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THE ECONONUC THRESHOLD 

WITH A STOCHASTIC PEST POPULATION
 

AN APPLICATION TO THE EUROPEAN RED NOTE
 

ABSTRACT
 

This paper applies option value theory to determine the timing and value of 

pesticides in controlling crop damage. Entomologists and economists have both sought to 

determine '~ction" or 'economic" thresholds which would trigger the application of a 

pesticide, or an alternative pest control policy. These concepts are reviewed, and the 

differences arising in each discipline are noted. Two mathematical models are developed 

to more precisely define these concepts. The first model is deterministic, and builds on the 

work ofHeadley (1972) and Hall and Norgaard (1973). The second model is stochastic, 

and assumes that the pest population can be described by a 'tliffusion process." This 

formulation falls naturally into a class of models that have been used successfully in the 

field of finance to determine the optimal time to exercise a stock option. Within the pest 

control context, it is optimal to spray as soon as the stochastically evolving pest 

population hits a 'stopping frontier." With a fixed harvest date this frontier is a positively

sloped, convex curve in time-pest space. This implies that the closer one gets to harvest, 

the larger the pest population must be to trigger a pesticide application. 

Both models are applied to the European Red Mite, a foliar pest of apples. 

Geometric Brownian motion is used to model red mite density. In the stochastic model, 

the pesticide application is delayed until the pest population reaches a larger size. This 

stopping value increases with the volatility of the pest density process because of the 

increased likelihood that predators or other random factors might 'haturally" reduce the 

pest population, thus avoiding the cost ofpesticide application. To our knowledge, option 

value theory has not been applied to the problem of pest control. The theory, however, is 

well suited to the problem of optimal timing in a stochastic environment and is certainly 
consistent with the integrated pest management (IPM) philosophy. Optimal timing may 

reduce the overall amount of chemicals applied to crops and soils.. 



THE ECONOMIC THRESHOLD
 

WITH A STOCHASTIC PEST POPULATION
 

AN APPLICATION TO THE EUROPEAN RED MITE
 

L Introduction and Overview 

The concepts of economic thresholds (ET) and economic injury level (EIL) are 

still "the backbone ofprogressive concepts in insect control, namely, integrated control, 

insect pest management" (poston, Pedigo, and Welch (1983)). These concepts were 

introduced by entomologists to provide practical decision rules for using pesticides in a 

context of complex interactions between plants and pests. The most widely accepted 

definition of economic threshold was first given by Stem et al. (1959) as the "density at 

which control measures should be initiated to prevent an increasing pest population 

from reaching the economic injury leve1." The ET is thus an operating rule intimately 

tied to the EIL, which is "the lowest population density that will cause economic 

damage", where the later was taken to be the amount of injury which justifies the cost 

ofartificial control measures. 

Although quite useful, these definitions needed some clarification regarding the 

amount of injury that should trigger some action to control a pest population. -




2
 

Hillebrant (1960) was apparently the first economist to apply a marginal analysis to the 

pest control problem; she showed that, for a profit maximizing farmer, there is an 

optimal dose of pesticide which is such that the marginal benefit of pesticide treatment 

just equals its marginal cost. Headley (1972) formalized these results, but he redefined 

the economic threshold as the level to which a given pest should be reduced in order 

for the marginal revenue from the application of a pesticide to just equal its marginal 

cost. This new definition has unfortunately resulted in some misunderstandings 

between economics and entomologists. As explained by Mumford and Norton (1984), 

the root of this confusion lies in a difference of approach: while entomologists want to 

find the pest density level at which a given control action should be taken, economists 

are looking for the most profitable control level for a particular pest density. Headley's 

(1972) model was expanded by Hall and Norgaard (1973) who specifically examined 

optimal timing ofa pesticide application. 

These economic models, however, have remained mostly theoretical tools of 

limited practical value. On one hand, they have been criticized for being too stylized. 

Some attempts! to better describe the dynamics of pest and host interaction, while 

providing some insights in the factors affecting optimal control strategies, have shown 

that more realistic mathematical models can quickly become almost untractable. On the 

other hand, the economic threshold, as defined by economists, has not been used 

widely in practice (Moffit et al., 1984) because, it requires the simultaneous calculation -

1 See for example Shoemaker (1973). 
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of both the optimal spraying time and the optimal pesticide dosage. Farmers prefer to 

use simpler rules for applying pesticides, such as the action threshold (Edwards and 

Heath, 1964) which is defined as the critical pest density prior to taking a specific 

action, such as applying a fixed dose of pesticide. 

Another explanation for the resistance to the adoption of the economic threshold 

is that it relies on the assumption of perfect information. In practice, farmers face 

considerable uncertainty regarding potential pest damage, the efficacy of the pesticide, 

or the value of the crop. Feder (1979) investigated qualitatively the effect of 

uncertainty on the dosage of a pesticide by a risk averse farmer; he considered 

uncertainty in the rate of damage per pest, in the size of the pest population, and in the 

efficacy of the pesticide. Moffit et al. (1984) and Moffit (1986) considered uncertainty 

in the initial rate of pest infestation to derive more efficient action-thresholds-type-rules 

for risk averse farmers. Other researchers have suggested the use of Bayesian decision 

theory: while we do not know in advance which state of nature will occur, a probability 

weighted average can be calculated for each action if it is possible to evaluate the 

probability of each outcome from past experience. The action with the highest selected 

return is then selected. The earliest application of Bayesian decision theory to pest 

control decisions is due to Carlson (1969), who analyzed the peach brown rot, a fungal 

pathogen which attacks peaches. To date, the issue of uncertainty in pest population 

and pesticide efficacy does not appear to have been solved satisfactorily. 
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There are a number of other important issues in pest management, such as 

increasing pest resistance, issues of coordination between adjacent farms, inter-seasonal 

pest dynamics, or environmental side-effects of pesticides for both field workers or 

consumers of food containing pesticide residues. Entomologists have also been 

focusing on systems of pests complexes, where several types of pests compete for the 

same crop. To decrease the reliance on chemicals and to reduce crop damage, 

integrated pest management (IPM) has been promoted in an attempts to control pests 

that cause damage by a variety of chemical, biological and managerial strategies, thus 

diversifYing the pest-control portfolio. For a survey of the economic and biological 

issues attending pest control see Carlson and Wetzstein (1993). 

