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POPULATION DENSITY, "POTENTIAL,' AND POSSIBLE PROXIES

Donald N. Steinnes and Richard E. Snow™

Introduction

Ever since the empirical discovery of Colin Clark [2], those engaged in
urban studies have been fascinated by the tendency for urban population and
employment densities to decline exponentially with distance from the center
of the city according to the negative exponential density:

(1) f (x,y) = coe_cr

where f(x,y) is density at point (x,y) in region and r is distance of point
from center or core of city. The parameters cg, density at core, and c, the
density gradient, have been estimated for many cities, years, and spatial
variables and the differences in estimates obtained have been analyzed by
researchers in various disciplines.' Estimation has also been performed using
alternative density specifications2 but the negative exponential remains the
most widely accepted because of the theoretical economic models which have
been developed that yield negative exponential rent, as well as population and
employment density, functions in competitive equilibrium provided specific
assumptions are made.3

Another concept which traditionally has been of interest to urban and
regional specialists is the ''gravity law'' of spatial interaction which
originated as a physics analogue. Recently, Niedercorn and Bechdolt [19]
have attempted to provide a theoretical economic basis for the ''gravity law"
and Wilson [24] has offered an explanation based on entropy theory, but,
nonetheless, empirical studies employing thiﬁ concept have been numerous,
especially in the analysis of travel demand. In this paper we will be

*Assistant Professor, Department of Economics, University of Minnesota-Duluth,
and Department of Transportation, Washington, D. C., respectively.

]Berry, Simmons and Tennant [1], Guest [5], Harrison and Kain [6], Kemper and
Schmenner [9], Mills [13, 14], Muth [15], and Newling [16].

2Newling [17] suggests a quadratic exponential density as a means of analyzing
the development of a city through time and this formulation was later used for
Toronto by Latham and Yeates [11].

3Mi11s [14], Muth [15], Niedercorn [18], and Pines [20].
Quandt and Baumol [21}, and Long [12].
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concerned with the related concept of Mpotential,! which is also a physics
analogue that has been used in urban and regional studies to measure acces-
sibility to some spatial variable {e.g., income, employment, or population)
defined over a bounded region or urban area. To be specific, define for
an urban area made up of K zones, the potential value of variable Z in zone
k to be

— Zyr

2 Z= 1z

(2) k=k' kK

where dik' is the distance between k and k'.6 in a recent article Richardson
[22] has attempted, using the Lancaster [10] approach, to generalize potential
so as to make it consistent with economic theory.

While the theoretical underpinnings of both the negative exponential
density and “'potential’ are subject to debate, the use of these concepts
remains popular and relevant in empirical urban and regional studies. An
important consideration in empirical studies which employ these concepts is
the "cost" of obtaining parameter estimates of equation (1) and performing
calculations of equation (2) for each zone. The former estimation is relatively
simple and, in fact, estimates are available (e.g., Mills [14]) for most cities
in the United States. On the other hand, evaluating equation (2) requires
values for variable Z in each zone, k, and also a distance matrix with typical
element, dkk'. The determination of such a matrix is a cumbersome task whether
one chooses to measure distance using a map or, given sufficient expertise,
to write a computer program to determine such distance given coordinates for
each zone relative to some origin or center. Confronted with the calculation
of potential in equation (2) an alternative (e.g., Muth [15]) has been to use r,
distance of area from center (or Central Business District), as a proxy for
potential.

In this paper we will develop and evaluate alternative proxies for
potential which are simpler, computationally, than equation (2) and are at
the same time consistent, mathematically, with the negative exponential density
specification. These proxies can be used whenever one has an estimate of
parameters of equation (1) but they will not require the distance matrix,
dgk'- Before discussing these proxies we will first synthesize the negative
exponential density and "'potential' concepts by deriving mathematically the
continuous potential function for a city which follows from a negative
exponent ial specification of density.

5cilark, Wilson, and Bradley T3], Dunn [4], Muth [15], and Steinnes and Fisher [23].

