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Abstract. I. J. Good (1916–2009) was a prolific scientist who contributed to many
fields, mostly from a Bayesian standpoint. This column explains his idea of quasi-
Bayes (a.k.a. pseudo-Bayes) estimation or smoothing of categorical frequencies in
a contingency table, which is especially useful as a way of dealing with awkward
sampling or random zeros. It shows how the method can be implemented, almost
calculator-style, using a combination of Stata and Mata. Convenience commands
qsbayesi and qsbayes are also introduced.
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1 I. J. Good, polymathic statistician

I. J. Good (1916–2009) was a prolific scientist who contributed to many fields, includ-
ing mathematics, cryptography, computer science, philosophy of science, physics, and
statistics. Much of his work took a Bayesian viewpoint. His life started as Isidore Jacob
Gudak, the son of Polish immigrants in London, and ended as Irving John (Jack) Good,
a retired academic in Virginia. His career took him back and forth between government
work (much of it still classified) in Britain and the United States, and academic study
and positions at Cambridge, Manchester, Oxford, and Virginia Tech. Many details
have emerged, however, of his statistical contributions to codebreaking during World
War II in work with Alan M. Turing and others (e.g., Good [1979]). The interview
conducted by Banks (2008) gives much more detail and a fine sense of Good’s wit, in
every sense of that word. Obituaries include those by van der Vat (2009) and Banks
(2009). The collections in Good (1962, 1983) and Banks and Smith (2008) anthologize
some of Good’s work, but he published other books and several hundred papers and he
wrote many more, so no collection is at all comprehensive. The titles of two of these
books, Good Thinking: The Foundations of Probability and its Applications and The
Good Book: Thirty Years of Comments, Conjectures, and Conclusions by I. J. Good,
indicate a wordplay that is pervasive. Among many other things, Good was a master
at being serious without being solemn.
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2 Quasi-Bayes smoothing

In March 1972, I bought a used copy of Good’s short monograph The Estimation of
Probabilities: An Essay on Modern Bayesian Methods (1965) in a bookshop just a short
distance away from where he had studied mathematics some 30 years earlier. I appear
to have paid 20 pence, much less than a dollar or a Euro. I can echo the testimony of
Fienberg (2008) that the monograph long ago paid for itself in repeated reading. This
column focuses on just one idea in that book and how to implement it in Stata. That
idea was picked up by Fienberg, Holland, and Sutherland in various papers in the 1970s
(e.g., Fienberg and Holland [1970, 1972, 1973] and Sutherland, Holland, and Fienberg
[1975]) and was discussed systematically and clearly by Bishop, Fienberg, and Holland
(1975) under the heading of pseudo-Bayes estimation. Good (2008) himself preferred
a heading of quasi-Bayes, so that preference is honored here. See survey works on
categorical data analysis, such as Agresti (2002), for the wider context.

The main problem is very simple. You have some sample frequencies for two or
more categories and wish to estimate the underlying probabilities. The difficulties with
taking empirical probabilities as they come are easily underlined by thinking about
those categories for which you have observed zero frequencies, even though it is clear
that such categories could have been observed. These zeros may be called sampling or
random zeros. (In contrast, zeros for categories that could not be populated even in
principle, such as pregnant males, may be called structural or fixed zeros. We will not
focus on those further, beyond explaining later that they can be accommodated easily
in the method under consideration.)

The story underlying sampling zeros we take to be just that your sample failed to
catch such categories, most obviously because they are relatively uncommon, and so by
chance did not fall into your net. Problems of poor sampling design, such as when a
telephone-based survey did not catch people without telephone access, are beyond the
scope of this method to fix.

Sampling or random zeros are awkward for virtually any exploratory or inferential
purpose. Most simply, their definition implies that because we do not believe them, it
is contradictory to take them literally. In addition to being problematic for standard
approaches, they prove awkward in plotting frequencies or probabilities on logarithmic
or logit scales, which is often a very good idea (e.g., Cox [2004, 2008]).

The best way to get to the underlying positive probabilities is not obvious. Several
recipes are likely to occur to statistically minded researchers, most commonly in terms
of fitting one or more appropriate models. Even if that appears to be the main line
of attack, having other methods in the toolbox to provide checks should also appeal to
you. In particular, although a model provides a kind of smoothing by fitting, it may
not be the best kind of smoothing if you want to keep fairly close to the data.

Dealing with zeros ad hoc is one possibility, and dodges and fudges of some kind are
often recommended, such as adding 1/2 to observed sampling zeros, with or without
adjustment to observed positive frequencies. As Good (1965, 56) himself said, “Real
life is both complicated and short, and we make no mockery of honest adhockery.”
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But many statisticians and scientists would prefer a more systematic approach. The
approach followed here treats the problem as one of flattening or shrinking or smoothing
the observed frequencies toward those implied by a set of prior probabilities. The
word prior indicates a Bayesian flavor to the method, but it is a flavor that should be
acceptable even to those skeptical or squeamish about anything Bayesian. Smoothing
categorical data is territory less visited than smoothing with respect to one or more
coordinates—say, coordinates defined by time, space, or predictors—but several ideas
have been proposed. Simonoff (1996) is one gateway to the literature.