In this paper, we first reconsider the issue of optimal timing when a pest 

population evolves deterministically, thus revisiting some of the issues addressed in the 

earlier studies by Headley (1972) and Hall and Norgaard (1973). Our exposition is 

aided by the specification of some tractable functional forms which allow for closed

form results. The deterministic model sets the stage for a stochastic model where the 

right to spray is seen as a financial option. We apply stochastic dynamic programming 

to formulate the optimal application problem when the pest density can be modeled by 

a diffusion process. In the stochastic case, it is optimal to spray the pesticide as soon 

as the pest density hits a "stopping barrier" (or "stopping frontier"), while for the 

deterministic case the optimal spraying time is determined uniquely from the initial pest 
density and other parameters. We then apply both models to the European Red Mite, a 
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foliar pest of apples. We find that modeling explicitly the randomness of the mite 

density may lead to decreased pesticide use. To our knowledge this approach has not 

been applied to the problem of pest control, yet it is a compelling extension of the 

existing literature which is consistent with the IPM philosophy ofbetter monitoring and 

coordination to reduce pest damage, while at the same time reducing the amount of 

chemicals applied to crops and soils. 

II The Case of a Deterministic Pest Population 

11.1 Optimal Timing with a Fixed Pesticide Dose 

Let Q(t) and X(t) denote, respectively, the plant biomass of a crop and the pest 

density at instant t. The initial plant biomass Qo and pest density Xo are given. For 

simplicity, we assume that, while the pest may destroy a sizable percentage of the crop, 

it will not wipe it out. We also assume that a regulatory agency allows a single 

application of a specified dose of a pesticide which costs K per application per unit area 

and causes the instantaneous death of a fraction, M, of the pest population. This 

pesticide can be applied between t=O, which is "some time" after the start of the 

growing season, and t=T, one day before harvest. The crop is thus harvested on day 

T+1. In reality, the impact of a pesticide is not known with certainty; it may depend on 

weather conditions (such as wind or precipitation) and pest resistance. We ignore 

these issues to focus on the effect of stochastic pest growth on the economic -
threshold. 



6 

We define p as the per unit harvest price, net of harvest cost, and allow for 

discounting at the instantaneous rate O. We postulate that the objective of the farmer is 

to maximize discounted net revenue, given that a specified amount of pesticide can be 

sprayed once at any time between 0 and T. The joint dynamics of the plant biomass 

and the pest population are: 

dQ = G(t,X) 
dt 

(1) 

dX =F(X) 
dt 

In the above, G(t,X) and F(X) are, respectively, the crop growth and insect 

growth functions. They are assumed to be both continuously differentiable. Moreover, 

G(t,X) is assumed to be increasing in t and decreasing in X, while F is increasing in X. 

Note that the absence of Q as an argument of F(.) may overstate pest growth if the 

crop is the pest's only food source. 

Suppose that the differential equation for the pest density can be solved, so that 

X=4>(t~Xo), where Xo is the initial pest density. Then, the discounted net revenue from 

the crop with no pesticide application, 1tN, is given by the expression: 

(2) 1r N =pe-o(T+l)Q(T + 1) 

where Q(T+1) is the biomass at the time of harvest. For any t between 0 and T+1, we 

have: -
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t 

(3)	 Q(t) =Qo +JG{u,~(u; XO))du 
o 

Ifthe pesticide is applied at time 't, the discounted net harvest value, 7tp, is 

where X./, the pest density immediately after 't, is related to Xt -, the pest density just 

before 't, by X./=(1-M) Xt -. Let 't* be the value of 'tE[O,T] which maximizes 7tp('t). 

Then, the farmer's maximum discounted net revenue is the largest of7tN and 7tp('t*). 

As an example, consider the functional forms: 

(5a) dQ =a- bX 
dt 

(5b) dX = rX 
dt 

where a is the (linear) growth rate of the crop biomass, b is a damage coefficient 

relating the size of the pest population to crop loss, and r is the (exponential) growth 

rate of the pest population. Ifno pesticide is applied, Equation (5b) implies: 

Substituting this expression into Equation (5a) and integrating yields: 

-



8 

We can now write the expressions for 1tN and 1tp as 

In the above, Qo + a(T +1) is the final crop biomass at harvest time; 

- ~ Xo(er(f+1) - 1) is the biomass consumed by the pest if left unchecked; and 

b~O (er(f+1) _ efT) is the biomass saved by spraying the pesticide at time 't. 

