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ON OPTIMAL DEVELOPMENT OVER SPACE AND TIME*

Walter Isard and Panagis Liossatos**

This paper was motivated by several interrelated objectives. First, we
wished to develop preliminary definitions of Social Mass, Social Momentum,
Social Velocity and Social Acceleration to complement our concept of Social
Energy, already defined and found useful for analysis [7]. While we have
been able to make some progress in this direction, it will be seen that much
ground is yet to be covered, and that at least some of our definitions must
be basically revised.

Second, we wish to take first steps toward the development of a parallel
treatment of space and time, in keeping with the view previously set forth
by the senior author that space-time constitutes one and only one general

concept or entity [3].

Third, we wish to place some of our thinking in the framework of field
theory, thereby to gain certain new insights and utilize more effectively
basic notions which stem from it. This potential advance has already been
suggested in a previous paper [4].! We shall also see that use of field
theory facilitates the parallel treatment of space and time.

Fourth, we wish explicitly to treat space as a continuous variable,
partly to begin to meet certain criticisms levelled at regional science because
its theories and techniques pertain primarily to discrete sets of points.
Treatment of space as a continuous variable is in one sense a natural outgrowth
of the introduction of field theory into our framework, since in field theory
a change at one point in the field affects the neighboring points which in
turn affect their neighboring points and so on in unending fashion. Thus,
system interrelationships are expressed in terms of local relationships, that
is in terms of partial differential equations which together with appropriate

*Research supported by grant A. P. 00842-02, of the Environmental Protection
Agency and grant P251018, National Science Foundation.
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Department of Regional Science, University of Pennsylvania and Regional Science
Research Training Program, Center for Urban Development Research, Cornell University.

lSince the writing of [4], our attention has been called to the pioneering work
of Jutila [9, 10] in using the field theory approach in regional development
analysis. He is not concerned with welfare maximization, as we are, but rather
with the implications of certain behavioral assumptions pertaining to regional
production and consumption activity.
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initial and boundary conditions specify the behavior of a whole system over
space and time. Our treatment of space as a continuous variable will represent
a much more adequate treatment than was accorded space by the senior author in
[2], and in_certain directions permit the use of more powerful analytical
techniques.

~ Fifth, we wish to take yet another step or two in developing a more
adequate dynamic space theory, or general space-time theory for social science.3

Lastly, we wish to put to practical use this more general space-time theory
by forging new spatial-temporal pollution models more relevant for the problem
of environmental management. Such models will represent a further improvement
upon those we have already constructed for preliminary consideration [6, 8] and
will be developed as a sequel to this paper.

A Space-Time Model with Capital as a Single Production Factor

To begin, imagine the development of a primitive agriculture in an isolated
region wherein there is, loosely speaking, a continuous distribution of pop-
ulation (and labor) eking out subsistence from hunting and gathering of wild
fruits. The introduction of this primitive agriculture is sparked by some
simple technologic advance, and occurs initially at some point in space and
time (x, t) which we designate (0, 0). As a consequence of the successful
application of this advance, we have as initial conditions for our model a
spatial pattern of consumption of a new agricultural good which falls off very
sharply from x = 0, and a spatial pattern of capital which is also highly con-
centrated. This primitive agriculture catches on and spreads out in space and
grows in time. To facilitate analysis, we posit that the spatial spread is
along, and only along, a line, the x-dimension over some large, but finite,
interval [0, B]. Later we shall generalize and permit spread up to infinity
and along the y and z dimensions as well. We confine our analysis to the
production, investment and consumption of this single new good, y. Such
activities can take place at all points of time within the time interval
[0, t;]. We assume that only capital is required for production (labor and
land being free goods, available in unlimited quantities at all points).
Specifically we take production Y at any point of space-time to be a non-
linear function of capital, K, at that point of space-time:

(1) Y(x, t) = F(K (x, t))

20n the other hand we shall return, in later manuscript, to the further develop-
ment of interregional trade theory with reference to a multi-region system,

each region being represented as a point.

3For comments on the need for such theory, see [3, 5].
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2
with 3—::(— > 0 (positive marginal product) and d Z < 0 (diminishing marginal

product), for all K > 0. For example,

Y(x, t) = a \]K(x, t)

Because we shall be dealing with continuous distribution of production, capital
and consumption, all quantities are magnitudes per unit length, or per unit
time, or both. Thus in equation K(x, t) is the capital per unit length at point
x at time t, Y(x, t) is output per unit length per unit time, and a is a
Z;mi;$zal coefficient with dimensions Of‘fK/t’ that is dimensions of\rﬁ-per unit

We further posit that output, Y, at any point in space-tjme may be
allocated to consumption C at that point, investment (3K/3t)= K at that point,