6Equation (2) is the general form used in empirical studies to calculate potential
though dkk' may be raised to some power and/or be replaced by travel time between
areas k and k'. In the next section we will define and consider the continuous
form of potential which involves integration, rather than summation in equation

(2).
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The Nature of 'Potential” for Negative Exponential Density

The potentia],7 U, of a plane region, R, of density f at a point (x,y)
is given by

(3) Ulx,y) = 7/ _fle,n)de dn 8
Vi aZx Gy - m2

The interest here is to evaluate (3) in the case where R is a sector (i.e.,
between 0® and 360°) of a unit circle centered at the origin, (x,y) is interior

to R, and the density is
-c¥{e2 + n2
(4) fle,n) = K(c) e[ /e v ]

with ¢ a positive constant and K(c) chosen so that j{ fle,n)de dn = n.g

In particular, if R is a sector of ¢ radians, then

2
() Kle) = o ey

We are particularly interested in the two extreme cases of c =0 and
¢ = = since these correspond to special assumptions about the distribution
of a spatial variable defined over the region or urban area. If ¢ + 0 in

(4) then
(6) fle,n) = 2u/¢

and so the density becomes uniform on the sector $. As c > «» we approach
the case in which all the 'mass" (e.g., employment) is concentrated at the

7For a more detailed mathematical treatment of potential than will be provided
in this section, the interested reader is referred to Kellog [8].

8This equation is the continuous form of equation (2) and assumes accessibility
is measured by distance between points. We might consider how (3) could be
altered to reflect specific assumptions about the travel system. The simplest
alteration would be to assume travel is slower near the center and this could
be incorporated with an additional function in the numerator of integrand

or by adjusting density specification. For example, using the negative
exponential density function, equation (4), one could reduce the value of c.
The authors are considering such alterations, which would increase the policy
ramifications of the model, but in this paper only distance, not travel time,
will be used.

9Equation (4) is the negative exponential density which was written with r,
distance from the center or core, as equation (1) in the last section. We are
going to assume for simplicity throughout this paper that total mass (e.g.,
total population or employment) of region R is . To alter this assumption
would require changing K(c) appropriately by equation (5) but this would not
affect the integration part of the potential calculation in equation (3) since
K(c) is a constant with respect to that integration.
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origin (e.g., Central Business District or CBD) and the resulting potential,
independent of ¢ is

(7) Ulx,y) = w/V/(e2 + n2) = n/r
where r = /(e2 + n2) = distance of point (x,y) from origin.

In attempting to evaluate (3) we observe that the integrand becomes
singular when € = x and n = y. However, the singularity can be removed by

transforming (3) using polar coordinates (w,8) centered at (x,y) (i.e.,
€ =x - wcos® and n =y - wsing). Equation (3) then becomes

(8) Ulx,y) = T1 k(e)em® Y~ weosO)Z 4y - wsin)2 g, 4

where R' is the region R shifted so that (x,y) is now located at the origin.

Since equation (8) is not easily solved in closed form, we will evaluate
the potential using numerical integration. These calculations were performed
for various values of c and for different sectors, ¢, using FORTRAN programs
developed by the authors and contained in the Appendix. These programs perform
numerical integration of (3) using Simpson's Rule. While these calculations
generated several points which were consequently used to develop alternative
approximating functions of the next section, in this section we will use these
points to construct various graphs of the potential for various values of c

and 4.

Let us begin with Figure 1 which indicates potential for full city (i.e.,
sector of 360° or 2w radians) along any ray'Y of unit circle for different
values of c¢c. From this figure we can see that potential is convex with respect
to the origin as ¢ ~ 0, concave as ¢ > =, and that potential is most linear for
case ¢ = 2.11 As suggested by this graph, we will find when approximating
potential for full city that nonlinear fits are better than linear fit, especially

when ¢ < 1.
While the graphical presentation of potential for full city, as well as

the underlying calculations (see Appendix) are relatively simple, the
calculations and graphical presentation of potential for cities or regions, R,

0The full city potential depends only on r, distance from origin, and not 8,
angle of displacement (relative to the x-axis) of point (x,y) defined by polar
coordinates (r,08). It follows that equi-potential or contour lines would be
concentric circles about the origin.

Hihe highest correlation between r and potential (U) was found for ¢ = 2 when
values of ¢ = .1, .2, ..., 3.0 were considered.