Maximizing 1tp with respect to 't yields an explicit solution for 't*: 

. oKeOe-fT 
T, IfXo<---

Mbp 

. oKe°(T+l) 
0, IfXo>---(8) 'r * = 

Mbp 

1 (oKeO(T+l)]
--Ln---- otherwise 
o+r bMpXo 

However, it is not worth applying the pesticide if the value of the crop saved is 

less than the discounted cost of the pesticide. Solving for the values of't* for which 

1tp('t*)<1tN, we find that the pesticide should not be applied when 

-
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From Equation (8), it is clear, that the optimal spraying time 't* decreases as b, p, 

M, r, or Xo increase, everything else being the same: the farmer sprays earlier if pest 

damage is more severe (higher b), or if the crop is more valuable (higher p); a more 

effective pesticide (higher M), a higher rate of pest growth (higher r), or a higher initial 

pest density (higher Xo) also lead to an earlier application because this reduces the cost 

of pest damage. On the opposite, 't* increases when K, T, or 0 increase: if the cost of 

an application increases, the pesticide will be applied only for larger pest populations 

(thus less frequently); finally, an increase in T (corresponding to a longer growing 

season) or 0 reduces the present value of the crop. Equation (8) shows that Xo, and 

model parameters 0, r, b, M, p, and K uniquely determine 't*, if spraying takes place. 

We will see that this is not the case when the pest density varies stochastically. A 

numerical illustration is provided in Section IV. 

ll.2 Optimal Timing with a Variable Pesticide Dose 

So far, we have assumed that the farmer was restricted to applying a single fixed 

dose of pesticide. We now relax this constraint and allow the amount of pesticide per 

unit area, noted Y, to be chosen by the farmer. Both the mortality rate and the cost of 

application now become increasing functions of Y; they are noted M(Y) and K(Y) 

respectively. Other assumptions are unchanged. 

-
We break down the cost function, K(Y) in three components: the fixed cost to 

the farmer of applying the pesticide, denoted KF; the corresponding variable cost, 
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denoted Kv; and external costs due to the side-effects of the pesticide, which may
 

include water pollution and adverse health-effects. We note these costs I(Y), where I
 

is an increasing function ofY. Thus, we write:
 

(lOa) KOO = KF +YKv + feY)
 

A possible form for f is:
 

(lOb) fOO = ay2
 

The pesticide efficacy function, M(y), should be zero when Y is zero, and it should
 

increases asymptotically towards 1 as Y~+oo. A convenient functional form for Mis:
 

(lOb) MOO = l-e-{JY
 

To find the deterministic economic threshold, we repeat the above analysis. If 

we adopt the functional forms given by Equations (5a-b), the optimal spraying time 't*, 

which now has to be determined jointly with Y*, verifies Equation (8). In addition, y* 

must verify the first order condition with respect to Y, ifY*>O: 

-

't* and y* are thus obtained by solving a pair of non-linear equations which do not, in 

general, yield explicit expressions. Note that Equation (11) is only a necessary 

condition for Y*>O as there may be several local maxima for 1tp depending on the 

functional forms of M(Y) and K(Y). More specific results have to be obtained 

numerically. In practice, however, pesticide dosage cannot be selected by the farmer 
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since, by law, many pesticides can only be applied in a fixed dosage specified by the 

manufacturer. Pesticide efficacy also depends on a number of factors, such as the 

built-up resistance of targeted pest, or weather conditions: for example, rain may wash 

away the pesticide and thus reduce pest mortality. Usually, data on pesticide efficacy in 

operating conditions is not available, and the quantification of external damage is open 

to debate. This lack of information considerably reduces the usefulness of the concept 

of economic threshold. In section IV, we illustrate how it could affect pesticide usage 

based on hypothetical data. 

ill The Case of a Stochastic Pest Population 

The stochastic model assumes that the pest density, X, follows a diffusion 

process with drift rate r(t,X) and infinitesimal variance cr2(t,X), so that an increment in 

X can be written: 

(12) dX =r(t,X)dt + a(t,X)dz 

where dz is the increment of a standard Wiener process. Because the pest density 

varies randomly, future crop biomass and thus net revenue are uncertain until harvest 

time. 

To find the optimal pest density that will trigger spraying at any given time 

between 0 and T, we use stochastic dynamic programming and concepts from the 

theory of investment under uncertainty. We view the crop as an investment and the 
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right to spray as an option which can be exercised to improve the expected value of this 

investment. To emphasize this point, we write the value in time zero dollars of the 

crop "asset" before pesticide application, noted JB, as the sum of the expected value of 

the crop at time t plus the value of the option to spray, noted <p(t,X): 

In the above, Et stands for the expectation at t, and dQ =G(u, X) is the rate of change
dt 

of plant biomass at time u given a pest density of X. After spraying, the value of the 

crop (also referred to as the "value function" in the finance literature) is just the 

expected revenue from harvesting the crop because we assume that the pesticide can 

only be sprayed once. Since spraying instantly reduces the pest density by M%, the 

value function immediately after the optimal spraying time, at t, is: 

where X~- is the size of the pest density just before spraying. 

Since the crop asset pays no dividend, JA and both components of JB must satisfy 

the H-J-B equation: 

a 2 (t, X)
(14) 0 J=J 1 +r(t,X)J x + 2 Jxx 

-
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From standard results in optimal stopping theory (Malliaris and Brock, 1982), the 

points in (t,X) space where spraying is optimal form a curve, often called the stopping 

frontier, which separates the "continuation region", where the pest is uncontrolled, 

from the "stopping region," where spraying should take place. The stopping frontier is 

characterized by the "value-matching" and "smooth-pasting" conditions, which require 

continuity of the value function and its first derivative on the stopping frontier. These 

conditions are: 

(15a) JB (r,X(r)) =JA(r,X(r)) - K 

(15b) J~(r,X(r)) =J~(r,X(r)) 

To solve this boundary and initial value problem, we need, in addition to 

Equations (14), (15a) and (15b), two more conditions on the boundaries of the domain 

of variation of t and X. First, we assume that the option to spray expires at time T, 

irrespective of the size of the pest population at that time. At that time, the farmer can 

spray if the value of the crop that would thus be saved is less than the cost of spraying. 