X
or net exports(dU/ax)= U. Here U represents the flow of goods through a point
for use elsewhere for consumption, or investment or both, per unit of time so

X
that, for any unit length dx, U measures U at x + dx minus U at x. It Is clear

that net exports may be either negative or positive. Accordingly we have

(2) C=Y-KkK-10

Further we postulate that welfare w at any space-time point, per unit of time
and length, is a function of consumption C at that point. Most generally,
we have ’

(3) w=w {C)
where we take (0w/3C)= we > 0, an assumption of positive marginal utility, and

2 . s e
¢ w/acz) = Wee < 0, an assumption of diminishing marginal utility, for all

C > 0. Over the entire region [0, B] and for the finite time period from 0
to ty, total welfare W is:

' B t‘ i
(%) W= f [ wdxdt
0 0

hln this model we expressly avoid the discounting of utility over time. Although
the rationale for discounting utility over time may be defended in terms of a
behaving individual, it is not at all clear that it is proper to discount utility
for social welfare planning analysis. We have examined discounting in [8].
Because we choose not to discount utility over time, it becomes necessary to
consider a finite time interval in order to avoid infinities.
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Our objective is to determine the behavior of the system so that W is
maximized. That is, we wish to determine in our defined space-time region
the optimal paths of both K(x, t)} and U(x, t) which we require to be twice
continuously differentiable functions and consistent with appropriately
specified values on the boundary of the space-time region.

The necessary conditions for maximizing W are given by the Euler-Lagrange
equations [1]:

) w8 (@_);_a_ (9.01
au ot \au/ ax \all

6 w2 (a_w)+_a &)
ak ot \okl ax \ak

where w serves as the Lagrangian density,Jr , and where the ° indicates the
time derivative and the * the spatial derivative. For the specified model,

these equations become respectively:

] 3 3 3¢ 3 (~w.)
%) 0= 2 (—“’ —x)= 2 mug)
ax ac U 3x
and
(8) dw 3C 3Y _ 3 (221 ESL)
3¢ 3y 3K at \oC 3R
or
oF 5 l-w)
(9) e o = '———Lat

K

From (7) it follows that we is a function of time only; and therefore for any
point of time is constant at all locations along the x-dimension. Likewise for
C. Further, if wc is a function of time only, so are(amc/at) and (1/mc)(8mc/3t).

Hence from (9) we have

(]0) dF 1 awc
= = +
K We ot G( )

If the marginal product of capital is a function of time only, so must the capital
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stock K be. Therefore, any point of time, both dF/dK and K have a constant
value for all locations along the x-dimension. Likewise for Y.

x
Also observe that (sw/3l) = (3w/3C) (3€/3U) = -w., indicating that the
loss of welfare at {x, t) from a unit increase in net exports from (x, t)
equals the marginal utility of consumption at (x, t).

Clearly, constant Y, K, C and wc for all x for any fixed point of time,
including the initial point of time, is not a satisfactory result --- and cannot
be said to characterize the realities of settlement dynamics. We therefore are
motivated to alter the model so as to yield results more characteristic of
reality.

in particular, we replace K by {1 + n) K where n = n(x) is some rapidly
increasing function of x, and where n (0) = 0. We may take this function to
reflect the fact that because of difficulties in transportation and communi-
cations, the cost (in terms of good y) of putting a unit of capital in place
rises sharply and increasingly so with distance from the initial point of
agricultural development (and the location of know-how). Accordingly, we
must replace equation (2) with:

) C=Y-(+n) K-0

This change in turn requires that we replace equation (9) with

12 e - O u) =0 e e

Note that if we multiply both sides of (12) by dt and integrate from t to t;
we obtain for any fixed location X,

t
(1 +n) o = f ! we 1 dt + (1 + n) w,
t

at t dk at t

Hence, the basic investment principle is revised to take into account the
factor {1 + n). The principle now recognizes that because of the increase

in the difficulty of putting capital in place with increase in x, not the full
unit but increasingly less than a full unit of a good is put into place when
the consumption of a full unit is foregone. Thus to embody a full unit of
good into the capital stock, it becomes necessary to take out of consumption,
an increasingly greater amount than one unit, with increase in distance of
site of investment from x = 0 (as reflected in the factor (1 + n)). Thus

we must equate, for optimality, the utility foregone at t of this increasingly
greater amount (i.e., (1 + n) w.) with the cumulative sum over time of the

; . . . t dF
utility from one more unit of capital in place at 5_(i.e., { 1 Ye gx dt)

30



plus the utility which is not foregone (and thus saved) at ty if we desired

to have existing_at tj that additional unit of capital and did not make the
investment at t.

