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OPTIMUM LOCATION AND THE THEORY OF
PRODUCTION: AN EXTENSION

Abbas Mirakhor and A. Khalili*

In a paper in 1974, Khalili, et al [4], determined the condition for cost
minimizing optimum production location for the case of Weber’s locational
triangle and the effect of changes in the level of output on the optimum location
under conditions of perfect competition.

The purpose of this paperis (1) to derive profit maximizing conditions for the
case of Weber’s locational triangle when the firm is operating inimperfectinput
and output markets and (2) to determine the effects of income, output transport
rate, elasticities of input supply curves on the optimum production location
using comparative static analysis.

The “location problem” of the firm can be posed as follows: Assume a
one-plant firm which is buying its inputs and selling its output in imperfectly
competitive markets and which is interested in finding the optimum production
Jocation, uses two transportable inputs, M; and M, and supplies its single final
product to a consumption center Ms. The triangle in Figure 1 depicts this
problem. M

"

Figure 1.
* Florida Institute of Technology.
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Mathematically the problem is to Maximize

Maximize w = R — C = PoF(My,Mz) — (4P + ry 1S)My — (P + 1:,S)M, —
rohF(M;,My)

where, P, = g(F,Y)is the price of the product, ;P = ;P(M;),i = 1, 2isthe price of
inputi and F(M;,M,) is the production function. The distance from the produc-
tion location to the sources M, and M, and to the market are ,S, »S and h
respectively. The distances 1S and ,S could be expressed as

S = Va2 + h? — 2ahCosé

2S = Vb2 + h? ~ 2bhCos (6 — 61)

where a, b, and 6 = 6, + 6:are given. 8: and h are the polar coordinates of the
productionlocation point. r, is the transport rate of the final product to Mg, ry and
rp are transport rates of M, and M, respectively. The first order conditions are;

(1) O™ =gFsF + Fig — 1PiM;y — (P + 114S) — rohFy = {g(1 + F_gy)
M, g
= reh} Fy = 1P+ M PY) = 0
1

@ o7 = giFoF + Fog — oPoMy — (oGP + 158) — rghfo = {g (1 + L g1)
oM, g
—roh}Fo — 5P +_ M2 psy —

'
2

(3) B_;T = - Se1 My — 1 2Se1M2 =0
061

4) 6_: = —r11SMy ~ 12 2SyMo — r.F = 0
d

|

whereP;,i=1,2,j=1,2,F,F3, 15y, 25¢,, 1S, 2Sn are first partial derivatives,
and P{ = P1 + ry 1S; Pé = P2 + fggs.

Conditions (1) and (2) state that: net marginal revenue product (netof per unit
output transport cost) for each of the two inputs must equal their respective

marginal expense.
The total differential of the first order conditions are:
() (FiuBy + F12"’B_1F — PyMy — 2 P)dMy + (FioB + F1an§—l‘:)sz
d
— I 1891(:191 —(ry1 4Sp + roF1)dh = —B.FdY + hF,dr, + {Sdry — 2g4F.dF
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(6) (F12B; + Ffﬁ% dM; + (Fa0B + F22aB_I1: — 2PasMy — 2,P,)dM,
a
— I 2891d91 —(rg gsh + roFg)dh = —BgngY + thdro + 2Sdr2 — 291 ngF
(7) - 1SO1dM1 — I 2891dM2 - Ce1e1de1 - Ce1hdh = 1Se‘M1dr1 + 2Se1M2dr2

(8) —(r11sh + r°F1)dM1 - (r2 2Sh + ron)sz et Ce1hde1 - Chhdh =
Fdro + 1ShM1dr1 + 2ShM2dr2

Let: A11 = F11B1 + F1268—l1: - 1P11M1 - 21P1
d

A12= F1281 + F1F2(?i
aF

Az = FpoBy + F22a%—— 2P2aMy — 2,P;

WhereB1 =4 + gF — roh, Bg = g12F + Jd2, B3 = 2g1 + Fg11,g<Oand1P1,2P2
are positive.

Then equations (5) - (8) become:

(9) A11dM1 + A12dM2 — Iq 1891(161 — (r1 1Sh + roF1)dh =
_BgF1dY + hF1dro + 1Sd|'1 - 291F1dF

(10) AdM; + ApdM, — 1o 2861d01 - (Tg 25 + ron)dh =
—BzedY + thdro + gsdrz - 291F2dF

(11) — Iy 1Se1dM1 — I3 2891dM2 - Ce1e1d91 - Ce1hdh =
1SO1M1dr1 + 2SQ1M2df2

(12) "(r1 1Sh + I’OF1)dM1 b (fz zsh + roFg)dMg - C91hd61 — Chhdh =
Fdro + 1ShM1dr1 -+ ZShMgdrg

where:
Co,5, = MM; 1Sg,0, + MMz 5S40,
Con = nM¢ 1Sgn + 1Mz 2Se
Chh = Mq 1Spn + raMa2 2Sm

{see equations (15) - (17) of [4]}.