This gives us a terminal condition. Moreover, we assume for simplicity that, if anytime 

between 0 and T+1 the pest population becomes extinct, it remains extinct. This 

implies that the value of the option to spray vanishes when the pest population falls to 

zero, which leads to the boundary condition: 

(16) 'ift E[O, T], <p(t,O) = 0 

-
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To prepare for the numerical application to the European Red Mite, consider 

again the case where dQ = a - bX. We now assume that X follows a geometric 
dt 

Brownian motion with infinitesimal drift r and variance 0', so that: 

(17) dX =rXdt + a Xdz 

This process satisfies our assumption if the pest population vanishes between 0 and T, 

it remains extinct for the season. For this choice of diffusion process for X, Equation 

(14) becomes: 

The value functions in the continuation and in the stopping regions are respectively: 

(19a) J B (t, X) =tp(t, X) + pe-o(f+1-1) ( Q(t) + aCT + 1- t) _b~ (er(f+ I-t) -1)) 

(19b) JA (t, X) = pe-O(f+1-1) ( Q(t) + aCT + 1- t) _b(1-~X (e r(f+1-t) -1)) 

so that the continuity and smooth-pasting conditions become 

(20a) tp( r, X(r» =pe-O(f+I-T) bMX(r) (er(f+ I-T) -1) - K 
r 

(20b) 8tp(r,X(r» =pe-O(f+I-T) bM (er(f+I-T) -1) 
8X r 

The terminal condition says that, at T, the farmer will spray if: 

-obMX(21) pe __(e r -1) ~ K 
r 

so that the terminal condition is: 
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(22a) VX E[O,+OO), <p(T,X) = pe-£5 bM (e r -1)Max(X- X;,O) 
r 

where 

£5 
(22b) X; = Kr _e_ 

pbM e r -1 

Equation (18) together with Equations (16), (20a-b) and (22a-b) uniquely define 

the optimal stopping frontier (t,X*(t». Intuitively, we expect X*(t) to increase with t, 

since as t increases, given a pest density value, we have to pay the same amount, K, for 

a shorter time interval during which the pest might cause crop damage. Before applying 

this model to the European Red Mite, we outline the procedure to follow if the farmer 

is free to select the dosage of pesticide. 

llL2 Optimal Timing with a Variable Pesticide Dose 

If the pesticide dosage can be chosen by the farmer, the formulation described by 

Equations (15-17c) still holds but the optimal spraying time is now a function of Y. 

For any given Y, we can go through the steps outlined above and calculate 't*(Y). The 

optimal Y can then be calculated by maximizing 1tp('t*(Y),Y) with respect to Y. The 

stopping frontiers calculated this way are the stochastic counterpart of the "economic 

threshold" identified by Headley (1972) and Hall and Norgaard (1973). 

-
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IV. Application to the European Red Mite 

IV.I Assumptions and Model Data 

The functional forms selected, especially the assumption that the pest density 

follows a geometric Brownian motion, are appropriate to model pests which have 

multiple generations per year and thus pose a risk ofoutbreak, such as mites, aphids, or 

trips. We chose to apply our model to the European red mite (ERM) (panonychus 

ulme (Koch», which has become a problematic foliar pest of apples. Indeed, the ERM 

has developed a resistance to many pesticides (Croft et at. 1987) and pesticides applied 

to control other pests destroy natural enemies of the ERM, often leading to outbreaks 

which can damage apple crops. 

Typically, in New York State, ERM eggs hatch during April and May. 

Preventive treatment, in the form of oil, can be applied during that period. The first 

adults appear in early June; they grow and reproduce until harvest time, in early 

September. In the absence of predators, ERM grows exponentially; Nyrop et al. 

(1994) report that the ERM growth rate per day varies between 0.025 and 0.065 for 

slowly growing populations, and between 0.065 and 0.125 for fast growing 

populations. From June to August, pesticides can be applied as a rescue treatment to 

limit mite damage. An often used pesticide is Kethane, at a total cost (material and 

labor) of approximately $30 per acre per application; we assume a mortality rate of 

90% for the recommended dosage, although the efficacy of a pesticide can be affected 

by atmospheric conditions. We thus pick T=90 days, K=$30/acre, and M=0.9. 
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The primary effect of mite infestation is to reduce yield through fruit size but it 

can also affect fruit appearance thus reducing the value of fresh fruits. Some studies 

(see Francesconi et al, 1996) have shown that mites damage apples by reducing leaf net 

CO2 exchange rate. In general, quantifying the damage foliar pests inflict on perennial 

crops is difficult because of a high variation among plants. Also, fruit growth reduction 

due to mites is more severe and noticeable earlier on normally cropped trees than on 

lightly cropped trees (Francesconi et al. 1996). To simplify our analysis, we ignore 

appearance damage and we focus only on crop weight loss. Although it explains less 

than half of the variation in fresh fruit weight, we adopt the relationship between fresh 

fruit weight and cumulative mite days (CMD) developed in Francesconi et al. (1996): 

(23a) W(g) = 190 - 0.016 CMD 

Since treatment is commonly expressed in $ per acre, we normalize this damage 

relationship to a standard crop per acre. Averaging good and bad years leads to an 

average crop of 18,000 Ib./acre, which leads to: 

(23b) Q(lb) = 18,000 - 1.5 CMD 

From this relationship, we deduce that a reasonable value for the damage coefficient b, 

ifour assumptions hold, is 1.5 lb. per (acre cumulative mite day). 