Since by (7), wc and consequently (1/wc) (3w./3t) depend on time only and
are constant over space, we have from (12):

6
(13) j—i = (1+n)6 (¥)

Now we have posited that the marginal productivity of capital, dF/dK, and the
marginal utility of consumption {wc) are positive. Hence it follows from (12)
that Bwe/dt = w. is negative, that is marginal utility at a fixed location

declines over time. Since B8uwc/3t = u €, and since we require that w,. < O,
it follows that C > 0, that is consumption at any given location x grows with time.

Also, since

(14) dwe

x
.ax—-= Wec C=0

. - X . .
and since wee < 0, it follows that C is zero. Thus C is constant over all space
at any fixed point of time, and so its time rate of change is the same for all
points of space. By differentiating (13) with respect to x, we have

(15 d%F X _ dn(x)
Sok= X))
dK dx

Since d2F/dI(2 < 0 by assumption, and since we have seen that the right hand

X

side of (15) is positive, it follows that K < 0. That is thexcapital stock

decreases with increase in x. From (1) it also follows that Y < 0, that is

that output decreases with increase in x.

Moreover, if we divide both sides of (12) by (1 + n) w., we obtain

(16) 1 dwe _ 1 dF

we St (1+n) dK

SNote that (I + n) wc at tj has often been viewed as the scrap value of capital.

6Note that G(t) is a function of time at most. Therefore dF/dK cannot be a
constant because n(x) is a nontrivial function of x. Hence Y = F(K) is not
permitted to be a linear production function, if the model is to exhibit
optimal behavior.
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Mulﬁiplying both sides of (16) by dt and integrating from time to = 0 to time t,
we have:

t
(17) lo t) -~ 1 0) = -_1 dF
g wc(t) og w.(0) T é & dt
or
we (t) t
(18) Tog < B s dF  dt
we (0) +n 0 4K
or
(19) () = o (0exp (- = 1" 9 g¢)
e = O P I+n p dK

Further, we can show, as we do in the Appendix, that K (x, t) > 0 when
appropriate boundary and initial conditions are specified. Hence by equation

(1), ¥ x, t) > 0.

In sum, we have a space-economy where flows of goods take place to equalize
both consumption and marginal utility over all points in space, wherein con-
sumption increases and marginal utility decreases over time at the same rate
at all points of space, wherein capital stock and production decrease with
increase in x for any fixed time point, but at all points of space increase over
time.

Note however that our model still yields nonsensical results. In particular,
we obtain consumption constant over all points of space, including all points up
to B, some very large value short of infinity, for any fixed time point. This
result is possible since we have impliicitly assumed zero transport costs in our
model, which allows the good y for consumption purposes to flow over all space.

We now remove this very undesirable feature of the model by introducing trans-
port cost T at any space time point, where T is defined in terms of output used
up in transport per unit length per unit time. That is

(20) T =7y

where 7 is a constant over our space-time region. (In later manuscript, we
shall consider ¢ as a function of t, x and U ). Accordingly equations (2)
and (7) are replaced respectively by

. X
(21) C=Y-(+n) K-U-7u
and

(22) T owe= e
I x
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The K-equation (12) remains unchanged.

If we now multiply both sides of {22) by %5' and integrate we have:
c

; Bue i 3
S dx = X e dx = f-a—; (log wc) dx
or
(23) 7 X = log wc l - log w,
at(x,t) at 0,t

or o (x,t)

BﬁYB_ET = exp (/x)
and
(24) welx,t) = w.(0,t) exp (£ x)

Equation (24) implies a marginal utility which increases with X, the increase
being greater, the greater the value of #~. Also, equation (2F) together with
the assumptions on the welfare function (3) imply that C decline with increase
in x, this decline being the greater, the greater the value of #, the trans-

port cost per unit flow.

Equation (22) may be interpreted as indicating that the difference in
marginal utility (welfare price) of a unit of a good at two neighboring
locations is equal to the transport cost incurred in shipping the good from
one to the other. As already noted, this transport cost is associated with
an 4~ fraction of a unit of good being used up in the transportation process
per unit of distance traversed. Therefore the social cost of transportation
of a unit of good per unit distance is the marginal utility lost, 7 we, through
the using up of the ¢ fraction of a unit of good. But we must bear in mind
that the transport function is performed locally, that is the shipment of goods
through any location is done by the people at that location. Hence the relevant
social cost of transporting a unit of good through any location is 4 times the
we at that location. Accordingly if we now consider the transport cost on a
unit of good from any location x; to any other location X, at some distance,
the transport cost on that unit is

X2
(25) I ra e dx
X
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But from (22) after multiplying both sides by dx and integrating, we have:

(26) we (xz, t) = wg (x, t) = 28w, dx
X
1

That is the difference between the welfare prices at locations Xy and Xy is
equal to the transport cost on the unit of good, a familiar spatial
equilibrium principle.