137



FIGURE 1: Potential for Full City (360° Sector ¢ )
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of sector less than 27 radians is more complex. We will concentrate attention
on the most common sector, m radians or a semi-circle city, which coincides
with many cities on a lake, river, or ocean. Less detailed discussion will be
given to cities of other sector size although the first program in the Appendix
can calculate potential values for any city of sector less than « radians.12

In Figures 2 and 3 potential values are presented using two graphical
techniques. Figure 2 indicates equi-potential or contour lines when ¢ = 1}
for all points interior to region R. If such a graph had been constructed for
full city it would have been set of concentric circles about the origin. It
may be seen in Figure 2 that center of gravity]3 (i.e., point of highest
potential) is on the x-axis rather than at the origin as it always is for full
city, independent of c. This center of gravity will approach origin as ¢ » «
and/or ¢ > 2w but it will always lie on the x-axis provided sector is defined
symmetrically about x-axis.

Figure 3 presents potential for ¢ = .1 and 1.0 along various rays (8 = @°,
40°, 80°) as a function of r. Examination of this figure suggests the nature
of approximating functions to be presented in the next section. We can see
potential is inversely related to 6 and nonlinearly related to r for each c.
Further, we observe potential is higher for ¢ = 1 than c = .1 except for values
of r near 1. Each of these tendencies in Figure 3 will be manifested in

approximating functions.

The purpose of Figure 4 is to illustrate potential along x-axis (i.e.,
0° ray 6) for various sectors, ¢, although in the next section we will concentrate
on full (360°) and half (180°) city sectors. The potential along x-axis is
inversely, and nearly linearly, related to r for full city but becomes less so as
sector, ¢, decreases. This figure graphically demonstrates an earlier statement
that center of gravity approaches r = 0 (i.e., origin) as ¢ increases. A final
observation is that potential at origin is the same for any sector, ¢, for a
specific ¢ although this value rises with c as seen in Figure 3.

Having graphically presented the potential values generated by numerical
integration of equation (8) so as to illustrate the "nature' of potential we
will now attempt to capture this "nature' in various approximating functions
which will eliminate the need for, and associated cost of, numerical integration.

12The authors have a FORTRAN program to calculate potential for cities of
sectors greater than 7 and less than 27 which is available on request.

131he center of gravity, (X,Y), is given by

X = f.lg xf(x,y)dxdy Y = f£ yf(x,y)dxdy
M M

where M = fJ/ f(x,y)dxdy is mass of R as explained in footnote 9.
R
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FIGURE 2: Equi-potential Lines for Half City (180° Sector ¢ }, ¢ = 1.0
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FIGURE 3: Potential for Half City (180° Sector$),c=.1and ¢.= 1.
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FIGURE 4: Potential Along x-axis {0° ray 8) for Various Sector [()]

Cities,c = 1.0
Potential
(V)
12 ]
114
10
9
8 90° (¢)
7.4
6
180°
5_|
270°
360°
Distance from
'2 A é I8 170 City Center

142



Approximating the ''Potential'' Function

in the last section we indicated the definite mathematical relationship
between a negative exponential density specification and the resulting
“potential" function, equation (8). Given this connection it would be possiblie,
using numerical integration programs in the Appendix, to generate potential
values for all points in a city for which one had estimated values for ¢ and
co of the negative exponential density, equation (1). Such estimated values of
potential would be an alternative to obtaining potential values using equation
(2) which as noted earlier requires the cumbersome determination of distance
matrix, dkk!'- An additional advantage of estimating potential with equation
(8) is that estimates will be mathematically consistent with negative
exponential density (i.e., estimates of ¢ and cg).

Though potential values obtained by numerical integration of equation 8)
are the "true'' or best values in a mathematical sense, the 'cost' in an applied
study of performing numerical integration may be considered too high. Hence,
we will attempt in this section to provide, using numerical analysis, alter-
native or approximating functions of equation (8) which will eliminate the
need for numerical integration. These approximating or fitted functions will
only require an estimate of ¢ and the sector size, ¢, and will clearly prove
better than using r, distance from the core or origin, as a proxy.

Our procedure for obtaining the approximating functions is to consider the
values generated by numerical integration in the last section as '"'true'' values,
U, and evaluate alternatiye or fitted equations on the basis of estimated or
fitted potential values, U, they generate. The criterion used will be mean
squared error (MSE)I which is lower for better fits.