Another important model parameter is the price of a pound of apple. We look 

only at fresh fruit which is much more valuable to the farmer than fruit destined to be 
processed. The price structure of fresh fruit price is actually quite complex, because it 
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depends on fruit size and appearance, not to mention apple variety. Half the farms in 

New York State, however, sell their crop to wholesalers who deal with packaging and 

distribution. In recent years, a bushel of apples has brought approximately $6 to the 

farmer, net of harvesting. Ifwe further assume that a bushel weights approximately 42 

lb., we end up with a net farm price of $0.15 per lb. of apples. 

Two more parameters are needed: the discount rate 0, and the infinitesimal 

variance of the process ofX, ri, when the pest density varies stochastically. For 0, we 

consider values between 0.0001 per day (3.72% per year) and 0.0002 per day (7.57% 

per year). Since adequate time series data on mite density are not available, we use 

arbitrary but plausible values for ri, ranging between 0.0025, and 0.04 per day. Table 

4.1 summarizes the parameter values considered. 

Table 4.1: Summary of Model Parameters 

Parameter Unit Values Considered Parameter Meaning 

p $Ilb. 0.10, 0.15, 0.20 Pricellb. of apples 

b lb.l(acre*mite*day) 1.0, 1.5, 2.0 Mite damage coefficient 

M 0.8, 0.9, 0.99 Pesticide efficacy 

K $/acre 30 Cost of pesticide appl. 

/day 104 ,1.5*104 ,2*104 Discount rate 

r /day 0.04,0.065,0.09 Mite growth rate 

T days 90 Period ofmite damage -

a V~day 0.05,0.1,0.2 Mite density std. dev. 
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IV.2 Results 

IV.2.1 Deterministic Case 

Figure 4.1 shows the optimal "stopping point," i.e. the point in (t,X) space where 

it is optimal to spray for an initial pest density of 5.83E-03 and a density growth rate of 

r=0.09. Other parameter values are at their medium value. For these parameters, the 

spraying time is 't*=15 days and the critical pest density is X*=2.25E-2 mite per leaf, or 

a mite for every 40 leaves, which is very low. 

Figure 4.1: Deterministic Action Threshold 
r=0.09, 0=0.00015, Xo=5.83E-03 

3.0E-02 

X*=2.25E-2 
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To explore the sensitivity of the model to the value of the parameters, Table 4.2 
shows the optimal spraying time 't* and the critical mite density x* at which spraying 
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Table 4.2: Optimal Spraying Time and Mite Density 

0 r p b t* X* 
/day /day $/lb. lb.l(acre*mite*day) days (mite*daylleaf) 

1.5E-04	 0.090 0.15 1.5 12.1 2.23E-02
 

1.5E-04 0.040 0.15 1.5 N.S. 2 N.S.
 

1.5E-04 0.065 0.15 1.5 N.S. N.S.
 

1.0E-04 0.090 0.15 1.5 7.6 1.49E-02
 

1.5E-04 0.090 0.15 1.5 12.1 2.23E-02
 

1.5E-04 0.090 0.10 1.5 16.6 3.34E-02
 

1.5E-04 0.090 0.20 1.5 8.9 1.67E-02
 

1.5E-04 0.090 0.15 1.0 16.6 3.34E-02
 

1.5E-04 0.090 0.15 2.0 8.9 1.67E-02
 

Table 4.3: Determination of the Economic Threshold 

YNo3	 M K 't* X* Net Savings 
% $/acre day mite daylleaf $/acre 

0.50	 0.6838 $17.50 9.3 1.73E-02 $28.09
 

0.60	 0.7488 $20.00 9.7 1.80E-02 $29.93
 

0.70	 0.8005 $22.50 10.3 1.90E-02 $30.87
 

0.80	 0.8415 $25.00 10.9 2.00E-02 $31.11
 

0.90	 0.8741 $27.50 11.6 2. 12E-02 $30.79
 

1.00	 0.9000 $30.00 12.2 2.25E-02 $30.02
 

1.10	 0.9206 $32.50 12.8 2.38E-02 $28.89
 

2 N.S. stands for "no spraying".
 
3 Yo is the dose of pesticide corresponding to M=0.9 and K=$30/acre.
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should take place for combinations of the model parameters, for an initial mite density 

of 7.5E-3, M=0.9, and K=$30/acre. At low or medium values of r, spraying never 

takes place (indicated by ''N.S.'' in Table 4.2). For the cases presented, when there is 

spraying, it takes place in the first twenty days after the appearance of the mite, at very 

low mite densities. 

Table 4.3 presents results used to determine the economic threshold for the 

following model parameters: r=0.09 per day, T=90 days, 0=1.5E-4 per day, b=1.5 

lb.l(acre*mite*day), p=$0.15 per lb., KF$5, Kv=$25/pesticide dosage unit, P=2.30, 

and Xo=7.5E-3 mite per leaf Environmental damages were ignored in the calculations 

shown in Table 4.3 because of the difficulty to quantify them; results are thus biased 

toward higher pesticide usage. As expected, in addition to leading to a decrease 

pesticide use (80% of the original dose), consideration of the economic threshold 

results in an increased benefit for the farmer. However, the extra benefit per acre is 

quite small in comparison to the net value of the crop. Using the economic threshold 

over the action threshold has thus the potential of decreasing pesticide usage, but it 

requires information on pesticide efficacy and external costs which are seldom, if ever, 

available. 