Put in another way, equation (22) gives for any 9oint of time the slope
and the curvature of w. consistent with optimization.

Now we next wish to find g (0, t). To do so we substitute in equation
(12) the expression for W (x, t) from equation {(24) to derive

@) e (0,1 o= -0+ 2w (0, )

Note that a solution of the form of equation (24) satisfies (12) only if

28 £ 1y - 4@

dK T+n
That is:

3 [ dF , 1 i,
@ Sl & G -0

This relation is a consequence of our differentiability gssumptions which
together with equations (12} and (24) imply that we and wg must be continuously
differentiable and hence that

2 2
3 W LI

Ixat 9tdx

It follows from (29) that

7The curvature of the equation is obtained by differentiating equation (22)

2
. 8wc 3w
with respect to x. We obtain =d € = d‘zw
9 X 3 x <
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2
(30) Q_f_K(l)_gi(_])zdn
dx2 T+n &K "W o C°
or
x (QE) dn
BN g - 9K dx
d?F
7 (14n)
dF dn &%
Slncea? >0’K >0,na0andd—K2- < 0,
(32) K <o0.

So capital stock and thus production at any fixed point of time decreases
with increase in x.

Just as we obtained equation (19) as a solution to equation (12), we
obtain as a solution to equation (27):

tdF

(33) we (0, t) = w. (0, O)exp (- T-l_néﬁdt)

Inserting the value of w. (0, t) from (33) into (24), we obtain

B8 wg &, 1) =u, (0, Oexp (£x - o= /53K dt)
0

From (34) we observe that for any fixed point of x, w. declines with time;

and hence consumption increases with time, i.e., C > 0.

Further, we show in the Appendix that K > 0 which implies that ? > 0 and
that for every point of space, capital stock and output increase with time.

At this point it is relevant to reiterate that appropriate boundary and
initial conditions are required in order to specify a unique solution. We
have taken as initial conditions: (i) capital stock at the initial space-time
point (0, 0) is a given positive constant, i.e., K (0, 0) = t; (i) addition
to capital stock at all space points at the end of the time period (planning
horizon) ty is zero, i.e., R (x, ty) = 0; (iii) consumption at the initial
space-time point (0, 0) is another given positive constant, i.e., C (0, 0) = 7.
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We a1§0 take as a boundary condition (iv) zero flows at the space boundaries,
that is U (0, t) = U (=, t) = 0 where our region is the infinite interval
[g, =). This condition implies that net exports for the system are zero
that is ’

L

X
J Udx=0
0

and consequently that net exports are positive for some interior points, and
negative for others, and that U reaches a maximum at some interior point where
net exports are zero. We intuitively suspect that U reaches a single maximum,
but we have not yet proven this point. However since we cannot specify 0> 0,
we can only guess at the shape of the U curve for different time points. We
may now depict our space-economy growing over time with the following rough
graphs (Figures 1 through 4).

Social Mass: A Definition

As already indicated we have developed and found useful for analytical
purposes an ''exploratory" concept of Social Energy. We now try to develop
the parallel concepts of Social Momentum, Social Acceleration and Social
Mass, and seek relevant definitions, although with further research we may
wish to discard our initial definitions for others which may prove to be
more meaningful and precise.

The model of the previous section allows us to proceed some distance in
this direction. The solution (34) depicts a wave-type phenomenon, as can be
seen from Figure 1. Put otherwise, at time t = 0, and beginning at space-
point x = 0, the curve describing the behavior of we is shifted horizontally
to describe at t' the behavior of w. beginning at space-point x'; to describe
at t'" the behavior of we beginning at space-point x''; etc. Thus it follows that

(35) we {x, t) = ", t") = w. (x + Ax, t + At)

where the Timit of Ax/At (as At - 0) 5 dx/dt defined the speed of propagation
of the wave with reference to w.. That is, given a point (x, t), we want

appropriate dx and dt so that the value of wc (x + dx, t + dt) = o, (x, t).
Hence there must be no change in the exponent in (34) associated with the

changes dx and dt.

That is
1 t o gF
(36) d (£x - r L do)=o0
1+n 0 dK
Recalling that ! ft dF dt is independent of x, and that & and n are
I+n o0 dK -

independent of t, we have
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toar

1 8 6 aK dt
(37) A R i =0
or
(38) ax _ 1 dF

dt  #£(+n) oK

Here dx/dt represents the speed of propagation of w. (that is of any value of
wc). As we would antigipate, this speed varies inversely with both /7, the
transport rate, and n,° the difficulty of capital construction at a distance,
and varies directly with the marginal productivity of capital --- which we
shall see to be the momentum of the system.

