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Designing Nonpoint Source Pollution Policies with Limited Information about Both Risk 
Attitudes and Production Technology 

 

 

Abstract 

A pollution reduction program is designed where information about both techno logy and risk 

preferences is asymmetric.  Program costs and the distribution of payments depend on the 

amount of information known to the policy maker.  Empirically testable conditions for self-

selection are derived; the method is applied to reducing nitrate contamination. 

 

 



Designing Nonpoint Source Pollution Policies with Limited Information about Both Risk 
Attitudes and Production Technology 

 

Regulating nonpoint source pollution remains one of the most difficult challenges in 

agricultural environmental policy.  Some recent studies have produced policy schemes with 

theoretical appeal, but no single proposal has emerged as the clear answer to the nonpoint 

problem in practice.  This difficulty arises from a combination of two kinds of problems.  First, 

pollution is unobservable and depends on many site-specific factors that vary spatially, implying 

that the socially efficient policy is potentially different for each farm.  Second, the unavoidable 

production risk in agriculture means that the relationship between incentive policies and input 

decisions is complex.  As Leathers and Quiggin (1991) have shown, a change in the price of a 

polluting input has an ambiguous effect on its use, and in general, the policy response cannot be 

predicted without knowledge of risk preferences as well as the effect of inputs on risk.  

At the most basic level, many policy difficulties stem directly from inherent asymmetric 

information between farmers and regulators on differences in technology and risk preferences.  

At one extreme, the government could collect enough information to regulate farmers 

individually, whereby each farm’s production plan, including the use of all polluting inputs, 

would be approved and enforced by government officials.  Yet this approach is usually 

considered too intrusive to be politically feasible, and is not consistent with the voluntary nature 

of past farm policies (Chambers, 1992).  Further, it ignores the fact that information can only be 

gathered and used at some cost. 

Accordingly, there have been recent investigations into incentive-based policies that 

allow producers to self-select appropriate regulations, where the government does not know (or 

does not employ its knowledge of) each farmer’s resources.  In Wu and Babcock’s (1995, 1996) 
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policy setting, the government is aware of various types of farm technologies but cannot match 

them to individual farmers.  Farmers choose among different levels of abatement, each in 

exchange for a payment that is set to induce each farmer to choose the abatement level designed 

for his type.  Though Wu and Babcock’s proposal is conceptually promising, their model does 

not consider production risk and has not been adequately tested for empirical feasibility. 1 

This paper is the first to develop a mechanism design for a self-selecting program that 

incorporates simultaneously asymmetric information about both technology and risk preferences, 

where both production and pollution potential differ by technology.  Both production and 

pollution are stochastic, affected by uncontrollable random inputs such as weather.  The analysis 

assumes that the government knows technology and risk attitudes differ, but does not know the 

exact distribution of types across the farm population.  Following Wu and Babcock (1995; 1996) 

and Peterson and Boisvert (2001), differences in technology are modeled in the policy design by 

separating farmers into discrete groups.   

The policy design is subject to several constraints, which require that farmers would be 

willing to participate in the program, and that each type of farmer will self-select the appropriate 

policy.  If risk preferences differ and their distribution across farmers is unknown, the analyst’s 

difficulty is that the policy constraints cannot be evaluated.  The unique feature of our program 

design is to incorporate asymmetric information over risk attitudes through stochastic efficiency 

rules on the distribution of net returns.  By evaluating the participation and self-selection  

constraints in stochastic efficiency terms, we derive necessary and sufficient conditions for 

program feasibility, which can be used to identify situations where self-selecting payments 

cannot exist, as well as those where payments are guaranteed to exist.  These conditions, which 

                                                 
1 Segerson (1988) showed the policy incentives necessary for nonpoint source polluters to internalize uncertain 
levels of environmental damage. 
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apply for all risk-averse farmers, depend on the marginal risk effect of the polluting input, and 

can be implemented empirically from estimated production relationships for each technology 

type.  We further demonstrate that the stochastic efficiency approach leads to a simplified 

empirical problem that can be solved with linear programming methods. 

Though the model is applicable to any voluntary environmental program, we demonstrate 

it empirically for the case of nitrate leaching and runoff in New York.  Besides illustrating the 

proposed methods, the application to New York allows the cost of an incentive-based program to 

be compared with the cost of other farm programs.  Further, the proportion of program payments 

due to each separate dimension of asymmetric information can be isolated.  One interpretation of 

these cost differences is the value of information to the government, since they represent the 

most that could be rationally spent to collect more information on farmers.2  Alternatively, they 

are the taxpayers’ cost of allowing farmers to choose their own policies even though the 

government has enough information to assign regulations. 

Below, a discussion of the proposed theoretical framework is followed by sections that 

describe the use of stochastic efficiency criteria and the empirical application to New York. 

Theoretical Framework 

Following Leathers and Quiggin (1991), we consider a farmer who must choose an input 

that affects both output and environmental quality in a random setting.  Letting θ ∈ Θ represent 

an index on technology type, profits for a farmer with technology θ are πθ(x, bθ) ≡ pyyθ(x, bθ) –

pbbθ, where py is the price of output, yθ is the technology-specific production function, x 

                                                 
2 Rapid advances in information and GIS technologies will continue to bring down the cost of collecting data about 
differences in production practices and the quality of land and other resources at the farm level. With respect to risk 
attitudes, the most we could ever expect is to the narrow the range, with little hope of knowing how preferences are 
actually distributed across the farm population. Another advantage of our model is the capacity to estimate the 
reductions in program costs if risk preferences are known to lie within some specific range.   
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represents a random input beyond the farmer’s control, bθ is the controllable input with price pb.  

Emissions of pollution e are a function of the same inputs, so that e = gθ(x, bθ).  For common 

cases of agricultural pollution such as runoff, soil and topographic conditions define the 

technologies in Θ, x may be uncertain weather or pest outcomes, and bθ is a polluting input such 

as fertilizer.3  Let the support of x be the interval [ , ]x x , and assume that x and bθ are defined in 

such a way that πθ
x ≥ 0 and πθ

b ≥ 0 for all θ. 

Farmers are assumed to maximize the expected utility of profit.  A farmer with a von 

Neumann-Morgenstern utility function u and technology of type θ will select bθ by solving the 

problem: max Eu(πθ(x, bθ)), where E  is the expectation with respect to x.  Assume the function u 

belongs to a known set Ω of continuous real-valued functions.  Assume also that a solution to the 

farmer’s problem exists, and denote it bθ
0.  If emissions are a negative externality, this 

unregulated input level, and therefore e, exceeds the socially optimal level; suppose the 

government therefore wishes to implement bθ
* ≤ bθ

0 as a regulation on technology θ.4  

To implement a different regulation on each technology through self-selection, the 

government must in effect devise a policy “menu,” where each item on the menu is a regulation 

on b with a corresponding compensation payment.  Such a scheme can be viewed as a two-

staged game of imperfect information, where the government chooses a set of policies in the first 

stage, and farmers select from these policies in the second stage (Smith and Tomasi, 1999).5  The 

                                                 
3 Alternatively, bθ may be a discrete variable that represents some production practice such as conservation tillage. 
4 Because of the difficulties in estimating the social cost of pollution, it is generally not possible to determine a 
socially optimal regulation. In practice, this choice is usually made through the standards approach, where the 
government sets some maximum emission level based on scientific judgement, and determines a regulation on bθ so 
that the environmental standard is met (Baumol and Oates, 1988).  Where environmental outcomes are uncertain, 
Lichtenberg and Zilberman (1988) show that an efficient way of setting these regulations is through chance 
constraints, whereby the probability of exceeding some severe level of pollution is restricted. 
5 Here, there is imperfect information because the government knows the various types of farmers (i.e., the elements 
of Θ and  Ω) but cannot assign individual farmers to these types.  In general, this game involves the government and 



 5

government must solve this game by backward induction; it must determine how a farmer with 

each technology would respond to various combinations of payments and regulations, and then 

incorporate these responses in assigning a payment sθ to the environmentally “safe” level of 

input bθ
*.  The goal is to set each payment so that farmers of type θ choose the policy ),( *

θθ sb  but 

those with technology θ′ select ),( *
θ′θ′ sb . 

If the government’s objective is to minimize the cost of implementing the regulations bθ
* 

through self selection, it must solve the problem: 

∑
Θ∈θ

θθsa
s

min  

subject to:       * 0( ( , ) ) ( ( , ) ,Eu x b s Eu x b s uθ θ
θ θ θ θπ + ≥ π + ∀ θ ∈ Θ ∀ ∈Ω          (1) 

 * *( ( , ) ) ( ( , ) ) , ,Eu x b s Eu x b s uθ θ
′ ′θ θ θ θ ′π + ≥ π + ∀θ θ ∈ Θ ∀ ∈Ω  (2) 

where s is the vector containing the payments sθ, and aθ is the number of producers with 

technology θ.  The first set of constraints (equation (1)) guarantees participation in the program.  