The second order condition requires that the principle minors of the relevant
Hessian determinant alternate in sign.

Proposition 1: Assuming his a positive constant, 8 is a variable (6: < 8) and
the firm’s marginal revenue is an increasing function of income, then the firm’s
production focation is independent of the level of income, and output transport
rate, if and only if the expansion path is linear.

Proof: Using the system of equations (5)-(7) and holding h constantwe have:
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Aqq Aqz —BaFy
981 -1 Aqo A -ByF;
aY D*
- 1391 —I2 2301 0
MiAsr + M2Ag M2A+> Fi
- _~B MiAz + MzAg MzAz Fz
D*M;M,
0 d ngg QS(.)1 0

where D* is the relevant bordered Hessian (see [4]).
Expanding and simplifying this determinant, we obtain:

6_01 = M{FZ(NHAH + M2A12) - F1(M1A12 + M2A22)}
Yy D*M;,
- - ] 2Se1Bg Nu
D*M;,

Sincer, 28, <0,D” <0, andB, > 0,‘?9‘ = 0 if and only if N" is zero.
aY

However, N’ = 0 if and only if the expansion path is linear through origin (see
Appendix A).

Simitarly
MiAz + MaAg, M2A+2 Fi
29_1_ = __h._ M;A + MoAss MoAss Fa =0
arg D*M1M2
0 — r2M2 2891 0

if and only if the expansion path is linear.

Proposition 2: If h is constant and greater than zero, 8: < 6, and the firm’s
marginal revenue is an increasing function of income the firm’'s optimum
location would swing along the arc IJ (see Figure 1) towards M (M) ifand only if
M (My) increases relative to Mp(M;) along the expansion path as the level of
income increases.

Proof: From the last proposition, one determines the sign of 9 10 be
aY

opposite that of N”. Therefore, when N” > 0 (<0),_‘%< 0 (> 0) and the
3
firm’s optimal location would move towards M;(My). But, N > 0 (< 0) if and

only if M;(M,) is used more relative to M;(M,) along the expansion path (see
Appendix B) as the level of income increases.

Proposition 3: Assuming h is constant and greater than zero, 6: < 0, the
firm’s optimum production location would swing along the arc IJ toward M (M)
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if and only if M{(M,) increases relative to Mx(M,) along the expansion path, as
the output transport rate decreases.

Proof: Using Cramer’s rule, from the system of equations (9) - (11), we find:

Aqq Aqz hF,
8 _ 1 Az Az hF;
ar, D
—r1 1Sy, —T2 25y, 0
MiAz + MaAgs MoA+> Fi
= ____E_ M1A12 +M2A22 M2A11 F2
D*M;M,
0 - f2M2 2891 0

= 2MeSe (FMiAG + MaArz) — Fy(MiArz + MpAg)} = 2250,

D*M, D*M;,
Since 1> »Se, < 0 and D* < 0, the sign of 3" is the same as that of N".
ar,
Therefore, when N > 0 (< O),‘ﬁ‘> 0 (< 0) and the firm's optimal location
ar,

would move towards M;(M,) as r, decreases. But N” > 0 (< 0) if and only if
M;(M,) is used more relative to Mx(M;) along the expansion path (see Appen-
dix B).

Proposition 4: If both 6: and h are variables, and the firm’s marginal revenue
is anincreasing function ofincome, then the production functionisindependent
ofthe level ofincome if the production functionis finearly homogeneous and the
marginal expense elasticities of the input supply curves are equal.

Proof: Using the system of equations (5) - (8), we obtain:

Aq, Az —n 1591 —BaF;
Aqz Az — 2 2S,, —BaF;
L
Y D - 1391 —Ts 2891 "Ce‘(.)1 0
—(r118n + roF1) —(r228h + 1oF2) —Capn 0
M3 Aqq MiM2A+2 —r1My 1Se, —BaM;F,
MiMA, M2 Az ~1oM5 58Sy, —BoMoF,
1
aY DM% M% —f1M1 1891 —r2M2 2Se1 _09161 0