The rationale for this relation follows because, if there were zero trans-
port cost, (i.e.,d = 0), and no differences among locations in the difficulty
of capital construction, then to maximize welfare under conditions of dimini-
shing marginal utility requires an even distribution over space of consumption
up to some very large distance short of infinity. Such would require an
infinite speed of propagation, which (38) yields when? = 0 and n = 0. How~
ever when 7" > 0, such an even distribution is precluded.

Observe also that since w. = we {€), and since wce < 0, we can invert and
consider C as a function of wc. But if at (x', t') and (X', t''), w. takes the
same value as at (x, t), then so must C. Thus C propagates as a wave just as
we, With the same speed of propagation. Likewise with w, social welfare,
since w = w(C).

We do not examine the speed of propagation of K and U here because they
involve much more complex relationships. However we can state that K does

follow a wave-like behavior since ﬁ and K are nonzero. Further, K propagates

X .
to the right since K and K have opposite signs such that we can find a positive
speed

dx  _ _é
(39) g - -K
K
for which
« .
(40) Kdx + Kdt =dK (x, t) =0

8|n this particular case where n is independent of time, the speed of propagation

i 1 dF(K {x, t))} 1 dF (K (0, t))
is independent of n since Ty dK = 1707 ¥ -
dF(K (0, t))
dK
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From this definition of speed of propagation of e we wish to move on
to the definition of mass density at a point. In doing so, we conceive mass
density at a point to measure the resistance at that point to change in the
speed, dx/dt of the ''wave''. Hence we have in mind a concept of ''inertial'!
mass -=-- the basic attribute of mass in the physical sciences --- and not a
concept which necessarily describes a quantity of matter. Generally speaking
we seek relations of the form:

(#1) ma =F

where m = mass density, a = acceleration (the second partial with respect to
time of the basic configuration or independent variables) and where F is the
"'driving force'' per unit length.

Specifically, we consider (38), which differentiated with respect to
time yields:

2 2
(42) = v dx 1_d°F ok _ 1 3 (dF
) ) IR 3t =70y 56 G0
or

3)  Fm)a = 5 ()

Immediately, since we recognize 3(dF/dK)/3t as the time rate of change of
marginal productivity, and thus as the driving force, and since a = dv/dt is
the time rate of change of motion of the system, equation (43) suggests that
7 {1+n)} is an appropriate indicator of mass density --- and of resistance to
change in the motion of this system. This suggestion is fully consistent with
the model since both the transport rate @ and the factor (1+n) reflecting the
increasing difficulty of putting capital in place with increase in x, are the
two elements, and the only two elements, which preclude the instantaneous and
even spread of development (consumption and investment, the basic magnitudes
of the system) along the real line up to ». (Recall that if n =0, K is
uniformly distributed; and if4™= 0, consumption is uniformly distributed).

. ] 1 dF .
9A]ternatively we may rewrite equation (43) to read: ¢ a = EE.(T:H-ERQ and view

%? (T%;-ggﬁas the driving force with# as an appropriate mass density. Since
gz-(T%—-—g£—iﬁL154£ll-= %? (—%%—iﬁ—igiﬁlla such a formulation then emphasizes

n

the marginal productivity of capital at the zero-space point (x = 0), as the .
basic reference magnitude. However, this formulation just yields the propeliing

force at x = 0, and to obtain the propelling force at x = x', we must multiply

%? (—%%—Lﬁ—igizllé by (1+n); and accordingly s~ must be muitiplied by (I+n) to get

the corresponding "inertial' measure at x'. Hence we prefer the direct formulations

and definitions in the text.
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Also from the natural concept of speed of propagation of w., C, and u, we
can proceed to a concept of momentum. From equation (38) we have

ra dx _ dF
(44) (1+n) T K

Since 4" (14+n) represent mass density € and dx velocity v, we have the familiar
definition of physics dt

(45) € v = momentum density = 9F

dK

Hence given our definition of mass density, momentum density corresponds to
marginal productivity, a meaningful concept; and Social Momentum for any finite
interval [0, B] may be defined as

o dK

B
J LA

the cumulative sum of marginal productivity from 0 to B at a given point of
time. Correspondingly, from equation (43) we may define Social Acceleration

as the acceleration

2
az 9%

X
t2

a

of the 'wave' motion. Further, the driving force for this acceleration (in
our case deceleration) at a given space-time point is the rate of change over
time of the marginal productivity at any fixed space-point. When marginal
productivity is constant, Social Acceleration is zero, and momentum density

and Social Momentum are constant.