For each θ, post-policy expected utility must exceed its pre-policy level for all permissible utility 

functions.  The second set of constraints (equation (2)) is for self-selection; a farmer with soil θ 

and utility function u must prefer the policy (bθ
*, sθ) to ),( *

θ′θ′ sb  for all θ′ ≠ θ.   

Stochastic Efficiency Representation 

In the formulation above, the participation and self-selection conditions on each 

technology must be met for every utility function in Ω.  If all farmers have identical risk 

                                                                                                                                                             
all producers, so that any farmers’ choice may depend strategically on the choices of all other farmers.  If all policy 
options are available to any farmer regardless of others’ choices, this strategic interdependence can be ignored and 
the policy becomes a large number of two-player games between the government and each producer (Xepapadeas, 
1997). In the language of the literature, this game can be interpreted either as an adverse selection model (where the 
government seeks to screen farmers based on their type), or as a principal-agent model with hidden information (the 
utility function and technology are known only to the farmer-agent).  In either case, there is no hidden action; once 
farmers choose a level of regulation/compensation, it is assumed that their actions can be monitored and enforced.   
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preferences, Ω has a single element and the problem is one of finding separate policies on the 

basis of technology alone.  If Ω contains many elements then a feasible policy could only be 

found by evaluating the constraint for each utility function, an infinite number of computations 

in the plausible case where each element of Ω is a point on the continuum of absolute risk 

aversion coefficients.  The only way to avoid such an enumeration is through general criteria that 

imply the preference of sθ over sθ′ for all relevant utility functions.   

Stochastic efficiency criteria provide exactly the simplification required.  For several 

specifications of Ω, the statement that Eu(m) ≥ Eu(m′) for all u ∈ Ω can be equivalently 

expressed by a single stochastic efficiency condition on the distributions of m and m′.  A 

particularly useful such rule is that of second-degree stochastic dominance (SSD).  A cumulative 

distribution G(m) dominates H(m′) by SSD if and only if the area under G is nowhere more than 

that of H and somewhere less than the area under H: 

 ( ) ( )
ˆ ˆm m

G m dm H m dm
−∞ −∞

′ ′≤∫ ∫  (3) 

for all m̂ , with strict inequality somewhere.  Geometrically, this condition means two things: 

first, G must start to the right of H (i.e., the first non-zero point on G must be larger than the first 

nonzero point on H), and second, the whole distribution G must lie further to the right, in the 

sense that the accumulated area underneath it must be smaller.  Hadar and Russel (1969) 

discovered that dominance by SSD is equivalent to greater expected utility for all utility 

functions that are increasing and concave; the SSD rule separates attractive alternatives from 

unattractive ones for all risk-averse decision-makers who prefer more to less.6 

                                                 
6 Formally, if G(m) dominates H(m′) by SSD, then Eu(m) ≥ Eu(m′) for all u(⋅) such that u′ > 0 and u″ < 0.  Other 
stochastic efficiency criteria exist for other specifications of the utility set Ω .  First-degree stochastic dominance 
(FSD) assumes only that utility is increasing.  Third degree stochastic dominance (TSD) applies for all utility 
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Here, define income m to be the sum of profit and government payments, and denote the 

cumulative distribution function (cdf) of income for farmers with technology θ (or “group θ”) as: 

Fθ(m; b, s) ≡ Pr{ πθ(x, b) + s ≤ m } 

This definition says there is a distribution Fθ  conditional on each combination of b and s.  Let m 

and m  represent the lowest and highest levels of m with nonzero probabilities, respectively. To 

illustrate the use of SSD in the policy scheme, consider two groups; i.e., Θ = {1, 2}.  In this 

situation, the government must choose payments s1 and s2 to implement the input standards b1
* 

and b2
*.  The constraints (1) and (2), written in terms of SSD, require that s1 and s2 satisfy:  

 F1(m; b1
*, s1)  f  F1(m; b1

0, 0),  F2(m; b2
*, s2)  f  F2(m; b2

0, 0); (4) 

 F1(m; b1
*, s1)  f  F1(m; b2

*, s2),  F2(m; b2
*, s2)  f  F2(m; b1

*, s1) (5) 

where “f” denotes dominance by SSD.  The constraints in (4) state that payments must be 

selected so that farmers in both groups prefer to participate in the program— the post policy 

distribution Fθ(m; bθ
*, sθ) must dominate the pre-policy distribution Fθ(m; bθ

0, 0) for both groups.  

The constraints in (5) are the self-selection conditions.  For farmers in group 1, the distribution 

under their “own” policy (b1
*, s1) must dominate the distribution under the other policy (b2

*, s2); 

a parallel interpretation applies to the constraint for group 2.  If all the constraints are met, any 

risk-averse farmer in group θ will choose the policy (bθ
*, sθ) over other alternatives. 

                                                                                                                                                             
functions that are increasing, concave, and have a positive third derivative (Whitmore, 1970).  Meyer (1977) has 
discovered a set of criteria, named stochastic dominance with respect to a function (SDRF), that can order 
distributions when the Arrow-Pratt coefficient of absolute risk aversion of the utility function lies in a specified 
range.  While policy rules could conceivably be developed for any of these cases, SSD is the most general rule that 
is applicable to agriculture.  Empirical evidence suggests that farmers are risk-averse, but the degree of risk aversion 
and other properties of the utility function vary across studies.  Moreover, as will be shown below, the the SSD 
ranking can be conveniently calculated from estimated production relationships. 
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s1

F1
* F1

**F1
′

F1
0

P

income

 
Figure 1.  Geometry of Policies that Satisfy SSD 

 

 A set of distributions that satisfy the policy constraints for group 1 is illustrated in Figure 

1.  The cdf labeled F1
0 represents the pre-policy distribution F1(m; b1

0, 0), where polluting inputs 

are set at b1
0 and farmers receive no payment.  If farmers are forced to reduce inputs to b1

* to 

meet environmental standards, the distribution of income shifts to the left because returns are 

smaller at every realization of the random input x; this distribution is labeled F1
* in the figure.  If 

farmers now receive a nonrandom payment s1 along with the regulation on b1, their income 

distribution shifts to the right in a parallel fashion.  To meet the participation constraint (4), the 

distribution must shift far enough so that it is preferred to F1
0 by SSD.  In the figure, the payment 

s1 shifts the income distribution to F1
**, which dominates F1

0.  The self-selection condition (5) 

imposes the additional requirement that F1
** dominate the distribution under group 2’s policy, 

F1(m; b2
*, s2).  This distribution is labeled F1′ in the figure and lies to the left of F1

**; the self-

selection condition is therefore met.  If F1′ lay to the right of F1
**, s1 would have to be enlarged. 
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Properties of the Solution 

While the SSD formulation is conceptually appropriate and convenient, the conditions are 

too complex to solve the problem explicitly.  To simplify it, we rely on the concept of simply 

related random variables (Hammond, 1971).  Two random variables are simply related if their 

cdf’s cross at most once.  Each of the SSD conditions in (4) and (5) compares some random 

variable of the form m = πθ(x, b) + s to another random variable m′ = πθ(x, b′) + s′, where 

without loss of generality m represents returns at the lower input level (i.e, b < b′).  We show in 

the appendix that the cdf’s of these random variables (Fm and Fm ′, respectively) can intersect 

only once, for any combination of (b, s) and (b′, s′).  Formally: 

Result 1:  If the marginal value product of x is positive (i.e., πθ
x > 0) and is monotonic in b (i.e., 

either πθ
xb > 0 or πθ

xb < 0 for all b), then Fm and Fm′ intersect at most once. If the two 

distributions do cross, then Fm′  intersects Fm from above (from below) if and only if πθ
xb > (<) 0. 

Intuitively, the simply related property follows from the one-to-one correspondence 

between x and m :  each realization of the random variable m is associated with a unique value of 

x, and larger m’s are associated with larger x’s because πθ
x > 0.  If b is increased and πθ

xb > 0, 

then a given change in x causes a larger change in m, so that the distribution Fm ′ is a “stretching” 

of Fm.  Such an increase in b means that Fm ′ is flatter than Fm, as well as lying further to the right, 

since πθ
b > 0 (see Figure 2).  The opposite case is where πθ

xb < 0, so that an increase in b 

“squeezes” the cdf and Fm ′ is steeper than Fm (Figure 3).  

As suggested by the titles of the figues, the stretching/squeezing of the cdf’s in the case 

of simply related random variables is linked to the definition of relative riskiness proposed by 

Rothschild and Stiglitz.  In particular, m′ is defined to be riskier than m if the following set of 

equivalent conditions is met: 
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Figure 2.  Distributions of Income Where b is Risk-Increasing 

 
 
 
 

Fm
 

Fm′
 

P 

income 

 

 A 

B 

 
Figure 3.  Distributions of Income Where b is Risk-Decreasing 
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1. If constants are added to m and m′ so that their means are equal, then distribution of m 

dominates the distribution of m′ by SSD. 