In order to develop fitted equations a decision had to be made as to how
general a functional form should be considered. We have restricted ourselves
to values of c between .1 and 1.0 since these are the values found for most
cities in empirical studies (e.g., Mills [14] and Muth [15]) but instead of
estimating fitted equation for each c we have made ¢ a variable in fits. Values
of r between .05 and .95 have been used in fits as a variable. The most
difficult decision was whether to consider fitted equations with sector size,
#, as a variable. While this may be done in future work we will in this paper
develop fits for full and half cities separately since these are the most
predominant sector sizes. :

ll'MSE =z (U - G)Z/n. We will also present for each equation an approximate

R, Rg =1 - MSE/var(U), where var(U) is variance of 'true' values, U. The
approximation in Rf is caused by using MSE, rather than MSE - [Z(U - G)/n]2.

This mean of (U - U) is small, but not zero as it would be in 'least squares
polynomial, and consequently R2 is slightly smaller than R= would be. Rj is
useful to compare fitted equations for different sets of points (e.g., different
sector cities or values of c). For additional techniques for evaluating numerical
analysis see Hildebrand [7].
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Let us begin with an examination of fits for full city presented in
Table 1. These polynomial fits use r and ¢ as variables and were obtained
using a set of 190 points (c from .1 to 1.0 at .1 intervals and r from .05
to .95 at .l intervals which were subsequently used to form quadratic terms)]5
for which "true' potential values had been determined using second program in
the Appendix. The simplest equation, (A), represents using r alone as a proxy
and will be the bench mark by which other fitted equations are judged. Equation
(A) has low MSE and highR2 but, nonetheless, it can be improved upon (e.g.,
MSE can be reduced from .OéS to .0005) by considering additional quadratic
terms. In equation (C) r4 has a high coefficient suggesting the nonlinear
relationship between potential and r for full city which was observed in
Figure 1. In equations (B and C) ¢ has positive coefficient as expected but
¢4 is unimportant. To summarize, using r as a proxy for potential of full
city is acceptable but additional terms (i.e., equation (D)) yields the ''best"
approximating or fitted equation.

While r is an acceptable proxy for potential for full city we find in
Ta%]e 2 that using only r for half city yields a much less acceptable result
(RA = .343 versus .915 in Table 1). The results in Table 2 were obtained using
900 points {c from .1 to 1.0 at .1 intervals, r from .05 to -95 at .1 intervals,
0 from 00 to 80° at 10° intervals!®), Again we have restricted fitted equations
to quadratic terms since third and fourth degree fits did not substantially
improve fit and would only make use of fitted equations in an applied setting
more complicated.

We find terms in Table 2 equations have, for the most part, the same sign as
in Table 1 and these signs confirm observations made in discussing figures of the
last section. |In Table 2 terms involving 0 are included but only 6 and 64 are
important indicating nontinear relation between 6 and potential as suggested
by Figure 2. In Table 2 the "best" equation to use in an applied setting would
be equation (E) since additional terms in equation (F) do not reduce MSE or
raise R2. The most important conclusion to be drawn from Table 2 is that r
alone (equation (A)) yields a poor fit which can be dramatically improved with
the addition of quadratic terms inc, r, and & (i.e., equation (E)).

Having selected ''best' equation in Tables 1 and 2 let us briefly delineate
how these equations would be employed in an applied situation where one desired
estimated values of potential for particular points, (r,6), in a specific city.
First, our "best'' equations can only be used if one is considering a full or
half city. Assuming this is the case, one would also need an estimate of ¢

]SWe present only up to quadratic fits since fitted equations of up to fourth
degree did not yield substantially different or better results.

]60nly points in first quadrant were used throughout since potential, as seen
in Figure 2, is symmetric about x-axis.

]7For other than half city best equation would have to be fitted with ¢ terms.
This would require combining points used in Tables 1 and 2 and also points for
other values of ¢ which would have to be generated.
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TABLE 1: Approximate !"Potential' Functions for Full City

Mean

Squared Rﬁa
Approximate or Fitted Function Error
(A) U=7.35-2.87r .058 .915
(B) U=17.12 - 2.87r + .h2c .04k .935
(€) U=6.72 - .59r + .h2c - 2.28¢2 .020 .970
(D) U =6.23 + .38r + 1.31c - 2.28¢2 - 1.77cr  .0005 .999
(E) Y =6.25+ .38r + 1.27c - 2.28¢2
- 1.77cr + .031c2 .0005 .999
aRf\ = 1 - MSE/var (U) where var(U) = .678