We can also derive other insightful relations. If we differentiate the
basic equations (12) with respect to time and (19) with respect to space we
obtain respectively:

2 df
(45a)  8%wc _ _ [ak Jowe _ 1 4%
312 T+n/ 3t T+n  dKk2 ¢
and
32 ?
(45b) Be _ g e
3x2 ax

Substituting in (45a) the value of Buc/3t from (12), and in (45b) the value of
duc/dx from (19), we obtain respectively:
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2 o
(46) 3%, dK o d2F .
3¢2 T+nJ% “Tn dK2 K o¢

and

2
wn ¥ | 2,

Multiplying both sides of (46) by s (l+n)2 and both sides of (47) by (gé)z
and combining yields:

2
2 2
2 v, _ dF Y . d2F .
(48) [7 (1+n)] ﬁz&— (a?) 5;25' (14n) 7 T2 K

In equation (48) the term azmc/atz may be viewed as_acceleration of w.(the
marginal utility of a good). Accordingly then [ (14n)]% might be considered
to be a '""quasi-mass'' associated with the wc movement, and to be a measure of
the resistance to change of w.. The two terms on the right hand side might
then be viewed as constituting the ''net' force, the first term being a gross
force, the second being an adjustment due to diminishing marginal productivity
of capital.

While Z"and (1+n) constitute the factors or inertial properties which we
use to define mass, we may note that there are still other properties of the
system which may be considered to be inertial. For example, our assumption
that w.. < 0, implies that within the value system (welfare function) there
is a "loss'" of value per unit of commodity consumed, as consumption increases.
This might be interpreted by some as an inertial property. And accordingly
they might take the measure of mass to be =&7(I+n) wcc. The relevance of
this measure is clearly seen when we consider the behavior of consumption.

We have from (11) and (22)

. dF
(h9) B _ 9K __
éc 7 (1+n)
. X X
But since wc = w. C and w. = w,. C and since w.. < 0, we obtain
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o <V

(50) C=mc

If we assume that wece exists and is continuous, then C is twice con-

- . . .X
tinuously differentiable and hence C = C . We can then differentiate equation
(50) first with respect to time, and secondly with respect to x. Combining
we obtain: :

- g dF, 2 a2
(53) T (14n) (~uge) € vee (50 ) ¢t S K wc

Equation (53) can be seen to have the form ma = F where the mass is ¢~ {(1+n) (-uwcc),
where the acceleration a relates to consumption, and where the Force F relates to

the space curvature of C, namely fx, in the first term, and to the diminishing
marginal productivity of capital in the second term.

Further we might wish to introduce a factor in our model which relates to
Moss' or "inertia' or 'resistance to change' associated with changes in the
rate of investment, K. For example, we might imagine that at any point of
space-time, the economy is ''adjusted' to the absorption of new investment at
the current rate K. Any increase in this rate involves difficulties (assoc-
jated with a cost or loss) --- difficulties of digestion and absorption into
the economy; any decrease in the rate increases the efficiency with which the
new investment is absorbed and assimilated into the system. So to equation
(26) we might add the term - ¥ K to obtain

10yote that this equation can be interpreted as the local conservation of con-
sumption. We have seen that the value of C must propagate for optimal behavior
with velocity v = (dF/dK) (1/7(1+n)). Since C is really a consumption density
{consumption per unit length), Cv represents the flow of consumption through
the point x at time t. Further since 3v/3x = 0, we may rewrite (50) as

aC alcv)
(5]) 3t + _a'x = 09

or by considering a small interval (x, x+ dx), we have

(52) a_(g_<:_><_)_ =vC {x, t) - vC (x+ dx, t)

which says that the time change of consumption within the length dx is the
difference between the flow v€ (x, t) which enters the interval and vC
(x + dx, t) which leaves the interval.
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. x .-
(54) C=Y-{(l+n)K-U-0U-%K

Doing so would imply a still more complicated notion of mass involving thed"
factor.

However, note that the assumption of existence of diminishing marginal
productivity of capital must not be viewed as an inertial property. This
point is seen immediately from equation (43) where it is clear that if dF/dK
is constant, then ¢~ (1+n) a = 0 which implies for & # 0 a constant speed of
wave propagation. On the other hand, if dF/dK # 0, with d2F/dKk2 < 0, the
diminishing marginal productivity of capital provides the basis for the
deceleration of the wave propagation. As can be seen from (53) it is also
a factor in the deceleration of consumption.

