which the predictions and residuals for each period are calculated.

Furthermore, a model which allows learning about future timber prices
should allow timber owners to revise their price predicting model after each
observation. Suppose the timber owner uses the following very simple model
to predict future timber prices:

inP,=a,+ aInP, + a,InP, + a;InP.,.

If predictions are made at time t about the value, 1n P, ,, the prediction
should only be based on observations of price available at time t. My
experience with the DF timber price series leads me to believe this simple
point may be important.

The following method was used to construct an uncertainty variable which
allows decision makers to learn and to form predictions based only on
observed data. Douglas Fir stumpage prices were used in the regression
equation above and for each predicted value, 1n P, . ., the regression was run
using the previous 20 annual observations of price. Thento calculate In P, , ,,
observed values were plugged in for periods t, t-1, and t-2.

Annual prices were available for the period 1910-81 except for 1942 and
1943. A geometric extrapolation was used for these two years; this allowed a
much longer continuous series and seemed somewhat defensible since
general price controls were in effect at that time and since the analysis does
not focus on individuatl coefficients.

Predictions were made and the residual, 1nP, -1nP,, calculated for each year
from 1933 to 1981 except for those years, 1942-1946, which depend directly on
the extrapolated values. In addition, predictions and residuals were calculated
by the more familiar approach of estimating the equation once using all the
observations. Table 1 gives the regression results. Table 2 gives both sets of
residuals. RES1 is the residual when price predictions are formed from only
the last 20 observations of price. RES2 is the residual when price predictions
are based on the entire data set.

Table 3 gives averages of the absolute value of the residuals for different
periods. Both RES1 and RES2 have relatively high values for the periods
1947-58 and 1964-74. This supports the claim that the period of the Berck
study was one of relative uncertainty about future prices. Between 1950 and
1970, the period of the study, only the five years from 1959 through 1963
appear to have had relatively predictable prices, at least by this model. The
periods 1933-41 and 1975-81 also appear relatively stabie by both measures.

Although they agree on the basic periods of price uncertainty, these two
measures differ on the degree of stability in different periods. In particular the
average for RES2 in pre-war years is very close to its average in the 1964-74
span, indicating that this measure would not have identified that earlier period
as relatively stable. Again, the equation that produced RES2 was estimated
from all the observations including the post-war prices which were rising
rapidly even in real terms. Similarly prices in the 1959-63 period and the
1975-81 period appear much more predictable when the estimating equation
is allowed to vary each year.
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TABLE 1
Regression Resulits

YEAR a, a, a, ag R?

33 657 449 .033 072 26
34 726 488 -.017 .030 24
35 727 488 -017 .029 24
36 815 485 014 -077 27
37 619 783 -127 -.064 55
38 650 637 013 -.083 44
39 737 475 .073 -.019 30
40 752 482 .049 -.010 27
41 1.148 464 -.064 121 28
47 .399 731 .085 -.015 56
48 214 790 072 .050 62
49 -.149 924 .108 .093 69
50 .156 691 192 072 67
51 024 653 .288 .084 73
52 -126 .666 207 237 78
53 -076 687 255 151 84
54 .083 471 341 222 .88
55 285 426 269 244 .86
56 316 .307 217 424 86
57 218 412 A19 462 '
58 411 .390 .042 489 .86
59 421 539 -.095 454 83
60 548 550 -.255 569 84
61 599 509 -.208 543 82
62 610 502 -198 538 .80
63 733 530 -221 484 75
64 767 529 -217 470 71
65 855 519 -.246 487 67
66 1.059 520 -.276 459 62
67 1.162 500 -233 412 53
68 1.502 447 -272 403 45
69 539 534 -.159 496 56
70 791 689 -.321 435 62
71 791 733 -537 597 56
72 772 683 -519 641 55
73 665 659 -.461 633 60
74 342 813 -.485 603 57
75 155 .884 -454 563 63
76 -.023 941 -.464 557 70
77 -018 929 -.445 547 73
78 168 934 -414 461 76
79 312 860 -.330 418 77
80 -.013 928 -.282 384 79
81 .240 972 -.397 394 82
33-81 027 743 -.052 325 94

Year refers to the year for which the prediction was made. Thus, regression coefficients
for year = 70 were estimated from observations for 1950-69. The final coefficients are
for the regression using all the observations.

32



TABLE 2

Annual Residuals When Last 20 Observations Are Used (RES1) And
When All Observations Are Used (RES2)

YEAR RES1 RES2 YEAR RES1 RES2
33 -.347  -528 60 - 141 -.149
34 -005 -172 61 .043  -.095
35 .002 -.085 62 -309 -275
36 .201 .208 63 -037 -.037
37 -.341 -.323 64 .260 225
38 445 .458 65 .256 129
39 .045  -.133 66 .3563 .166
40 .075 .108 67 -028 -.209
41 .453 .262 68 458 .263
47 .281 157 69 275 .203
48 .660 .651 70 -.460 .619
49 -.8637 -376 71 199 -.069
50 217 .336 72 -142 .051
51 320 .180 73 .697 571
52 .033 .166 74 .450 .362
53 -.401 -.192 75 -064 -.140
54 -532  -349 76 -.048  -111
55 .298 .366 77 -.080 -.000
56 .375 .236 78 -.044  -026
57 -160 -.228 79 .354 .301
58 -442  -312 80 -136  -.049
59 A72 .263 81 -248  -.308
TABLE 3

Average Size Of Residuals

YEARS RES1 RES2

1933-41 .213 .253

1947-58 .363 .296

1959-63 .140 .164

1964-74 .326 .261

1975-81 139 .136
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Summary

In theoretical models of decision making, where one decision is irreversible
and hence option value may exist, it is important to incorporate uncertainty.
The standard capital theory question of when to cut a growing tree has been
extended to incorporate uncertainty by several authors, yet each in some way
has ruled out the effect of option value. Unfortunately, stochastic processes
that are non-stationary and thus allow periods of varying uncertainty do not
usually have other appealing properties. Furthermore, it seems that the
essence of the learning process may be quite different in different probiems
and the appropriate method of characterizing learning may vary substantially.

In empirical models like Berck’s omission of uncertainty and option value
can lead to spurious results. Specifically, it seems likely that the unusually low
discount rate estimated by Berck is at least partially the result of ignoring the
impact of option value on the tree cutting decision. Empirical incorporation of
uncertainty has so far been done on only an ad hoc basis as the theory does
not dictate any particular measures of uncertainty. Unfortunately, such ad hoc
methods will often disagree and attention must be paid to improving their
properties. This paper has illustrated how two shortcomings of the usual
measures may be overcome. It will take much more careful analysis to
correctly characterize the nature of uncertainty and learning in such models
and to construct meaningful measures of uncertainty.
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