IV.2.2 Stochastic Case 

-
We now assume that the pest density can be modeled by a geometric Brownian 

motion. The problem facing the farmer is fully described by Equation (18) together 
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with Equations (16), (20a-b) and (22a-b). We solve these equations numerically using 

finite difference techniques4
• Figure 4.2 shows optimal stopping frontiers for different 

values of the infinitesimal standard deviation cr and the following model parameters: 

b=1.5 lb.l(acre*mite*day), M=O.9, K=$30 /acre, 8=1.5E-4 per day, r=O.065 per day, 

and T=90 days. In contrast to the deterministic case, there is no unique optimal 

spraying time when the pest density varies stochastically. The initial pest density Xo, 

now determines the probability of hitting various points of the stopping frontier, noted 

(t,X*(t». These stopping frontiers are the stochastic counterpart of the "action 

threshold" (Edwards and Heath, 1964) often used in practice. 

From Figure 4.2, we first notice that the stochastic stopping frontiers are almost 

linear in (t, log(X» space, except in the neighborhood ofT where they curve up: thus, 

near harvest time, spraying takes place only ifthere is a mite outbreak. Figure 4.2 also 

shows that an increasing volatility in X, everything else being the same, leads to 

spraying at higher pest densities: although pest density is expected to rise exponentially, 

the more it fluctuates randomly, the larger the probability that it may go down to zero. 

This effect is not linked to the risk preference of the farmer, who is assumed to be risk 

4 An explicit finite difference scheme, tailored to this problem, was developed to 
compute the stopping frontiers for the various parameter combinations. Results were 
checked by a Crank-Nicholson scheme coupled with an SOR solver. Highlights ofthe 
numerical procedures are presented in the appendix. 
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Figure 4.2: Stopping Frontiers V5. 0
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neutral in our formulation. Thus, taking into account large random fluctuations in pest 

density should lead to a reduction in pesticide application. 

Figures 4.3 to 4.6 explore the impact of changes in parameter values on the 

stopping frontiers. Figure 4.3 shows the stopping frontier for three values of the pest 

density growth rate. As expected, spraying takes place at higher density values for low 

growth rates (r=0.04) than at high growth rates (r=0.09): the farmer waits for higher 

pest density at low growth rates because the expected value of pest damage is lower. 

Figure 4.4 shows the impact of M on the stopping frontier. For the range of values 

selected, the stopping frontier does not change drastically when M goes from 0.8 to 

0.99, and for practical purposes it is almost unchanged. 
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Figure 4.3: Stopping Frontiers vs. r 
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Figure 4.5: Stopping Frontiers vs. b 
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We also need to investigate the sensitivity of the stopping frontier to changes in 

the damage coefficient, b, and the farm price of a pound of apples. Figures 4.5 and 4.6 

show that they have the same effect on the stopping frontier: if p or b are higher, the 

value of pest damage increases which leads the farmer to spray at lower pest densities. 

Finally, we could wonder about the impact of the discount rate, 8, on the location of 

the stopping frontier. Solving the problem for 8 ranging between 10-4 and 2*10-4, we 

find that the discount rate has a very small effect on the stopping boundary, which can 

be explained by the relative shortness of the growing season (90 days) and the small 

magnitude of 8 compared to the pest density growth rate. This brings out another 

difference with the deterministic case where 8 is a key parameter for the timing of the 

pesticide application, if it takes place. 

Finally, we compute the stopping frontier corresponding to the economic 

threshold in the simplified case where the farmer has the choice only between three 

doses of pesticide. Model parameters for this case are: b=1.5 lb.l(acre*mite*day), 

p=$0.15 /lb., 8=1.5E-4 per day, r=0.065 per day, cr 2=0.01 /day, and T=90 days. Ifwe 

normalize pesticide dosage and say that a unit dose of pesticide has an application cost 

ofK=$30/acre and results in the elimination ofM=90% of the mites, then p~2.30. If, 

in addition, KF$5 and Kv=25, the application cost of doses of pesticide of 0.8 and 0.9 

-
are then $25.00 and $27.50 per acre respectively, and the corresponding pesticide 

efficacy is M~0.84 and M~0.87. Combining the results from each run, the stopping 
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frontier corresponding to the economic threshold is a combination of the three stopping 

frontiers, with small jumpsS corresponding to the changes in pesticide dosage. Results 

are shown on Figure 4.7. We find that, until day 16, the farmer should apply a unit 

dose of pesticide ifmite density reaches the stopping frontier for this case; from day 17 

to day 24, a dose of 0.9 should be used; and afterwards, only a dose of 0.8 should be 

used, if the mite density reaches the stopping frontier for this parameter. This exercise 

illustrates again that a better modeling of uncertainty could lead to a more efficient use 

of pesticide. However, as mentioned before, practical applications of the economic 

threshold are limited because the efficacy of the pesticide is not well known. 

Figure 4.7: Economic Threshold
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5 These jumps are barely visible here because the stopping frontiers are very close to 
one another. 
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V. Conclusions 

Chemical, biological or other policies to control pest populations may be viewed 

as options. In this case study, we revisit the concepts of action threshold and economic 

threshold. After examining the deterministic case and using simple functional forms, 

we model the density of a pest population by a diffusion process and we present a 

formulation for finding the optimal spraying time of a pesticide based on stochastic 

dynamic programming. This leads to a boundary value problem which is solved 

numerically, using well-known finite difference techniques. We apply this approach to 

the European red mite, a foliar pest of apples which has shown increasing resistance to 

pesticides. 