2. The random variable m′ is m plus “noise.” 

3. The distribution of m′ has more weight in its tails than that of m. 

Following Ramaswami (1992), define b to be a risk-increasing (risk-decreasing) input if m′ = 

πθ(x, b′) + s′ is riskier (less risky) than m = πθ(x, b) + s (where b < b′).  

By Result 1, the two cdf’s can cross only once, and at the intersection point one cdf must 

be steeper than the other.  The next result relates technological conditions to riskiness (proof in 

appendix): 

Result 2:  If πθ
xb > (<) 0, then b is a risk-increasing (risk-decreasing) input. 

If πθ
xb > 0 then the distribution Fm ′ is flatter than Fm, so that Fm ′ intersects Fm from above, as 

shown in Figure 2.  In this case, if constants are added to the random variables so that the means 

of the two distributions are equal, then Fm dominates Fm ′ by SSD because area A equals area B.  

If this is the case, Rothshild and Stiglitz’s proposition implies that m′ is riskier than m, which 

means that b is a risk-increasing input. 

 In general, there are only two types of SSD constraints in the problem: the distribution 

Fθ(m, bθ
*, sθ ) must dominate the pre-policy distribution Fθ(m; bθ

0, 0), as well as the distribution 

Fθ(m; bθ′, sθ′).  Both of these constraints are of the form: Fθ(m, bθ
*, sθ ) f Fθ(m; b′, s′).  There are 

two necessary conditions for any SSD condition to be satisfied (even if the distributions are not 

simply related):  neither the mean of the dominant distribution nor its lowest observation may be 

smaller than those of the other distribution (Anderson et al., 1977).  For the constraints in 

question, these requirements are: (1) E[πθ(x, bθ
*) + sθ] ≥ E[πθ(x, b′) + s′], and (2) πθ(x, bθ

*) + sθ ≥ 
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πθ(x, b′) + s′.7  The next result says that if the two variables are simply related, then one or the 

other of these conditions will also be sufficient for SSD, depending on which variable is riskier: 

Result 3:  If πθ(x, bθ*) + sθ  is riskier (less risky) than πθ(x, b′) + s′, then the necessary and 

sufficient condition for the first distribution to dominate the second by SSD is:   

*( , ) ( , )θ θ
θ θ′ ′− ≥ π − πs s x b x b   ( )*( , ) ( , )s s E x b E x bθ θ

θ θ′ ′− ≥ π − π  

Geometrically, the riskier variable has a ‘flat’ cdf.  If the first variable is riskier, then the only 

requirement for SSD is that the lowest observation be larger (m ≥ m′); its flatter shape means that 

the cdf of m will lie to the right of m′ for all realizations greater than m (Figure 4).  If m is less 

risky, then the only requirement is for the expected value of m to be larger (Em ≥ Em′), and the 

cdf of m will intersect that of m′ from below (Figure 3).  In both cases, the remaining necessary 

condition is automatically met. 

FmFm′

P

income
m = m′

 
Figure 4.  SSD Sufficient Condition where Fm Intersects Fm ′ from Above 

                                                 
7 The two necessary conditions are derived by letting m̂  in equation (3) grow arbitrarily large and small, 

respectively.  As m̂  à ∞, SSD implies that Em ≥ Em′; the mean of m must be no less than the mean of m′.  For 

“small” values of m̂ , the SSD requires that the lower tail of Fm lie to the right of Fm′.  
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 The results above allow the SSD conditions, each of which implicitly includes an infinite 

number of constraints, to be written in terms a small number of inequalities.  With this 

simplification, the policy problem in equations (1) and (2), for the case of two technologies, 

becomes: 

Min a1s1 + a2s2 (6) 

 Subject to: Eπ1(x, b1
*) + s1 ≥ Eπ1(x, b1

0);   π1(x, b1
*) + s1 ≥ π1(x, b1

0)      (P1) 

  Eπ2(x, b2
*) + s2 ≥ Eπ2(x, b2

0);   π2(x, b2
*) + s2 ≥ π2(x, b2

0)      (P2) 

  Eπ1(x, b1
*) + s1 ≥ Eπ1(x, b2

*) + s2;  π1(x, b1
*) + s1 ≥ π1(x, b2

*) + s2      (I1) 

  Eπ2(x, b2
*) + s2 ≥ Eπ2(x, b1

*) + s1;  π2(x, b2
*) + s2 ≥ π2(x, b1

*) + s1      (I2) 

In its most general form this problem has eight constraints, but the results above imply that only 

four of them are operative.  Exactly which constraints are relevant depends on whether b is risk-

increasing or risk-decreasing for each group, and whether b1
* is larger or smaller than b2

* (bθ
0 > 

bθ
* by assumption).  

Table 1 lists the four possible cases for which we must establish conditions that ensure 

the existence of self-selecting policies and associated payments.  Without loss of generality, 

assign the index θ = 1 to the more polluting group, so that b1
* < b2

*; i.e., group 1 must apply less 

input to meet some environmental standard. Too see how some constraints can be ignored, 

consider the first case where b is risk- increasing for both groups (πθ
xb > 0 for θ = 1, 2).  Here, 

only the first constraint in (P1) must hold because π1(x, b1
*) + s1 is less risky than π1(x, b1

0); the 

other constraint is then automatically met (Result 3).  Similarly, only the first condition in (P2) is 

relevant.  Self-selection for group 1 requires only the first condition in (I1), since b2
* > b1

*.  On 

the other hand, group 2’s self-selection condition is the second in (I2) because π2(x, b2
*) + s2 is 

riskier than π2(x, b1
*). 
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 Table 1.  Conditions for When Self Selecting Policies and Payments  are Assured  

Marginal Risk Effect of Regulated Input 
(Condition on Technology) 

Necessary and Sufficient Condition 
for Payments to Exist 

 

Case Group 1 Group2 
 

1 
Risk Increasing 

( 01 ≥π xb ) 
Risk Increasing 

( 02 ≥π xb ) 2 1( , ) ( , )b bx b E x bπ ≥ π  

2 
Risk Decreasing 

( 01 ≤π xb ) 
Risk Decreasing 

( 02 ≤π xb ) 2 1( , ) ( , )b bE x b x bπ ≥ π   

3 
Risk Decreasing 

( 01 ≤π xb ) 
Risk Increasing 

( 02 ≥π xb ) 2 1( , ) ( , )b bx b x bπ ≥ π  

4 
Risk Increasing 

( 01 ≥π xb ) 
Risk Decreasing 

( 02 ≤π xb ) 2 1( , ) ( , )b bE x b E x bπ ≥ π  

 

 In general, the four operative constraints define a linear programming problem with a 

feasible region in s1-s2 space.  As shown in Figure 5, (P1) constrains the choice of s1 to lie on or 

to the right of the line at 1̂s  (which equals either Eπ1(x, b1
0) – Eπ1(x, b1

*) or π1(x, b1
0) – π1(x, b1

*), 

and (P2) constrains s2 to lie on or above the line at 2ŝ .  Once b1
* and b2

* and the profit functions 

are known, (I1) and (I2) take the form s1 – s2 ≥ A and s1 – s2 ≤ B, respectively, where A and B 

involve either expectations or minimum observations.  The appendix contains a complete 

description of the policy problem in each of the four cases, along with its solutions. 

 Existence of a solution in each case requires the feasible region to be nonempty (the 

shaded area in Figure 5).  In general, this will be true as long as 1̂s  and 2ŝ  are finite and A ≤ B.  

The first of these conditions holds by assumption, while the second depends on the technologies 

of the two groups.  Table 1 reports these existence conditions for the four cases in terms of the 

derivatives of π1 and π2.  In case 1, for example, the feasible region is nonempty if Eπ1(x, b2
*) – 

Eπ1(x, b1
*) ≤ π2(x, b2

*) – π2(x, b1
*).  For this to hold for an arbitrary choice of b1

* and b2
*, the two 

profit functions must satisfy the condition Eπ1
b(x, b) ≤ π2

b(x, b).   
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Figure 5.  Geometry of the Policy Design Problem

 To interpret these existence conditions, note that all of them require some measure of 

group 2’s loss in returns (either in terms of the mean or the lower tail of the distribution) to 

exceed group 1’s loss.  That is, for self-selection to be possible, the less polluting technology is 

required to be more “productive” in a stochastic sense.  This requirement is consistent with Wu 

and Babcock’s result for the deterministic case, and an instance of the more general “single-

crossing property” encountered in the literature (Mas-Collel et al., 1995).  Given estimates of π1 

and π2 and observations of x, the condition for any case can be checked empirically by 

comparing Eπ2
b, Eπ1

b, π2(x, b), or π1(x, b).  