~(r1My18h + roMF1) = (raM2 2Sn + roMaF2) —Cepp 0

Let: Eq =AM + 2A MMy + M3 Ay
Eiz  =MMA;, + M3 Ay
Ez2 = M% Az
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Then:
E1 1 E12 0 — BgnF
Eiz Ez2 —rM; 28, O

oh 1

aY DMZM3| o —raMp 5S,, —Co,e, 0
—1oF(n — 1) —(raM2 28y, + 1oMoF2) —Co 0

Letting n = 1, multiplying the first row by —N::2F2 and adding it to the sec

cond we get:
E11 Ei2 0 B.F
Eio — M—2F—2E11 Eip — M—ZEZEm —rMs 2361 0
F F
oh _ 1
aY DM2ME O — oMz 25, —Ce,0, 0
' 0 —(roM2 28h + roMaF3) —Corp 0

oh _ —2Bo(MiFp 1Py —MoF, 2F,z{rzMz 250,Co,n — (r2M2 2Sh + roMaF2)Ce,}
aY DM;M,

However, E{z = FE12 — M2F2E11 = M1M2(‘—M2F1Bé + M1F28{) forn :1,
Mo/dM, _ 8 = M,then E{» = 0 (see Appendix C).

andif e, = 2772
C5/dC3 C4y/dC}
Therefore, M _ 0 for n=1,and g; = ¢p.
aY
Similarly

30 - —B(M\F2 1Py — MoF, oPy) {roM2 5Sg,Chin + (r2M2 2Sh + roMaF2)Con} = 0
aY DM3 M,
forn=1,and &; = &>
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APPENDIX A

(1) N = Fa(MiAq; + MaAsz) — Fi(M1Aqz + MaAg))
MiA1 + MoAr = QuBy + QsF4Bs — 1PiMT — 2My;P4
MiAs2 + MpAgp = Q2B + QaF2Bs — oP2oM3 — 2MooP»
Fo(MiAy1 + MoAgp) — Fi(MiAqz + MaAgs) = FoQuB; + QsF(FoBs —
Fo(1P1sM3 + 2M;;Pq) — F1QoB; — QsF1F2Bs + 2MxpP5) = 0
= F;B,Qs — F1B4Q2 ~ FoMy(1P:My + 24P4)
+ FiMa(oP2oMz + 25Pp) = 0
where Q; = MyFy2 + MaFas, Qs = MyF; + MoFs, Qq = MyFyy + MuFyyp,
B; =g + Fg; — roh, and B = Fg4¢ + 2g4.

From the first order conditions, we have:

@ FBi=P a+M _p)= g
1

@) FoBi=oP' (1+ 2Py = Co
2

Also, d_hCAj — P;M; + 2,P, and9C2 = p.M, + 2,P,
1 dM,

Therefore, equation (1) becomes

CoMiFr1 +MoFis) — Ci(MiFiz2 + MoFa2) — FoMy 9C1 1M, 92 = ¢
dM, dMs

or

M,(C3F11 — CiF1s — Fo 9C1) — My(CiFas — CiF2 — F,9%%) = 0
dM; dM,

or

CiFs — CiF12 — F dCs
@ M, _ dM,

Mz CiFir — GiFie — F dc
dM,

From the first order conditions, we have:

5) 1= G or HMMp) = C2F1 =1
! CIF

F2 2 12
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Differentiating H partially with respect to M, and M,, we get:

CiF11 - CiF2 — (CiFay + Fa ;’;1 JC5F4

® H - 1
M, (CiFo)?

(CaFq2 + Fy d—Cé)C{Fz ~ CiF2C35F,
(7) oH _ dM,

aMz (C{ F2)2

From (6) and (7)

M (CtFp + Fy 9C2 CiF, — CiFa:CF,

8 Mo _ dM,
H  C4Fy, — CiF2 —(CiFm + Fo  9CHCF,
aMz dM1

From the implicit function theorem, we have:

oH
@ Mz_ _dM;
aH  dM,
aM,
Therefore,
’ dCé ' el ’
(CsF12 + F4 JCiF2 — CiF22C5 F4
(10) dM. - - M
CiF1y — CiF2 — (CiFzr + Fo S%Céﬁ dM.
1

From the first order conditions, we have:
CiF, = CiF2
Therefore, equation (10) become:

(CtF1z + F19O8)CiF1 - CiF2CiFz gy,
(1) " dM, ]
CiF11 - CiFy — (CiFar + Fzs%)cmz dM.

1
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Simplifying (11), we get:

CiFa2 = CsF12 — Fy dC:
(12) dM.
C5Fy1 — CiFay — Fo.9C1

aM

1

From (4) and (12) we get:

(13) dM1 = M1
dM; M,

Equation (13) is that of a linear expansion path.