Finally, with respect to the energy of the system, it should be noted
that our basic Lagrangian expression implied by equation (43) (which may be
interpreted as a Lagrange equation) is

X
o1 3 (dFy dx
(dK)

1 2 1
(55) X = - v¢ + L
2 [ 2N T+n 3t

This equation pertains to a particle of unit mass moving with velocity v and
subject to a force field reflected in the second term. As such it has no
relevance to our social problem. On the other hand our concept of Social

Energy density [7]

(56) N =0+ (1+n) W k

(which is the density of actual utility from consumption plus utility embodied
in the investment at point (x, t)) does not have any direct and meaningful
relationship to our concept of mass, & (1 + n). This finding is to be expected,
because if we seek a parallel in physics, the interconnection between energy
and mass results from more restrictive structural assumptions, parallels of
which we have not yet incorporated in our model. More specifically, it is to
be recalled that the well-known Einstein relationship E = mc” follows from

the postulate of Lorentz invariance of the physical theories as well as from
the postulate that ¢ is the upper bound for the speed of propagation of any

action.

On the other hand, the ¥ (x, t) satisfies a useful continuity equation.
As demonstrated in the Appendix (see equations A.l to A.5),

579 2, e V)
3t

X

This equation states that at any space-time point the time rate of change in
social energy (actual utility from consumption plus embodied utility from
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investment) must equal the net utility value of the time rate of change of
imports. Here w. |J represents the flow of social energy through the point
x at time t.

When we multiply both terms of (57) by dx and integrate, we obtain

(-3

(8 2 £ = o (0, ) U (0, t) - w, (=, £) U (=, t) =0

since U (0, t), U (=, t) = 0 by the boundary conditions U (0, t), U (, t) = O.
This then implies that system social energy

H = J % dx
0

is a constant; and the system is closed. Hence we may depict system social
energy, and system welfare as in our articles dealing with a one-point space
economy [7, 8].

Conclusions

In bringing this paper to a close, we wish to emphasize that the elementary
model! which has been developed does set forth space-time as a single general
concept, unifying the notions of both space and time. While it is still possible
to reduce the model and the analysis to an economy developing over time at a
single point in space, or to an economy at a single time point distributed over
space, the basic contribution of the model is the integration of the development
process over both time and space. Both space and time are treated on an equal
basis, and concomitantly, so that we do not need to abstract from one or the

other.

We make this statement, despite the fact that we have considered only the
x~dimension in the positive quadrant, since the introduction of other spatial
dimensions simply complicates the algebra at this stage.

Interconnected with our concomitant treatment of space and time has been
field theory. That is, our system is not described, as many region and multi-
region systems are, by a finite number of functions of time; rather it is
described by a set of functions of both space and time. Thus our system has
infinite degrees of freedom. Use of field theory opens the way for the intro-
duction of relativistic considerations which will be considered in later

manuscript.
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More important we are able to treat space as a continuous variable, and
thereby begin to consider welfare analysis and development processes in con-
texts which are not subject to the criticisms levelled at techniques treating
discrete sets of one-point space economies. Already some basic principles
have emerged. In connection with the K-equation, we have a new statement
of the investment principle: At any space-time point goods should be invested
as capital up to the point where the marginal utility foregone from not con-
suming the required units of goods in order to put a unit of capital in place
at that space-time point just equals the cumulative sum (over the remaining
points of time in the relevant planning horizon) of the utility from the
additional products due to that unit of capital plus the utility that is
saved by not having to use up consumption goods at the end of the planning
horizon in order to have that unit of capital then. In connection with the
U-equation, we have a new statement of the spatial flow (interregional trade)
principle: At any and every time point, the difference in the marginal utility
(welfare price) of a good at two locations in space must equal the social
transport cost between those points, this cost being the cumuiative sum of
the utilities foregone in providing transport for a unit of good through each
location in the space interval over which the good is transported. These
principles plus a statement of inertial conditions yield a development process
over space and time, as depicted by Figures 1 to 4, wherein the development
process at any one space-time point is interconnected with the development
process at all other points.

Finally, we must admit that we have not moved as far ahead as we would
have liked in developing an integrated set of definitions of Social Energy,
Social Mass, Social Momentum and Social Acceleration for reasons already stated.
This integration is to be attempted once again in subsequent manuscript.

Against the background of this paper, a number of further advances and
refinements are suggested. Labor and populatioq shouid be introduced, as well
as pollution and differential fertility. Additionally, a multi-commodity
framework and variation of & with space, time and volume of flow should be
considered, as well as variation of n with time. We shall consider some of
these factors in subsequent manuscript.
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W.> 0
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W.> 0

W.> 0O

Figure 1

C>0
¢>0
<0

Figure 2
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Figure 3

Y>>0
Y>O0
‘?<0

Figure 4
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APPENDIX
We wish to prove that K (x, t) > 0. Consider the Hamiltonian density:

(A1) H (x, t) =a (€ (x, £)) + (1 +n) o, (x, t) K (x, t)
Differentiating with respect to time we obtain

(A.2) a_t;}i=mcé+(]+n)t;) I.<+(l+n)wc;;