Setting Policy Based on Soils Information 

 In Figure 5, the cost function a1s1 + a2s2 is minimized at the intersection of the constraints 

(P2) and (I1) or point d.  As the figure makes clear, this point is always the optimal solution as 
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long as (I1) intersects (P2) to the right of (P1); i.e., if point d lies to the right of point c.  The case-

by-case solutions show that this is always true under the maintained assumptions in the model.  

Therefore, constraints (P2) and (I1) are binding while (P1) and (I2) are nonbonding.  These facts 

mean that group 2 will be just as well off with the policy as without it (P2 binds), but group 1 

will be strictly better off (P1 is nonbonding).   

 If the existence conditions for self-selecting payments are not met, then a policy at point 

d is impossible.  Depending on available information, the alternatives are a uniform policy for all 

farms, or else assigned policies that differ by group.  For the second alternative to be feasible, the 

government must have enough information to classify each farm.  Since the government would 

assign the policies in this case, (I1) and (I2) can be ignored, and the minimum cost payments are 

the policy at point c, where s1 = 1̂s  and s2 = 2ŝ ; farmers in both groups would be just as well off 

after the program as before.   

 Even if the self-selecting policies are possible, the government may still choose to assign 

policies because payments to farmers would be smaller (point c is cheaper than point d).  There 

is a trade-off between government cost, on the one hand, and the amount of autonomy farmers 

can be given in selecting policies, on the other. 

Information is valuable because program costs can be reduced if the government knows 

more about farmers’ technology.  Yet this assumes that information on risk attitudes is fixed: the 

government knows only that farmers are risk-averse.  While discovering every farmer’s risk 

attitude is unrealistic, several empirical studies have estimated risk coefficients of absolute risk 

aversion (CARA)8 from cross-sectional data, and collectively these studies represent a plausible 

set of utility functions that is smaller than the set assumed for SSD.  Information on risk attitudes 

                                                 
8 The Arrow-Pratt coefficient of absolute risk aversion is defined as r(m) = –u′(m)/u′′(m), and is positive for risk-
averse decision-makers. 
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comes in the form of a narrower range of risk attitudes, and a procedure for valuing this 

information is the topic of following section.  

Valuing Information on Risk Attitudes 

 Hammond also proved a result that allows various ranges in risk attitudes to be 

incorporated (Corollary 3-1, p. 1058):  For two simply related random variables m and m′, 

suppose that E[–exp(–rm)] ≥ E[–exp(–rm′)].  If m is more (less) prone to low outcomes than m′, 

then Eu(m) ≥ Eu(m) for all u such that –u″(m)/u′(m) ≤ (≥) r.  Geometrically, m is more prone to 

low outcomes than m′ if the cdf of m is first lies above the cdf of m′ as the horizontal axis is 

scanned from left to right.  Because this definition can only be met if the cdf of m is flatter, it is 

equivalent to m being riskier than m′ by the definition above.  The negative exponential utility 

function –e–rm assumes that the CARA is constant and equal to r.  The corollary therefore says 

that if the riskier variable is preferred for a decision maker with a CARA of r1, then it is also 

preferred for decision makers who are less risk-averse.  Conversely, if the less risky variable is 

preferred with a CARA of r0, then it is also preferred for decision makers who are more risk-

averse.   

 If farmers’ CARA r(m) are known to be bounded within the range [r0, r1], the policy 

problem can be written:   

Minimize a1s1 + a2s2 (7) 

Subject to: 
1 * 1 0

0 1 1 0 1[ ( , ) ] ( , )r x b s r x bE e E eπ π− + −   − ≥ −        
1 * 1 0

1 1 1 1 1[ ( , ) ] ( , )r x b s r x bE e E eπ π− + −   − ≥ −         (P1) 

       
2 * 2 0

0 2 2 0 2[ ( , ) ] ( , )r x b s r x bE e E eπ π− + −   − ≥ −        
2 * 2 0

1 2 2 1 2[ ( , ) ] ( , )r x b s r x bE e E eπ π− + −   − ≥ −         (P2) 

        
1 * 1 *

0 1 1 0 2 2[ ( , ) ] [ ( , ) ]r x b s r x b sE e E eπ π− + − +   − ≥ −        
1 * 1 *

1 1 1 1 2 2[ ( , ) ] [ ( , ) ]r x b s r x b sE e E eπ π− + − +   − ≥ −     (I1) 
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1 * 1 *

0 1 1 0 2 2[ ( , ) ] [ ( , ) ]r x b s r x b sE e E eπ π− + − +   − ≥ −       
2 * 2 *

1 2 2 1 1 1[ ( , ) ] [ ( , ) ]r x b s r x b sE e E eπ π− + − +   − ≥ −     (I2) 

As above, only one constraint in each pair will be operative depending on the distribution of x.  If 

the analytical form of this distribution allows the expected utility values to be written explicitly, 

the problem can be solved analytically.  Otherwise, the expectations can be estimated from a 

random sample of observed values of x.  The SSD formulation is the special case where [r0, r1] = 

[0, ∞); in the opposite extreme where all farmers have an identical and constant CARA, then r0 = 

r1, and the constraints in each pair are redundant.  Given estimates of the profit functions π1 and 

π2, payments can be calculated under various assumed limits r0 and r1 to trace out the 

relationship between better knowledge of risk attitudes and government cost.   

Empirical Application to Nitrate Loss from New York Corn Production 

The model is applied empirically to the nitrate leaching and runoff problem from corn 

production in New York.  Much of New York is predominated by multi-crop dairy farms, with 

about 30% of cropland devoted to corn production annually.  Due in part to the use of nitrogen 

fertilizer on corn acreage, nitrate concentrations in some drinking water supplies have risen 

above their natural background levels.  Differences in topography, farming practices, and soil 

conditions throughout the state imply that efficient limits on nitrogen application would differ.  

The objectives of the empirical analysis are: (1) to determine whether a self-selecting program of 

regulations on nitrogen fertilizer can be implemented, (2) if so, to estimate the cost of such a 

program, and (3) to discuss the implications for policy design if a self-selecting program cannot 

be identified. 
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In this empirical model, two specific soils (indexed by θ = 1, 2) are chosen to represent 

different technologies, from Hydrologic groups A and B, respectively. 9 Because these soils 

generate different amounts of nitrate residuals ceteris paribus, the limits on fertilizer that meet 

environmental standards also differ.  Whether these distinc t regulations can be self-selected 

depends on the distribution of yields, and therefore net returns, from corn production on the two 

soils.  Production and nitrate residuals are both random because they depend on unpredictable 

weather variables. 

To study the effects of asymmetric information about risk attitudes, three alternative 

specifications are explored: (1) the government knows only that farmers are risk averse, (2) all 

farmers are risk neutral, and (3) risk-aversion coefficients are known to lie in a specified range 

based on information from previous empirical studies.  By considering situation 2, we can 

determine the extent to which payment levels are set inappropriately if voluntary policy designs 

are based on the assumption that farmers are risk neutral, when if fact this may not be so. For 

each of these three alternatives, we assume initially that the information on soil types is also 

asymmetric, but we also present results for the symmetric case to determine the value of soils 

information.  Before presenting the policy simulations and the procedure for finding payments in 

all the cases, the estimated yield functions, the pollution functions, and nitrogen standards are 

described. 

The Yield Functions  

Data to estimate the yield functions are from field trials conducted by the Department of 

Soil, Crop, and Atmospheric Sciences at Cornell University.  These field trials include 276 

                                                 
9 Hydrologic group is a classification of soils based on their capacity to permit infiltration. Group A soils  are 
generally lighter and more vulnerable to leaching than B or C soils (Thomas and Boisvert).  As in other dairy 
producing regions, farmland in central New York is primarily made up of heavy soils situated on hillsides.  
Accordingly, the National Resources Inventory estimates a low proportion of A soils throughout the state. 
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observations of corn silage yield (y), commercial fertilizer, and manure application at several 

sites around New York over several crop years; 52 of these observations are from group 1 soils 

and 224 are from group 2.  To obtain a variable that represents total nitrogen applied (N), manure 

was credited with 3 lbs. of nitrogen per ton and combined with the nitrogen in commercial 

fertilizer.  The data were augmented with observations of rainfall in the growing season (w), 

defined as accumulated precipitation from April through September, from weather stations near 

the experimental sites.  Table 2 provides the descriptive statistics for the final data set. 

To gain efficiency, the functions were estimated in a pooled regression using a quadratic 

specification.  The model was fit by maximum likelihood, with the parameters bounded so that 

the derivatives in N and w are positive for both groups over the relevant range of the regressors.  