145



TABLE 2: Approximate '"Potential'’ Functions for Half City
Mean a
Squared rZ
Approximate or Fitted Function Error A
(A) U=28.78 - 1.96r .60 .343
(B) U=9.13 - 1.96r + .53¢c - .938 .ho .563
(¢) U=7.86+ 5.65r + .53c - .936 - 7.61r2 .089 .90k
(D) u=7.61 + 5.65r + .53¢
+.320 - 7.61r2 - 9062  .063 .931
(E) U=6.88+ 7.06r + 1.82c + .320
- 7.61r2 - .9062 - 2.57cr .0175 .981
(F) U=6.83+ 7.17r + 1.83c + .438 - 7.61r2
- .9002 - 2.57cr - .15r6 - .70c8 + .0hc2.0175 .981
ag2

Ry = 1 - MSE/var

(U) where var{u) = .914
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for the _specific city being considered. One would then determine coordinates
(r,0),'% of points for which potential estimates were desired. These values,
for ¢, r, and 8, when inserted in "best equations will yield estimates, ﬁ,
which must be adjusted for the population of the city or region.

Such estimated values, U, can be quickly and easily obtained with the
procedure just outlined for any points in any number of cities or years provided
only that one has an estimate of c¢. Such an estimate of ¢ may be easily cal-
culated or possibly even obtained from empirical studies noted earlier which
have been conducted for many U. S. cities.

Conclusion

In this paper we have mathematically synthesized two traditional concepts
in urban and regional science--the negative exponential density and "potential'
variables. This mathematical connection strongly suggests that any theoretical
explanation of these two concepts will have to be general enough so as to
explain the link between these concepts developed in this paper. To date,
theoretical explanations have been offered for these concepts separately but
no theoretical synthesis exists. The authors believe the mathematical synthesis
in this paper may be the key to such a theoretical synthesis and intend to
pursue this avenue in future work.

It is our hope that the synthesis we have provided will be useful in empirical
and applied research where one has a model based on an assumption that population
and/or employment are distributed according to the negative exponential density.

In any such situation where a value for c is obtained or assumed this paper

would provide the means of obtaining the corresponding potential values. Such
values could be determined by programs in the Appendix and potential surfaces
developed as in Figure 2, or if one only wanted potential for a discrete number of
points in the region these would be most easily determined using approximating
functions or proxies developed in the last section.

A possible situation where the value of ¢ might be assumed would be if one
wanted to simulate urban growth. It has generally been found that for any city

]8If the city were of radius n miles, rather than | mile as we have assumed,
we would define a new unit of distance, | "league' = n miles, and density
would have to be changed to n2e M€l where r is now expressed in leagues.

The program in the Appendix could be used to calculate "true' potential values
using this new density or, alternatively, the fitted equations presented could
be used to obtain estimated values, U, for points (r_expressed in leagues) by
using nc in place of ¢ and multiplying the result, U, by nZ. It should be
noted that c is for density of city with radius n or, in general, the value
for ¢ which might be obtained from previous empirical studies

|9That is, we convert K(c) to population of city by multiplying estimate, 0,
by population/w since throughout K(c) has been for city of mass m (see footnote

9 for more details).
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¢ declines through time and so one might simulate the growth of a city by
systematically reducing c. The procedure in this paper would allow one to
obtain consequent potential values or surfaces at each stage of the simulation
(i.e., for each ¢ assumed). In fact, one might consider using the potential
surface obtained at a stage of the simulation as a means of modifying density
at the next stage. That is, increase density or allocate population and/or
employment to areas with highest potential which would be similar to lowry
type ''gravity' model. However, it is clear that it would be best to develop
this latter type of simulation on the basis of the theoretical synthesis
alluded to earlier.