3 [

Substituting in values from (12) and using equations (1) and (21) after taking
their time derivative, we have

oM dF s e e -
(a.3)  2E =ac [T K- (1+n) K Y -ou aF K+ (1+n) K]

- X
-w. [FU+U]
Substituting the value of & w. from (22) we obtain

X

B X .
(A.5) __:Z"’ =-u U U=~ 3 (o 0)

or

AN 3 5 =
(A-S) 3t + _BX—— (mc U) =0

Since we have shown in the text that

(A.8) H

SHdx= 1 o0k, D)+ 1 () oy &, ©) K (x, )
0 0 0

a constant,

we have, using A.1,

L]

. d ad d . °
(A.7) H(t) = 57 é wdx + — é (1 +n) o, Kdx=0

Sincez:\ = we £ >0, it follows from A.7 that
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d -]
(A.8) ” 6 (1+n)w, K dx<0

Imposing the end condition
K (x, t}) =0 forall 0 g x <=
equation (A.8) implies that

(A.9) é (1 +n) w, Kdx > O when 0t < t;

Now from (28) and (29) we have for any x:

1 dF (K{x,t)) _ dF{k{o,t))
T+n (x) dK - dK

(A.10)

Differentiating with respect to time yields:

1 d%F (K(x,t))
]"H"I(X) dKZ

(a.11) ke 0 = LEEO0) o, 0
K

Since d2r/dk? < 0 for all positive values of K, it follows that K (x, t} > 0 if
and only if K (0, t) > 0. But by replacing K,(x, t) in A.9 by its value in
A.11, it must be that K (0, t) > 0 and hence K(x, t) > 0 for t < tj.

We wish to demonstrate that our initial and boundary conditions along with
equations (12) and (22) are in principle sufficient to specify K (x, t) and
U {(x, t) over our space-time region.

Recalling equation (34) and bearing in mind A.10, we have:

t dr(Kk(o,t'))
dK

(A.12)  we (x, t) = we (0, O)exp(ox - é dt')

Since w_. < 0, A.12 specifies € (x, t) within an arbitrary constant w. (0, 0).
Hence we may write

(a.13) ¢ (x, ©) = ¢ (we (0, O)exp(sx - r i"ik—ggiﬂdt'))
0
Now from A.10, we can expect that

(A.14) K (x, t) = h {x) K (0, t)
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1
when h{(x) is some specified function of 1 + n{x) and when h(0) = 1. Then
from A.10, A.12 and A.13, we may view equation A.6 as a functional relation
of the form

. t
(A.15) ¢ (K 0, v), s SEREOLED) 4oy, -
, ! " s ue (0, 0)) =0
We can easily see through the transformation

(A1) X () = s dEKO.ED)
T

that (A.15) is a second-order differential equation with respect toX. Thus
(A.15) determines K (0, t), in principie, within two additional arbitrary
constants, Q), and Q. That is,

(A.17) K (0, t) =¥ {t; 0y, Q,, H, w. (0, 0) with a relation G(Q;, Qy, H, 0,0))<
since 2 (0) = 0. 1. %2 c 1- © wc (0,0)) =t

Now from equation (21) we have

(A.18) B+cu=F@® - (+n) K-¢

1t follows from (A.13), (A.14) and (A.17) that the right-hand side of (A.18)
is a known function of x and t, and the four arbitrary constants Qp, Qp, H
and w. (0, 0). Then the soiution to (A.18) is

x .

(A.19) U (x, t) = exp(-ex)[U(0,t) + 5 [F(X) - (14n)} K - Clexp(s x')dx']
0

Since U (0, t) is specified in the text to be zero (A.19) yields

(A.20) U x, t) =g &, t; Q Q, H, w; (0, 0))

Thus the solutions (A.17) and (A.20) are specified within four arbitrary
constants. These four constants must satisfy the following:

(A.21) ¥ (0; 01, Qy, H, wg (0, 0)) =K (0, 0)

(A.22)  ¥(ty,5 Qp, Qps Hy 0 (0, 00) =K (0, £,) =0

11 L 1
For example if we take F(K) = bK ™, then hix) = 1

(i+n(x)).l_°<
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(A.23) 6 (Q;, 0y, H, w, (0, 0)) = 0

By prescribing K (0, 0) = t; K (0, t;,) = 0; and C (0, 0) = T {(which determines
we (0, 0)) --- equations (A.21), (A.%Z) and (A.23) determine in principle
Q15 Qz, and H. The solutions (A.17) and (A.20) are then fully determined.

Finally selecting K (0, 0) and C {0, 0) positive, ensures that K (x, t)

and € (x, t) are positive definite through our entire space-time region. We
are not yet able to make a similar statement for U (x, t).
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