The estimated equation is: 

y = –15.12 + 0.699dm + 25.71ds + 0.1001N – 0.00024N 2 + 0.000057dsN 2 + 1.51w  
      (–5.01)   (1.56)        (9.38)      (6.67)     (–6.09)             (2.04)               (10.08) 
 
 –1.37dsw – 0.0007Nw,      R2 = 0.56, 
(–9.59)    (–1.40) 

where t-ratios are in parentheses, and dm and ds are dummy variables for manure application and 

soil group, respectively (ds = 1 for group 2).  The interaction terms dsN 2 and dsw allow the shape 

of the yield function in nitrogen and rainfall to differ by group.  The estimated coefficients all 

have theoretically expected signs, and the fit also appears adequate.  The estimated coefficients 

on dsN 2 and dsw are both statistically different from zero, and their signs imply that group 2 has a 

higher marginal product of nitrogen but a smaller marginal product of rainfall.  If weather is 

random, the negative coefficient on the interaction term Nw suggests that nitrogen is a risk-

decreasing input for both groups, though the parameter was not estimated with great precision (t 

= –1.40). 
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 Evaluating the functions at average rainfall and nitrogen (20.9 in., and 131 lb./acre, 

respectively), a one-pound increase in nitrogen increases yield by 0.023 tons (45 lb.) and 0.038 

tons (76 lb.) per acre for groups 1 and 2, respectively, while a one- inch increase in rainfall raises 

yield by 1.42 tons and 0.05 tons, respectively. 

The Pollution Functions and Input Standards 

Pollution is defined here as total nitrate loss (the sum of leaching and runoff) per acre of 

cropland.  The pollution function is an estimated recursive system from Boisvert et al. (1997) 

that relates nitrate leaching and runoff to nitrogen from manure and commercial fertilizer,10 five 

soil characteristics, and weather conditions.  In logarithmic form, the predicted levels of leaching 

(L) and runoff (R) are given by: 

 lnR = –4.40 – 0.569d1 – 0.490d2 + 0.628lnN + 0.652lnW1 + 0.089lnW2  

  + 0.023(lnW2)2 + 0.005(lnW3)2  

 lnL = –75.33 + 38.31d1 + 37.56d2 – 6.74lnR + 2.12(lnR)2 + 4.82lnN + 5.77lnW1  

  + 0.056(lnW2)2 + 0.363lnR lnW2 + 0.256lnW3 + 0.094(lnW3)2 + 0.039lnW4 

where d1 and d2 are dummy variables for groups 1 and 2, respectively, N is total nitrogen applied, 

W1 is total annual rainfall, and W2, W3, and W4, are rainfall within 14 days of planting, fertilizer, 

and harvest, respectively. 

 For consistency, all three policy models find payments to implement the same restrictions 

on nitrogen use.  To determine these restrictions, “environmentally safe” nitrogen levels are 

computed based on the leaching and runoff equations using chance constraints (Lichtenberg and 

Zilberman, 1988).  Chance constraints require the regulation Nθ
* to satisfy Pr{R(Nθ

m + Nθ
*, Cθ, 

                                                 
10 Througout the emprical model, the policy variable is commercial fertlizer application.  Because corn is grown 
primarily by dairy farmers who must dispose of animal waste, it is assumed that all corn acreage receives 20 tons of 
manure per acre.  Where a measure of total available nitrogen is needed, manure application is credited with 3 lbs. of 
nitrogen per ton. 
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W) + L(Nθ
m + Nθ

*, Cθ, W, R) > e*} ≤ α, where Cθ and W represent the vectors of soil 

characteristics and weather variables in the leaching and runoff equations L(⋅) and R(⋅), e* is a 

safety level on total nitrate emissions, and α is some small probability.   

 In the simulations, the safety level e* is varied over two alternative levels, 25 and 20 lb. 

per acre, and α was set at 0.1.  Distributions of nitrate losses for each soil were simulated from 

the weather observations at the Ithaca weather station over the 30-year period 1963-1992.  These 

simulation data are summarized in Table 2.  For each safety level e*, the appropriate regulation 

Nθ
* was set so that nitrate loss exceeded e* no more than 10% of the time (3 out of the 30 years).   

Table 2.  Data and Parameters         
     
Variable Mean Std. Dev. Min. Max. 
Field trial observations, various New York sites 
    Growing Season Rainfall (in./year) 20.91 3.94 14.87 27.00
    Total Nitrogen Applied (lb./acre) 130.58 73.74 0.00 285.00
    Corn Silage Yield (tons/acre) 20.93 4.51 9.10 30.00
     
Weather observations at the Ithaca weather station, 1963-92 

    Annual Rainfall (in./year)a 39.08 5.25 30.12 51.62

    Rain within 14 Days of Planting (in./year)a 0.76 0.77 0.01 2.97

    Rain within 14 Days of Fertilizer (in./year)a 1.17 1.28 0.01 6.46

    Rain within 14 Days of Harvest (in./year)a 1.64 1.85 0.00 9.53

    Growing Season Rainfall (in./year)b 20.35 3.90 14.17 27.35
     
Parameters 

    Corn Silage Price (1992 $/ton)c 19.57    

    Nitrogen Price (1992 $/lb N)c 0.35    

    Non-Nitrogen Variable Cost (1992 $/acre)d 189.52    
a Explanatory variable in the leaching and runoff equations.    
b Explanatory variable in the yield equations.     
c Mean price over the 1963-92 period.     
d Source: Schmit; USDA-ERS, Economic Indicators of the Farm Sector (1992).  
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Table 3.  Pre- and Post-Policy Fertilizer, Pollution, and Net Returns 
 Pre-Policy  Post-Policy 
  SSD Bounded Risk Neut. e* = 25 e* = 20 
Group 1       
  Nitrogen fertilizer applied (lb./a)a 92 90 83 55 44
  Nitrate loss safety level (lb./a)     25 20
  Net Returns ($/a)       
    Mean 225.57 225.70 225.95 222.35 218.92
    Standard deviation 107.25 107.34 107.73 109.21 109.79
    Minimum 55.50 55.49 55.12 49.18 44.82
       
Group 2       
  Nitrogen fertilizer applied (lb./a) 139 127 127 82 70
  Nitrate loss safety level (lb./a)     25 20
  Net Returns ($/a)       
    Mean 212.36 212.86 212.86 205.57 201.17
    Standard deviation 0.12 0.75 0.75 3.17 3.81
    Minimum 212.16 211.66 211.66 200.55 195.14
 a The post-policy N levels may seem quite low, but these do not include the N implicit in the 20 tons of  
    manure applied. 

 

The estimated standards on fertilizer are reported in Table 3 (the last two columns).  As 

expected, group 1 is more prone to nitrate losses, and for each safety level N1
* < N2

*. 

Policy Simulations 

 Policies were found in each of the three cases by numerically solving different versions 

of problems (6) and (7) above for the payments s1 and s2, based on the profit function: 

( , ) ( , )m
y Nw N p y w N N p N vθ θ

θ θ θ θπ = + − −  

where, for group θ, the uncontrollable random input is rainfall w, the policy variable is nitrogen 

fertilizer Nθ, py is the price of corn, yθ is the estimated yield equation, Nθ
m is the nitrogen 

available from manure, pN is the price of nitrogen fertilizer, and v is non-nitrogen variable cost.  

The values of parameters in the model are in Table 2.  The random variable w takes on values 

from a sample of growing season rainfall observations at the Ithaca weather station over the 

period 1963-1992.  Nθ
m is set at 60 pounds per acre for both groups (assuming an application of 
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20 tons of manure).  The prices py and pN are set at the mean of observed corn silage and nitrogen 

prices (in constant 1992 dollars), respectively, over the same 30 years.  Other costs v are based 

on enterprise budgets in USDA (1994) and Schmit (1994) (Table 2). 

 The general version of the SSD problem in equation (6) has eight constraints, four of 

which involve expectations of πθ, and four that are based on the lowest observations.  In the risk-

neutral case, all farmers would make their decisions based only on expected profits, so that the 

problem is (6) without the four constraints on lowest observations.  If risk aversion coefficients 

are bounded, then the problem (equation (7)) again has eight constraints, four involving the 

utility function 0re
θ− π− , and four involving 1re

θ− π− ; based on empirical evidence on farmers’ risk 

attitudes, r0 is set at 0.001 and r1 is set at 0.03 (Brink and McCarl, 1978; Buccola, 1982; Love 

and Buccola, 1991; Saha et al., 1994).  In all three specifications, the policies were calculated on 

a per-acre basis (a1 = a2 = 1).  All models were solved using GAMS. 

 The existence of self-selecting payments in the SSD case can be proven a priori from the 

conditions in Table 1.  Because πθ
wN < 0 for both θ, nitrogen is a risk decreasing input for both 

groups, corresponding to Case 2 in Table 1.  The appropriate condition for self-selecting 

payments to exist is that Eπ2
b(x, b) ≥ π1

b(x, b) for all b.  This condition holds for the estimated 

equations and sample of weather observations.11  Existence for the other cases must be shown by 

finding the solutions.  To isolate the value of information in all three cases, another version of 

each model was solved with only participation constraints, corresponding to the case where the 

government assigns policies by farm.   