APPENDIX B
From Appendix A, we have

(14) N’ = My(CaFyy — CiFy2 — de—C{—) — Mx(CiFz — CiFq2 — F1E9—é)
dM; dM,

For a firm (buying and selling in imperfect markets) using two inputs, only one
of the inputs could be inferior, i.e., when M, is inferior, C5Fyy — CiF2 — F»

9Ci - o, M, is superior and C{Fas — C5Fy2 —F;.9C2.< 0. Therefore, N > 0
dM, dM,

if and only if

M2 > CéFn - C«;F12 - ngC{/dM1

(15)
M;  CiFz — CiF1» — F1dCy/dM;

From equation (12) of Appendix A, it follows that

(16) Mo > dM,
M, dM,

Equation (16) implies that M, increases relative to Mz along the expansion path.
Similarly, in the event M, is superior and M is inferior, N < 0 if and only if

(17) M2 o dMz
M,  dwm,

which implies that the firm’s location will move towards M, if and only if M is
used more intensively along the expansion path. When both M, and M; are
superior, N’ > 0 if and only if the condition (16) holds. The converse is true
when condition (17) holds.
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APPENDIX C

(18) Eqr = M Ay + 2M;MeA, +M3 Agp

M3 Ay = MS gFyq + 2M3 g/F% + M3 g F3 F + M3 FisFgy — roM3 hF,

M MoA 1> = 2M;MogFys + 4MMog FiF> + 2MyMoF FoFgy, +
2M;Mog1FF12 — 2roM{MzhF 2

M3 Ay = M gF2 + 2M3 gF3 + M3 g1sFF3 + M3 Fg{F — r,M3 hFy,

Eir = o(M5 Fyq + 2MiMoFyn + M3 Fop) + 2g:(MF FS + 2MyMFF, +
MZ F3 + giF(M3F; + 2M;MoFiFo + M3 F5 ) + gF(M5 Fyy +
2MiMoF1o + MZ F3 ) — rh(M5 Fyy + 2MiMoF iz + M3 Fyp)

Ey = n(n — 1)Fg + 2g,n?F? + g4,nPF3 + n(n — 1)g4F% — n{n — 1)Frh

=n(n — 1)Fg(1+ F g:) + n?F3(2g, + g1,F) — n(n — 1)Fr,h

o
= n(n — 1)F{g + g:F — roh} + n®F? {2g, + Fgq}
1, Eyy = FA(2gy + Fgq1) = F?B;

Forn

(19) Ei2 = MiMoA;x + M3 Az

MiMaA12 = M;MxgF2 + 2M{MogiFiF2 + M{MaoFiFaFgyy + MiMogFFyo
— roM{MzhF >

M3 Az = M3 gFo + 2M3 gF3 + M3 gFF3 +M3 Fg,Foz — roM3 hFa

Eiz — (0 — 1)MoFog + 2nMoFoFg; + nMoFoF2gey + (n — 1)MoFoFg; —
(n — NroMzhF>

Forn = 1, E;p = 2MaF,Fgy + MoFoF2gyy = MpF,.FBg

(20) EqoF — EyMoFa = 2MoFoF2gy + MaFoF3gyy — 2MoFoF2g, —
MoFoF'gy; = 0

Since the input markets are imperfect, then forn = 1
(21) Ejp = EyoF — E11MoF2 = MiMa(—M:FiB; — MiF2B1) = 0

Mz _ (Fz)(Biy — (Fz)(dCi/dM)
1 Fi Bz Fi dCx/dM,

whereCj = P'(1 + M1 pj)
P
1

Cs =

2

But from the first order conditions, we have
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Ci = F4By
Cz = F2B4
or

C: _ b
Cs F4

Therefore, relation (21) becomes

(22) Me _ Cp dCi/dMy,

M, Cj dCydM,
Relation (22) could be written as

Ma/dM, _  My/dM,
C4/dC} C;/dC,

Therefore, if the marginal expense elasticities of input supply curves are equal,
then Ei» = 0.

73




REFERENCES

- Bradfield, M., “A Note on Location and the Theory of Production,” Journal
of Regional Science, 11 (1971), 263-266.

. Emerson, D. L., “Optimum Firm Location and the Theory of Production,”
Journal of Regional Science, 13 (1973), 335-347.

. Isard, W., Location and Space — Economy, New York: MIT Press and
John Wiley, (1956), 77-90.

. Khalili, Amir, etal, “Location and the Theory of Production: “A Generaliza-
tion,” Journal of Economic Theory, 9 (1974), 467-475.

. Moses, L. N., “Location and the Theory of Production,” Quarterly Journal
of Economics, 72 (1958), 259-272.

. Sakashita, N., “Production Function, Demand Function and Location
Theory of Firm,” Papers, Regional Science Association, 20 (1967),
109-122.

. Weber, A., A Theory of Location of Industries, (C. J. Friedrick, trans.)
Chicago: University of Chicago Press, 1962.

74