This approach offers a clean way of handling stochasticity in pest density growth. 

It has been known for some time (see Henry (1974), or Arrow and Fisher (1974), that 

ignoring stochasticity by replacing stochastic parameters with their mean value can lead 

to decision rules which differ greatly from the optimum. Application of our model to 

the European red mite illustrates this point. Whereas knowledge of the starting pest 

density and other model parameters leads to a prescribed spraying date in the 

deterministic model, spraying takes place only if the pest density reaches a critical level, 

specified by a stopping frontier, in the stochastic model. In addition, results show that 

an increase in the volatility of the pest density causes one to spray at higher pest 
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densities, another important finding in the context of increasing concerns about the 

environmental side-effects of pesticides. 

A sensitivity analysis shows that the stopping frontier is not very sensitive to the 

values of the discount rate or the efficacy of the pesticide. More effort should be put in 

obtaining good estimates of the damage coefficient, b, or the expected price of apples, 

p. If these parameters exhibit a substantial volatility, the model should be modified to 

model their fluctuations using diffusion and jump processes. This would, however, 

increase the complexity of the model significantly. 

The economic threshold was estimated for both the deterministic and the 

stochastic models. Results show that it could lead to significant decreases in pesticide 

use if parameters such as the damage coefficient or the efficacy of the pesticide were 

known. This is, however, very seldom the case in practice. In atldition, the concept of 

economic threshold may be difficult to apply in more realistic biological situations 

which include several competing pests. Determining the economic threshold in the 

stochastic case can also be computer intensive. 

Further research could investigate the impact of the risk preferences of the 

fanner. To include more realistic features, more than one pesticide application could 

also be considered. An alternative to the stochastic model examined above is to model -
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r, the pest rate of growth, using a diffusion model. Finally, it would also be of interest 

to set up a field experiment using the proposed stopping rule to see how it performs. 

We wish to thank: Professor Jan Nyrop, from the Cornell Experiment Station, in 

Geneva, NY, for providing the biological data and making many helpful comments. 

Professor Gerald B. White provided data on the economics ofapples and pesticides and 

suggested important simplifications. Finally, Professor Paula Davis, from the 

Entomology Department, referred us to a number of key papers on pesticides and put 

us in contact with Professor Nyrop. 
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Appendix 

In this appendix, we briefly describe the two numerical schemes used to solve 

the optimal timing problem when the pest population follows a geometric Brownian 

motion. The first scheme is based on an explicit finite difference scheme; its main 

feature is that it keeps track of the boundary. Results obtained with this scheme, 

developed specifically for this problem, were checked using a more conventional and 

proven method: a semi-implicit scheme based on the Crank-Nicholson method coupled 

with an SOR solver. Derivations for implementing the implicit scheme clearly show the 

link between the stochastic pest problem and the propagation of heat in a long, 

insulated bar. 

Explicit Algorithm 

In the text, we have shown that, in order to find the stopping frontier, we have 

to solve the following equations for <p, the value of the option to spray: 

(1) o rp = &P + rX &P + (]'2 X2 iJ2 rp2 : Arbitrage equation 
ot oX 2 oX 

(2) "it E [0, T], rp (t,O) = 0 : Lower bound 

r 

(3 a) "iX E [0,+(0), rp (T, X) = pbM e ~ 1Max(X - Xi,O): Terminal condition 
r e 

xi is the pest density above which, at time T, spraying should take place. It is: -

(3b) 



(4) lp(r,X) =pe-5(T+1-T) hMX (er(T+1-T) -1) -K: Continuity 
r 

olp(r,X) =pe-5(T+1-T) bM(er(T+1-T) -1): Smooth-pasting(5) ax	 r 

The value of the option to spray is given by Equation (1) in the continuation 

region and by Equation (4) in the stopping region. The continuity and smooth-pasting 

conditions require <p and its first derivative in X have to be continuous across the 

stopping frontier. 

Since it is easier to deal with a partial differential equation with constant 

coefficients, we start by changing variables. Let: 

(6a) Y=ln(X) 

(6b) lp(t,X) =If/(t, Y) 

Introducing (6a-b) into Equations (1 )-(5) leads to the equivalent system of equations: 

2 
u uo If/ = -Olf/ +( -

2JOlf/ 02lf/.: ArbItrage equatIon r - - +---	 .(7) at 2 oY 2 oy2 

(8) 'it E [0, TJ, If/(t,-oo) = 0: Lower bound 

f 

(9)	 'iY E [-00,+(0), If/(T, Y) = pbM e ; 1Max(eY - X;,O) : Terminal condition
 
r e
 

Y 
(10) If/(r,Y) =pe-5(T+1-T) bMe	 (e f (T+1-T) -1) -K : Continuity condition 

r 

Y 
Olf/(r,Y) =pe-5(T+1-T) bMe (er(T+1-T) -1) : Smooth-pasting condition (11) 

OY	 r 

ii 



Implementing the explicit finite differences scheme is straightforward: we 

discretize t and Y over their domain and replace derivatives of the value function with 

truncated Taylor series expressions. To obtain an explicit scheme, we use a forward 

difference for the time derivative. Following conventions from the numerical literature, 

we note 

(I2a) k=LiY 

(I2b) h=Lit. 

(I2c) 

The parameter e reflects how fine the grid is. 