                                                 
11 Empirically, π1

b(x, b) = 19.57[0.1001 – 0.00048b – 0.0007×14.17] – 0.34; Eπ2
b = 19.57[0.1001 – 0.00037b – 

0.0007×20.35] – 0.34.  The condition Eπ2
b ≥ π1

b(x, b) holds for all b ≥ 2.01.  
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 Another parameter required to solve each model is the pre-policy level of fertilizer.  In 

each of the three risk specifications, these were set at the highest fertilizer level consistent with 

maximizing expected utility. 12  Table 3 reports the pre- and post- policy levels of input and 

output for both groups.  As one would expect, the input restrictions reduce net returns for both 

groups.  Group 1’s returns are much more volatile because the yield on lighter soils is more 

sensitive to weather conditions.  Nonetheless, nitrogen is a risk reducing input for both groups, 

implying that input restrictions require farmers to bear more risk.   

 The optimal payments for both groups of farmers are in Table 4.  The participation 

payments represent the point of indifference between the pre- and post-policy outcomes, and are 

the amounts farmers would need to be paid to be willing to participate in the program.  These 

payments are the government’s cost of a program that assigns policies by farm, and range from 

about $4 to $10 per acre for group 1 and $7 to $17 for group 2.  Group 2’s payments are larger 

because returns fall more rapidly as nitrogen is reduced (π2
b > π1

b).  To put these payments in  

perspective, the average payment to all U.S. feed grain producers in 1992 was about $25 per 

acre. 

The self-selection payments are those needed to ensure participation as well as incentive 

compatibility if farmers choose their own policies.  These payments exceed the participation 

payments for group 1 but not for group 2, because group 1 needs an extra incentive to choose the 

appropriate policy.  This extra payment is an “information premium,” since it represents the 

amount the government could save by using soils information to assign policies by farm.  The 

information premium for group 1 ranges from $7 to $15 per acre, raising the self-selection 

payments to as high as $25 per acre. 

                                                 
12 For example, in the SSD case, the two candidates for the optimal pre -policy levels were the solutions to the 
problems max{E[ πθ(w , Nθ)]} and max{πθ(w, Nθ)}; the pre-policy level in the model was the higher of the two 



 26

Table 4.  Optimal Payments  
 Safety level = 25  Safety level = 20 
  SSD Boundeda Risk Neut.  SSD Boundeda Risk Neut. 
 -------------------------------------- $/acre ----------------------------------- 
Group 1        
  Participation paymentb 6.33 5.75 3.60 10.69 9.94 7.03
  Self-selection paymentc 17.50 12.89 10.89 25.50 19.96 17.96
  Information premiumd 11.17 7.14 7.29 14.81 10.02 10.93
        
Group 2        
  Participation paymentb 11.62 7.43 7.29 17.03 11.89 11.69
  Self-selection paymentc 11.62 7.43 7.29 17.03 11.89 11.69
  Information premiumd 0.00 0.00 0.00  0.00 0.00 0.00
a Arrow-Pratt coefficients of absolute risk aversion bounded in the range [0.001, 0.03] 
b Payment required to for farmers to be willing to participate in the program 
c Payment required for farmers to participate as well as self-select their own policy 
d The difference between self-selection and participation payments, or the amount payments can be reduced if soils  
   information is collected to assign policies by farm 

 

As one would expect, the participation and self-selection payments, as well as the 

information premium, are larger for the more stringent environmental standard (a safety level of 

20 lb. per acre).  On average, payments for the 20 lb. standard are 62% larger than for the 25 lb. 

standard, representing the tradeoff between taxpayer cost and higher environmental quality.   

Within each safety level, payments are highest for the SSD case (where the government 

knows only that farmers are risk averse). There are two important implications of this result. 

First, if farmers are in fact risk averse, but payment were set under the assumption of risk 

neutrality, payment levels would be from 30 to 40 percent too low.  

Second, by comparing the results for SSD and “bounded” case, we see that payments 

would decrease if  more information were available to narrow the range in farmers’ possible risk 

attitudes.  This implies that information on risk attitudes is also valuable to the government.  

Interestingly, however, the lack of information does not make the policy prohibitively costly.  

For example, the highest payment of $25.50 (which is roughly equal to past commodity 

                                                                                                                                                             
solutions.  The risk-neutral case has the single candidate level that maximizes expected profit.  
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payments) is the self-selection payment for group 1 under SSD, with a nitrate loss standard of 20 

lb.  If the government invests in research to learn more about farmers risk attitudes, it may be be 

able to confirm that risk coefficients lie in a specified range, so that the payment can be reduced 

to $19.96 per acre.  If instead the government invested in soils research to be able to classify 

farmers, the payment could be reduced to $10.69 per acre.  Soils information appears to have a 

higher return to the government than risk information, which is significant because risk 

information is much more difficult to acquire. 

Policy Implications  

This paper  demonstrates both the theoretical and empirical possibility of successfully 

designing a voluntary environmental program when the government’s information is limited.  In 

particular, where both risk attitudes and technology are unknown, we identify the cases where 

payments can be associated with different environmental policies  so that each farmer self-selects 

the appropriate one. 

 By accommodating unknown risk attitudes through the use of stochastic efficiency 

criteria, empirically testable conditions were derived to isolate the situations where self-selecting 

policies can exist.  These conditions simplify to comparisons of either the lower tail or the mean 

of net return distributions, and differ depending on the marginal risk effect of the polluting input 

across technologies.  In all cases, policies can be self-selected only if the least polluting 

technology is the most productive.  

The conditions themselves lead to a linear-programming based procedure for finding 

actual payments, as well as an alternative method to be applied when the conditions cannot be 

verified.  These methods were applied to nitrate contamination in New York, and the empirical 

results suggest that a self-selecting set of regulations could be successfully designed.  Moreover, 
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substantial improvements in environmental quality are possible at modest cost; the estimated 

payments are generally less than $20 per acre, which is less than typical farm program payments 

in the past. 

To make the regulations on fertilizer self-selecting, the group of farmers that is least 

prone to pollute needs to be compensated only for the ir loss in net returns, while the more 

polluting group receives an additional bonus.  This extra payment is an “information premium” 

that could likely be avoided in New York, where the use-value assessment program already 

requires local officials to record each farm’s acreage in each of ten soil productivity groups 

(Thomas and Boisvert, 1995). This is clearly a case where information necessary to administer 

one agricultural policy can effectively reduce the cost of another. 

The results of the New York application further suggest that information on risk attitudes 

is also valuable to the government.  Payments can be reduced if the government has better 

knowledge of producers’ risk preferences.  However, the benefit of obtaining this information 

does not appear to be large relative to the gain from soils information, and importantly, the lack 

of knowledge on risk attitudes does not render the program infeasible. 
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Appendix  

Proof of Result 1 

 We will verify the claim by proving that if πθ
xb > (<) 0 and Fm ′ intersects Fm, then Fm ′ 

must be flatter (steeper) than Fm at the intersection point, and the distributions cannot cross a 

second time.  Formally, these distributions are : 

 Fm(m) ≡ Pr{πθ(x, b) + s ≤ m}   and  Fm ′ (m′) ≡ Pr{πθ(x, b′) + s′ ≤ m′ } 

Let Fx be the c.d.f. of x (i.e., Fx(a) ≡ Pr{x ≤ a}), and define X(m; b, s) as the inverse function of 

πθ + s, such that X(πθ(x, b) + s; b, s) = x.  Applying X(⋅) to both sides of the inequalities inside the 

definitions of Fm and Fm ′ : 

Fm(m) = Pr{ x ≤ X(m; b, s)} = Fx(X(m; b, s)) 

Fm ′ (m′) = Pr{ x ≤ X(m′; b′, s′)}= Fx(X(m′; b′, s′)) 

Let m* represent the first (smallest) level of m where the distributions intersect: Fm(m*) = 

Fm ′(m*).  By the relationships above, we also know that: 

 Fx(X(m*; b, s)) = Fx(X(m*; b′, s′))  ⇒  X(m*; b, s) = X(m*; b′, s′) 

If Fm ′ crosses Fm from above at this point, then ∂Fm ′(m*)/∂m < ∂Fm(m*)/∂m.  In terms of Fx, this 

requirement can be written: 

( *) ( *)∂ ∂∂ ∂<
′∂ ∂ ∂ ∂

x xF X F XX X
X m X m

 

where X* = X(m*; b, s) = X(m*; b′, s′).  By the inverse function theorem, ∂X/∂m′ = 1/πθ
x(x, b′) 

and ∂X/∂m = 1/πθ
x(x, b).  Therefore, the condition becomes: 

πθ
x(x, b) < πθ

x(x, b′) 

Since b < b′ by assumption, this condition can only be satisfied if πθ
xb > 0.  If the distributions 

cross a second time at some m** > m*, Fm ′ must intersect Fm from below so that ∂Fm ′(m**)/∂m > 
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∂Fm(m**)/∂m.  By the same argument as above, this condition implies that πθ
xb < 0, which 

contradicts the assumption that πθ
x is monotonic in b.  Therefore, the distributions can cross at 

most once.  The same set of arguments verifies that Fm ′ can only intersect Fm once from below 

when πθ
xb < 0.   