It is realized that the procedure outlined can be expanded and refined by
incorporating alternative assumptions about the transportation system, gener-
alizing approximating functions to include sector size, $, as a variable, and
using mathematical synthesis as a means for estimating negative exponential
density function from a set of potential values. Also, we have restricted
our attention to negative exponential density because of its interdisciplinary
popularity and acceptance but it would be possible to develop synthesis using
an alternative density specification as, for example, the quadratic negative
exponential which has been developed by geographers.
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APPENDIX

In order to evaluate equation (8) using numerical integration we must
define limits of integration more precisely

' 8 g (6)
(9) Ulx,y) = Klc) [ 70977 f(x,y,0,0) dudo
-6] 0
T +68 gz(e)
+ f f f(x,y,0,0) dwdd
3] 0
(o]
2w '91 93(6)
+ J S f{x,y,0,8) dud®
T4+ 0
where
8, = $/2 + ARCSIN ¥x2 + y2 sin (¢/2 - &)
CO
8y = $/2 + ARCSIN /xZ2 + yZ sin (¢/2 + 8)
(]
Co = Vx2 + y2 + 1 - 2/x2 + y2 cos (¢/2 - &)
Cp =2 +y2+1 - 2vVx2 + y2 cos (¢/2 + §)
8§ = ARCTAN(y/x)
gy (8) = -/x2 + y2 cos (8-8) + V1 - (x2 + y2) sinZ(p - &)

gz(8) = (/x2 + y2 sin (8/2 - 8))/(sin (8 - ¢/2))
g3(8) = (VX2 + y2 sin (8/2 + 8))/(-sin (6 + ¢/2))

e-c/kz + y2 +2xwcosd + 2ywsing + w?

f(x,¥,u,6)

Program A will perform integration in (9) for any sector ¢ less than .
u(IC,IR,IP,JA) is array of potential values determined by program for various
IC, values of c in equation (&), IR, values of r, IP, sector sizes ¢, and JA,
rays 6. The version in Program A will do calculation for values of c from 1
to 2 at 1/10 intervals, values of r from .05 to .95 at .l intervals, a @
sector city, and values of 6 from 0° to 80° at 10° intervals. Increasing N
and M will perform numerical integration more precisely but will also
proportionally increase the cost of running the program.

For a full city equation (8) can be simplified to function of r

T g8} _ ;T s
(10) u(r) = 2Kk(c) é g 7 o=c¥r? + w242rucose dudo
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where g(8) = -rcose + v1 - r2 sincg. Program B will numerically integrate
equation (10) for various values of ¢ and r.

Finally, it should be noted that WRITE and FORMAT statements must be
appended to output U array from these programs.

Program A

DIMENSICN U(10,10,6,9),FF(11),FS{11),FT(11)kr(21),55(11),H7(11)
N=10

¥=10

AN=N

Al=H

NM=K-1

MM=H-1

NP=N+1

MP=M+1

2=0,0

DO 30 1¢=1,10

o=1C

0=C/10.0

C=C+1,0
FDF=3,14159/36,0
IP=6

P=IF

JP=1, 5¢F
P=(P»3,14159)/12,0
2=3. 141 59%0xC/ (1. 0-Cx{TXP(-C) )-aXP(~C) }*2, 0=F)
DO 30 IR=1.10
AR=TR
R=(AR/10,0)-,05
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22

L2l

42
21

Program A (continued)

DO 30 JA=1,JP
SA=TA

SA=(SA-1,0)xPDF%2,0

X¥=R=CC3 (3A)

YY=R%STN{SA)

DELTA=ATANZ (YY,XX)
SRE=XX*XX+YY*YY
3R=39RT(SRS)

PMD=P-DELTA

FFD=F+DELTA

C0=593T(SRS+1, 0-2, 0xSR*COS(PMD) )
CT=893T(SRS+1, 0-2, 0%SRxCOS (FPD) )
TC‘N=SR*SIN§FT€D)
TIN=53*SIN(FFD)

TONCC=TGN/CC

TINGI=TIN/CI

TO=P+ARSIN (TCNCGC)

TI=P+ARSIN(TINCI)

XF=(TO+TT)/AN

DO 21 ¥=1,NP

AR=X

AT=(AK-1,0)*XF-TI+6,28318

GF=-SR*CCS (AT-DELTA +SQRT(1, 0= (SRS )* ((SIN(ATI-DELTA ) )*x2))
WF=GF/AN

DO 22 J=1,MP

AJ=]

D=(AJ-1,0)xuF

FF(J)=EXP(-Cx (SQRT(SRS+2, OxXX*D*COS (AL )42, 0xYY*D*SIN (AT }4D*D)))
CONTINUR

FEVEN=0,0

DO 41 J=2,4,2

FEVIN=FEVEN+FF(J)