To solve numerically, we need to restrict the domain ofvariation ofY. We thus 

select upper and lower bounds for Y, noted Y and Y respectively. We split [O,T] and 

[Y , Y] in Ilt and ny increments respectively, so that k=LiY=( Y - Y )/ny and 

h=Lit=T/nt. We then define: 

(13) If/ i,j =If/(ih, Y + jk) = If/(t, Y), for i E {O, nt) and j E {O, ny ). 

and replace partial derivatives of \jI in Equations (7)-(11) by the finite differences: 

-BIf/ If/ i,j+1 - If/ i,j-l 
-~_:..::....-__.:..::....-(I4b) 
BY 2k 

iii 



/} If If i,j - If i-l,j
(I4c) - ~ --=-=:.---:.:::... 

/} t h 

After simplification, we obtain a relationship that links \/I at time increment i-I 

(we are solving the problem backward) to three values of \/I at time increment i: 

(15) Ifi-l,j = P+ Ifi,j+l + PO Ifi,j + p- Ifi,j-l 

where:
 

(l6a) Po =1- h8 - 60"2
 

Following Smith (Chapter 2, 1985), we derive sufficient conditions for the 

discretization scheme to converge to the solution of the corresponding continuous 

problem. We obtain: 

0"2 0"2 
(l7a) k ~ 2 for r-->O 

20" 
r-

2 

-
Discretizing Equations (8) to (11) leads to: 
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(18) Vi E {O, nt}, '" i,O =0: Lower boundary 

. pbM e
r 

-1 Y +jk * .
(19) VJ E {O,ny}, '" n J' =----s:-Max(e- - XT,O): Ternunal boundary 

t, r eU 

Y+"k 
_ -t5(T+I-jh) bMe- J (r(f+I-jh) 1) K C . .(20) '" i,J" - pe r e - - : ontmUlty 

Y+'k 
_ +2k -t5(T+I-J'h) bMe- J (r(T+I-jh) 1) S h .(21) ",. "+1 - ",. ".1 pe e -: moot -pastmg 

~J ~J r 

The idea behind the explicit scheme is simple. As we move back in time, we 

expect the critical value of the pest density at which spraying should take place to 

diminish. We know the location of the stopping frontier at time T. If the discretization 

of the (t,Y) space is fine enough, from one time step to the next, the stopping boundary 

will either stay at the same Y level, or go down by ~Y. We just need to test which of 

two points best meets a criterion defining the stopping boundary. 

Thus, the algorithm goes as follows. First, we calculate the value function at 

time T based on Equation (19). We then iterate backward in time until t=O. At a given 

time t, the lower bound condition gives us a starting value for <po Using Equation (15), 

we calculate <p between the lower boundary and the estimated location of the stopping 

frontier, based on its location at t+~t. We then consider the point on the estimated 

stopping frontier and the one immediately below it; we check which of these two points 

is closest to the corresponding value of the option in the stopping region, based on 
Equation (20). If it is the point below the estimated stopping frontier, we upgrade the 
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location of the stopping frontier and go on to the next time step. Otherwise, we 

calculate the value of the option at the first grid point above the stopping frontier, in 

the stopping region, using the smooth pasting condition (Equation 21). We then move 

on to the next time step. 

This algorithm is simple to implement. It is very stable, provided conditions 

(17a) and (17b) are respected, and it locates the stopping frontier precisely. Also, as 

we move back in time, the computational effort diminishes since we calculate the 

option value only in the continuation region and at one grid point in the stopping 

region. However, the explicit method is time consuming because it requires very small 

time steps. The results shown in the text were obtained with k=O.Ol and h=O.0005. 

Comparisons which smaller grid sizes revealed no significant difference. 

Implicit Algorithm 

In an implicit method, the value of the unknown function is computed 

simultaneously at several grid points by solving simultaneously a system of equations. 

It allows, however, to select a larger time step, and thus to diminish the overall 

computational effort. Whereas the explicit method is specifically tailored to this 

problem, the implicit method used is standard. In the following, we show how to 

transform the stochastic pest problem so that an implicit method can be readily 
• 

implemented. -
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We start by making the change ofvariables
 

(72
 
(22) r=(T-t)

2
 

X

(23)	 z=Ln(-.) 

XT 

(24) KU(z, r)eaz+PT = q>(X, t) 

where a and ~ are chosen so that the first-order partial derivatives in Equation (1) 

cancel out. Introducing the new variables in Equations (1)-(5), we obtain: 

02u oU
(25) 

oz2 - or 

(26) U(z,O) =Max(e°.5(K+ l)z _ eO.5(K-l)z, 0) 

(27)	 U(-oo,O) =° 
r+KT 1 

) -[ O.5(K+l)ze - O.5(K-l)z+A.T] 0.25(l-K)2 T (28)	 U(z, r - e - e e 
er -1 

(29) 

where K and Aare the two dimensionless parameters: 

(30a) 

-
.. 

Moreover: 

(31a) a = 0.5(1- K) 
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(3Ib) P=-0.25(1-K)2_ 1t 

In equation (25), we recognize the standardized heat equation, which we solve 

usmg a Crank-Nicholson scheme combined with an SOR solver, as described in 

Chapter 9 ofWilmott, Howison, and Dewynne (1995). 

This implicit method is faster than the explicit method described above. 

However, "far" from the initial conditions, for "low" values of the stopping density Y*, 

the quality of the solution decreases and the program finds slight oscillations in the 

stopping boundary. This problem can be remedied by refining the mesh, but so doing 

greatly increases the computational cost. Thus, the implicit method selected is good 

for finding a quick approximation to the stopping boundary. It serves to confirm the 

results obtained with the explicit method. 

•
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