Proof of Result 2: 

 Suppose that πθ
xb > 0.  Result 1 implies that in this case Fm ′ is flatter than Fm, so that Fm ′ 

crosses Fm from above (Figure 2).  By the Rothschild-Stiglitz proposition, to show that m′ is 

riskier than m, it is sufficient to show that Fm dominates Fm ′ by SSD if a constant is added to m 

so that Em = Em′.  The adjusted distribution of Fm is represented by the dashed cdf in Figure 2.  

Since the means of m and m′ are equal after this adjustment, [ ] 0
m

m m

m

m dF dF ′− =∫ .  Integrating by 

parts, this expression becomes: 

 [ ( ) ( )] [ ( ) ( )] 0.
mm

m m m mm m
m F m F m F m F m dm′ ′− − − =∫    

Since Fm(m) = Fm′ (m) = 0 and ( ) ( ) 1m mF m F m′= = , the first term in brackets equals zero.  

Therefore, the net area between the two distributions equals zero—area A equals area B in Figure 

2—and Fm dominates Fm ′ by SSD, since the area 
ˆ

[ ]
m

m m

m

F F dm′−∫  starts negative and only reaches 

zero as m̂ m→ .   

 If πθ
xb < 0, then Fm ′ intersects Fm from below, as in Figure 3.  Following the same 

argument as above, m′ is less risky than m if an only if Fm ′ dominates Fm after the distributions 

have been adjusted so that Em = Em′.  After this adjustment, area A equals area B, which implies 

that the SSD condition is met. 
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Solutions to the Policy Design Problem 

Case 1: π1
xb ≥ 0, π2

xb ≥ 0 (b is a risk-increasing input for both groups) 

The problem is: 

 

1 1 2 2

1 * 1 0
1 1 1

2 * 2 0
2 2 2

1 * 1 *
1 1 2 2

2 * 2 *
2 2 1 1

min

s.t. ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

+

π + ≥ π

π + ≥ π

π + ≥ π +

π + ≥ π +

a s a s

E x b s E x b

E x b s E x b

E x b s E x b s

x b s x b s

 

The four constraints can be rewritten as: 

 

1 0 1 *
1 1 1 1

2 0 2 *
2 2 2 2

1 * 1 *
1 2 2 1

2 * 2 *
1 2 2 1

ˆ( , ) ( , )

ˆ( , ) ( , )

( , ) ( , )

( , ) ( , )

≥ π − π ≡

≥ π − π ≡

− ≥ π − π ≡

− ≤ π − π ≡

s E x b E x b s

s E x b E x b s

s s E x b E x b A

s s x b x b B

 

The last two constraints require that the quantity s1 – s2 lie in the range [A, B], implying the 

existence condition for a solution is that B ≥A: 

 2 * 2 * 1 * 1 *
2 1 2 1( , ) ( , ) ( , ) ( , )π − π ≥ π − πx b x b E x b E x b  

For this condition to hold for arbitrary choices of b1
* and b2

*, the profit functions must satisfy: 

 2 1( , ) ( , )π ≥ πb bx b E x b  (8) 

Since π1
xb ≥ 0 and π2

xb ≥ 0, ( , ) ( , )θ θπ ≥ πb bx b x b  for all x ≥ x (θ = 1,2), which implies in turn that: 

 ( , ) ( , ), 1,2θ θ θπ ≡ π ≥ π θ =∫
x

b b x b

x

E x b dF x b  (9) 

Combining (8) and (9): 

 2 2 1 1( , ) ( , ) ( , ) ( , )π ≥ π ≥ π ≥ πb b b bE x b x b E x b x b  (10) 

The pre-policy fertilizer levels bθ
0 must be bounded between the solutions to two 

maximization problems: 
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 max ( , ) and max ( , )
θ θ

θ θ
θπ π

b b
E x b x b  

The first-order conditions to these problems are: 

 ( , ) 0 and ( , ) 0θ θ
θ θπ = π =b bE x b x b  

Condition (10) above implies that b2
0 ≥ b1

0.   

 The minimum-cost solution will occur at point d in Figure 5 as long as d does not lie to 

the left of c.  Point d is at the boundaries of (I1) and (P2), which are the equations s1 – s2 = A and 

2 2
ˆ=s s , respectively.  By substitution, the value of s1 at point d is 1 2

ˆ= +%s A s .  Point c is at the 

intersection of (P1) and (P2), where the value of s1 is 1̂s .  Point d does not lie to the left of c as 

long as 2 1
ˆ ˆA s s+ ≥ , or, rearranging: 

 1 2ˆ ˆs A s− ≤  (11) 

Substituting the values of 1̂s  and A into the left side of (11): 

 

1 0 1 * 1 * 1 *
1 1 1 2 1

1 0 1 *
1 2

1 0 1 *
2 2

2 0 2 *
2 2 2

ˆ ( , ) ( , ) [ ( , ) ( , )]

( , ) ( , )

( , ) ( , )

ˆ( , ) ( , )

s A E x b E x b E x b E x b

E x b E x b

E x b E x b

E x b E x b s

− = π − π − π − π

= π − π

≤ π − π

≤ π − π ≡

 

where the inequalities follow from the facts that b2
0 ≥ b1

0 and Eπ2
b ≥ Eπ1

b, respectively.  

 Therefore, if the existence condition is met, the unique solution to the problem is at point 

d, where 1 2
ˆ= +s A s  and 2 2

ˆ=s s . 

Case 2: π1
xb ≤ 0, π2

xb ≤ 0 (b is a risk-decreasing input for both groups) 

The problem is: 
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1 1 2 2

1 * 1 0
1 1 1

2 * 2 0
2 2 2

1 * 1 *
1 1 2 2

2 * 2 *
2 2 1 1

min

s.t. ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

+

π + ≥ π

π + ≥ π

π + ≥ π +

π + ≥ π +

a s a s

x b s x b

x b s x b

x b s x b s

E x b s E x b s

 

The four constraints can be rewritten as: 

 

1 0 1 *
1 1 1 1

2 0 2 *
2 2 2 2

1 * 1 *
1 2 2 1

2 * 2 *
1 2 2 1

ˆ( , ) ( , )

ˆ( , ) ( , )

( , ) ( , )

( , ) ( , )

≥ π − π ≡

≥ π − π ≡

− ≥ π − π ≡

− ≤ π − π ≡

s x b x b s

s x b x b s

s s x b x b A

s s E x b E x b B

 

The last two constraints require that the quantity s1 – s2 lie in the range [A, B], implying the 

existence condition for a solution is that B ≥ A: 

 2 * 2 * 1 * 1 *
2 1 2 1( , ) ( , ) ( , ) ( , )π − π ≥ π − πE x b E x b x b x b  

For this condition to hold for arbitrary choices of b1
* and b2

*, the profit functions must satisfy: 

 2 1( , ) ( , )π ≥ πb bE x b x b  (12) 

Since π1
xb ≤ 0 and π2

xb ≤ 0, ( , ) ( , )θ θπ ≤ πb bx b x b  for all x ≥ x (θ = 1,2), which implies in turn that: 

 ( , ) ( , ), 1,2θ θ θπ ≡ π ≤ π θ =∫
x

b b x b

x

E x b dF x b  (13) 

Combining (12) and (13): 

 2 2 1 1( , ) ( , ) ( , ) ( , )π ≥ π ≥ π ≥ πb b b bx b E x b x b E x b  (14) 

The pre-policy fertilizer levels bθ
0 must be bounded between the solutions to two 

maximization problems: 

 max ( , ) and max ( , )
θ θ

θ θ
θπ π

b b
E x b x b  

The first-order conditions to these problems are: 
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 ( , ) 0 and ( , ) 0θ θ
θ θπ = π =b bE x b x b  

Condition (14) above implies that b2
0 ≥ b1

0.   

 The minimum-cost solution will occur at point d in Figure 5 as long as d does not lie to 

the left of c.  Point d is at the boundaries of (I1) and (P2), which are the equations s1 – s2 = A and 

2 2ˆ=s s , respectively.  By substitution, the value of s1 at point d is 1 2ˆ= +%s A s .  Point c is at the 

intersection of (P1) and (P2), where the value of s1 is 1̂s .  Point d does not lie to the left of c as 

long as 2 1
ˆ ˆA s s+ ≥ , or, rearranging: 

 1 2
ˆ ˆs A s− ≤  (15) 

Substituting the values of 1̂s  and A into the left side of (15): 

 

1 0 1 * 1 * 1 *
1 1 1 2 1

1 0 1 *
1 2

1 0 1 *
2 2

2 0 2 *
2 2 2

ˆ ( , ) ( , ) [ ( , ) ( , )]

( , ) ( , )

( , ) ( , )

ˆ( , ) ( , )

s A x b x b x b x b

x b x b

x b x b

x b x b s

− = π − π − π − π

= π − π

≤ π − π

≤ π − π =

 

where the inequalities follow from the facts that b2
0 ≥ b1

0 and 2 1( , ) ( , )π ≥ πb bx b x b , respectively.  