FCDD=0, 0

DO 42 J=3,uM,2

FODD=FCDHFF(J)

(X )=(WF/3, 0)x (FF(1 )4k, OXFEVEN+2,, OxFODD+FF{MF ) )

CONTINUE

5=(3.14159+D2LTA-TO) /AN

D0 23 K=1,NP

A¥=K

AT=(AK~1,0)*XS+TC

55=TCN/STIN (AI-P)

WS=GS/AK

D0 24 J=1,mp

AJ=J

DsEAJ-l.O)*WS

FS(J)=EXF{-CxSQRT ((XX+D*COS (AL ) y#2+(YY+D*SIN(AT) )=x2)))

2l CONTINUE :
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L3

Ly
23

26

bs

L6
25

53

30

Program A (continued)

SEVEN=0, 0
DO 43 J=2,M,2

SEVEN=SZVEN+FS(J)

S0DD=0.0

DE 4l J=3,K,2

SODD=SCDD+rS (J)

HS(K)=(WS/3.0)#(FS(1)+4, OxSEVEN+2, 0xSODD+FS(MF) )
CONTINUE

¥T=(3,14159~TI-DELTA ) /AN

DO 25 X=1,NP

AK=K

AI=(AK~1, 0)*XT+3, 141 59+DELTA

CT=-TIN/SIN(AT+P)

WT=GT/AM

DO 26 J=1,MP

AJ=J

D=(AJ-1,0)«¥T

PT{J)=EXP(~Cx (SQRT( (XX+D*COS(AT ) J#*2+ (YY+D*SIR(AT) J*=2)))
CONTINUE

TEVEN=0,0

DO 45 J=2,%,2

TEVEN=TEVEN+FT{(J)

TCDD=0, 0

DO 46 J=3,K,2

TODD=TODD+FT(J)
HT(J)=(4T/3.0)#(FT(1)+4, Ox TEVEN+2,, OxTODDH+FT(1iP) )
CONTINUE

HFEVEN=0, 0

HSEVEN=0, 0

HTEVEN=0, 0

DO 52 ¥=2,N,2

HFEVEN=HFEVEN+HF(K)

HSEVEN=HSEVEN+HS (K)

HTEVEN=HTEVEN+HT(K )

HFODD=0, 0

HSODD=0, 0

HTODD=0, 0

DO 53 K=3,N¥,2

HFODD=HRODD+HF(K )

HSODD=HSODD+HS (K )

HTODD=HTODD4HT (K)

BF=(XF/3, 0 ) (HF( 1;+4. O*HFEVEN+2,, OxHFODD+HF(NP))
BS=(X5/3.0)*(HS(1 )}+4, OxHSEVEN+2, O*HSODD+HS (NP ) )
BT=(XT/3, 0)%(HT(1 )+, OxHTEVEN+2,, O«HTODD+HT(NP))
U(I1C,IR,IF,JA)=(BF+BS+BT )2
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Program B

pIMENSICN U(10, 19), H{11), F(11)
N=10

¥=10

N=r+3 0
7=(C*%2,0)/(1, 0~ 3¢P{-1) }-ExP(-C))
De 30 1R=1,19

AT= /AV—l 0)xX
a=((==)#003 (AT) HSIRT(1, 0-(3%%2, 0)x ((SIN(AI) )x*2,0))
4=0,0

y=" /AI’

¢ 20 J=1,4P

AJ=J

D=(4J~1,0)+¥

T(J)=5YP( -3 (SQRT( (3xx2, 0 )+(D%x2,0)+(2, 0x3%DxCOS (AI)))))
20 CONTINUT

TVEN=0,0

9C 40 J=2,1,2
40 RVER=TVTN+F{J)

0nD=0, 0

BC 41 J=3,M%,2
41 COD=COD+R{J)

#{¥)= (a/} 0)% (F{1 )+, Ox5 VEE+2, 0%00D+F (#F) )

YT —o 0

DC 42 ¥=2,%,2
42 HT =H€vzﬂ+ﬁ(x)

H(DD=0.0

DC 43 ¥=3,N%,2
47 HODD=ECDD+H(X)

B=(%/3, 0)% (H(1)+4, OxHEVEN+2, OxHCDD+H(NP))
30 U(IC,TR)=D#%
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