 Therefore, if the existence condition is met, the unique solution to the problem is at point 

d, where 1 2
ˆ= +s A s  and 2 2

ˆ=s s . 

Case 3: π1
xb ≤ 0, π2

xb ≥ 0 (b is risk-decreasing for group 1 and risk-increasing for group 2) 

The problem is: 

 

1 1 2 2

1 * 1 0
1 1 1

2 * 2 0
2 2 2

1 * 1 *
1 1 2 2

2 * 2 *
2 2 1 1

min

s.t. ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

a s a s

x b s x b

E x b s E x b

x b s x b s

x b s x b s

+

π + ≥ π

π + ≥ π

π + ≥ π +

π + ≥ π +

 

The four constraints can be rewritten as: 
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1 0 1 *
1 1 1 1

2 0 2 *
2 2 2 2

1 * 1 *
1 2 2 1

2 * 2 *
1 2 2 1

ˆ( , ) ( , )

ˆ( , ) ( , )

( , ) ( , )

( , ) ( , )

s x b x b s

s E x b E x b s

s s x b x b A

s s x b x b B

≥ π − π ≡

≥ π − π ≡

− ≥ π − π ≡

− ≤ π − π ≡

 

The last two constraints require that the quantity s1 – s2 lie in the range [A, B], implying the 

existence condition for a solution is that B ≥ A: 

 2 * 2 * 1 * 1 *
2 1 2 1( , ) ( , ) ( , ) ( , )x b x b x b x bπ − π ≥ π − π  

For this condition to hold for arbitrary choices of b1
* and b2

*, the profit functions must satisfy: 

 2 1( , ) ( , )b bx b x bπ ≥ π  (16) 

Since π1
xb ≤ 0, 1 1( , ) ( , )b bx b x bπ ≤ π  for all x ≥ x, which implies in turn that: 

 1 1 1( , ) ( , )
x

b b x b

x

E x b dF x bπ ≡ π ≤ π∫  (17) 

Similarly, π2
xb ≥ 0 implies that 2 2( , ) ( , )b bx b x bπ ≥ π , so that: 

 2 2 2( , ) ( , )
x

b b x b

x

E x b dF x bπ ≡ π ≥ π∫  (18) 

Combining (16), (17), and (18): 

 2 2 1 1( , ) ( , ) ( , ) ( , )b b b bE x b x b x b E x bπ ≥ π ≥ π ≥ π  (19) 

The pre-policy fertilizer levels bθ
0 must be bounded between the solutions to two 

maximization problems: 

 max ( , ) and max ( , )
θ θ

θ θ
θπ π

b b
E x b x b  

The first-order conditions to these problems are: 

 ( , ) 0 and ( , ) 0θ θ
θ θπ = π =b bE x b x b  

Condition (19) above implies that b2
0 ≥ b1

0.   
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 The minimum-cost solution will occur at point d in Figure 5 as long as d does not lie to 

the left of c.  Point d is at the boundaries of (I1) and (P2), which are the equations s1 – s2 = A and 

2 2
ˆ=s s , respectively.  By substitution, the value of s1 at point d is 1 2

ˆ= +%s A s .  Point c is at the 

intersection of (P1) and (P2), where the value of s1 is 1̂s .  Point d does not lie to the left of c as 

long as 2 1
ˆ ˆA s s+ ≥ , or, rearranging: 

 1 2ˆ ˆs A s− ≤  (20) 

Substituting the values of 1̂s  and A into the left side of (20): 

 

1 0 1 * 1 * 1 *
1 1 1 2 1

1 0 1 *
1 2

1 0 1 *
2 2

2 0 2 *
2 2 2

ˆ ( , ) ( , ) [ ( , ) ( , )]

( , ) ( , )

( , ) ( , )

ˆ( , ) ( , )

s A x b x b x b x b

x b x b

x b x b

E x b E x b s

− = π − π − π − π

= π − π

≤ π − π

≤ π − π =

 

where the inequalities follow from the facts that b2
0 ≥ b1

0 and 2 1( , ) ( , )b bE x b x bπ ≥ π , respectively.  

 Therefore, if the existence condition is met, the unique solution to the problem is at point 

d, where 1 2
ˆ= +s A s  and 2 2

ˆ=s s . 

Case 4: π1
xb ≥ 0, π2

xb ≤ 0 (b is risk-increasing for group 1 and risk-decreasing for group 2) 

The problem is: 

 

1 1 2 2

1 * 1 0
1 1 1

2 * 2 0
2 2 2

1 * 1 *
1 1 2 2

2 * 2 *
2 2 1 1

min

s.t. ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

a s a s

E x b s E x b

x b s x b

E x b s E x b s

E x b s E x b s

+

π + ≥ π

π + ≥ π

π + ≥ π +

π + ≥ π +

 

The four constraints can be rewritten as: 
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1 0 1 *
1 1 1 1

2 0 2 *
2 2 2 2

1 * 1 *
1 2 2 1

2 * 2 *
1 2 2 1

ˆ( , ) ( , )

ˆ( , ) ( , )

( , ) ( , )

( , ) ( , )

s E x b E x b s

s x b x b s

s s E x b E x b A

s s E x b E x b B

≥ π − π ≡

≥ π − π ≡

− ≥ π − π ≡

− ≤ π − π ≡

 

The last two constraints require that the quantity s1 – s2 lie in the range [A, B], implying the 

existence condition for a solution is that B ≥ A: 

 2 * 2 * 1 * 1 *
2 1 2 1( , ) ( , ) ( , ) ( , )E x b E x b E x b E x bπ − π ≥ π − π  

For this condition to hold for arbitrary choices of b1
* and b2

*, the profit functions must satisfy: 

 2 1( , ) ( , )b bE x b E x bπ ≥ π  (21) 

Since π1
xb ≥ 0, 1 1( , ) ( , )b bx b x bπ ≥ π  for all x ≥ x, which implies in turn that: 

 1 1 1( , ) ( , )
x

b b x b

x

E x b dF x bπ ≡ π ≥ π∫  (22) 

Similarly, π2
xb ≤ 0 implies that 2 2( , ) ( , )b bx b x bπ ≤ π , so that: 

 2 2 2( , ) ( , )
x

b b x b

x

E x b dF x bπ ≡ π ≤ π∫  (23) 

Combining (21), (22), and (23): 

 2 2 1 1( , ) ( , ) ( , ) ( , )b b b bx b E x b E x b x bπ ≥ π ≥ π ≥ π  (24) 

The pre-policy fertilizer levels bθ
0 must be bounded between the solutions to two 

maximization problems: 

 max ( , ) and max ( , )
θ θ

θ θ
θπ π

b b
E x b x b  

The first-order conditions to these problems are: 

 ( , ) 0 and ( , ) 0θ θ
θ θπ = π =b bE x b x b  

Condition (24) above implies that b2
0 ≥ b1

0.   
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 The minimum-cost solution will occur at point d in Figure 5 as long as d does not lie to 

the left of c.  Point d is at the boundaries of (I1) and (P2), which are the equations s1 – s2 = A and 

2 2
ˆ=s s , respectively.  By substitution, the value of s1 at point d is 1 2

ˆ= +%s A s .  Point c is at the 

intersection of (P1) and (P2), where the value of s1 is 1̂s .  Point d does not lie to the left of c as 

long as 2 1
ˆ ˆA s s+ ≥ , or, rearranging: 

 1 2ˆ ˆs A s− ≤  (25) 

Substituting the values of 1̂s  and A into the left side of (25): 

 

1 0 1 * 1 * 1 *
1 1 1 2 1

1 0 1 *
1 2

1 0 1 *
2 2

2 0 2 *
2 2 2

ˆ ( , ) ( , ) [ ( , ) ( , )]

( , ) ( , )

( , ) ( , )

ˆ( , ) ( , )

s A E x b E x b E x b E x b

E x b E x b

E x b E x b

x b x b s

− = π − π − π − π

= π − π

≤ π − π

≤ π − π ≡

 

where the inequalities follow from the facts that b2
0 ≥ b1

0 and 2 1( , ) ( , )b bx b E x bπ ≥ π , respectively.  

 Therefore, if the existence condition is met, the unique solution to the problem is at point 

d, where 1 2
ˆ= +s A s  and 2 2

ˆ=s s . 
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