Imagine a vector of observed frequencies ni, i = 1, . . . , I, with total frequency N
and a corresponding vector of prior probabilities, qi, with total probability 1. The
quasi-Bayes recipe produces smoothed estimates of frequencies Np̂i, where

p̂i =
N

N +K

ni

N
+

K

N +K
qi

and shrinkage is tuned by the constant

K =
N2 − ∑I

i=1 n
2
i∑I

i=1 ni −Nqi

Otherwise put, smoothed frequencies n̂i are given by

n̂i = N

(
1

N +K
ni +

K

N +K
qi

)
Simply, and expectably, smoothed frequencies are chosen to be a compromise be-

tween those observed and those expected from prior probabilities. These estimates
minimize the total mean squared error between estimated and estimand probabilities.
The only issue is identifying suitable prior probabilities. Once they are identified, the
task is a straightforward calculation.

The setup implied by the notation of a single vector is more general than it may
seem at first. The idea extends to frequencies that researchers regard as structured
in contingency tables that are two-dimensional or higher. The twist is merely that
the prior probabilities may then arise from a more complicated calculation involving
different predictor levels, possibly interactions, and so forth. If there is some ordering
of categories, that too may affect the prior probabilities. All is at the researcher’s
discretion. A simple analogue is a chi-squared test, for which any generating process
should be mirrored in calculation of expected frequencies. That is implicit rather than
explicit in the notation.

As usual, it may be a good idea to consider various possible vectors of prior probabil-
ities. The most conservative or agnostic option of uniform probabilities, 1/I, typically
produces only modest smoothing, contrary perhaps to some intuitions.
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The modest generality of the formulation also extends to handling structural or
fixed zeros directly. Any such formulation would have both ni = 0 and qi = 0 so that,
correspondingly, p̂i = 0. So zero observed frequencies would never be smoothed upward
if the zeros are entirely credible.

3 Stata implementation

You might want to apply quasi-Bayes smoothing informally in a calculator style. One
possibility is that you already have a contingency table of counts, say, from a report
or published paper, which you should then put into a Stata or Mata matrix. Another
possibility is that you have read the raw data in Stata, and so you can use tabulate or
some similar command to produce such a table. The matcell() option of tabulate is
especially handy for getting hold of a matrix of frequencies.

For example, having read in Stata’s auto data, we can look at a table of two cat-
egorical variables, whether various cars in the United States were foreign and their
repair record in 1978. There is no evident structural reason why repair records 1 and 2
were impossible for foreign cars, so we interpret the observed zeros as indicating small
underlying probabilities.

. sysuse auto, clear
(1978 Automobile Data)

. tabulate for rep78, matcell(freq)

Repair Record 1978
Car type 1 2 3 4 5 Total

Domestic 2 8 27 9 2 48
Foreign 0 0 3 9 9 21

Total 2 8 30 18 11 69

You could stay in Stata and use its matrix and scalar functions to proceed further.
A better option is to start Mata:

. mata :

The following sequence of Mata commands is not as short as it could be, but it shows
a sequence of operations in simple steps. One possible prior is just uniform across both
row and column categories. Once we are done, we send the matrix back to Stata.

: freq = st_matrix("freq")

: prior = J(2, 5, 1/10)

: N = sum(freq)

: diff = freq - N * prior

: K = (N * N - sum(freq :* freq)) / sum(diff :* diff)

: qb = N * ((freq :/ (N + K)) + (K / (N + K)) * prior)

: st_matrix("qb", qb)

: end
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If you are new to Mata, the most exotic syntax here is likely to be J(2, 5, 1/10)
and the operators :* and :/. The former creates a matrix with 2 rows, 5 columns,
and elements all 1/10 = 0.1, and the latter stipulate elementwise multiplication and
division. Although the initial formulation was in terms of a vector of frequencies, we
can apply the same recipe to a matrix.

Once back in Stata, we can look at the frequencies. matrix list by default will
give more decimal places than you care about, so the format() option may be needed.

. matrix list qb

qb[2,5]
c1 c2 c3 c4 c5

r1 2.4175474 7.9062649 25.287203 8.8210511 2.4175474
r2 .58797493 .58797493 3.3323337 8.8210511 8.8210511

. matrix list qb, format(%3.2f)

qb[2,5]
c1 c2 c3 c4 c5

r1 2.42 7.91 25.29 8.82 2.42
r2 0.59 0.59 3.33 8.82 8.82

As earlier signaled, this uniform prior has only a moderate smoothing effect. The
zeros are smoothed to 0.59, and the peak frequency of 27 is smoothed to 25.29.

For this two-dimensional table, there is arguably a more natural default: the prior
probabilities implied by a model in which the two categorical variables are independent.
That then respects the far-from-uniform marginal distributions.

All the information needed is already at hand. Re-enter Mata, and see that getting
the expected frequencies and expected probabilities under an independence model is
possible in one line:

: rowsum(freq) * colsum(freq) / sum(freq)
1 2 3 4 5

1 1.391304348 5.565217391 20.86956522 12.52173913 7.652173913
2 .6086956522 2.434782609 9.130434783 5.47826087 3.347826087

: rowsum(freq) * colsum(freq) / sum(freq)^2
1 2 3 4 5

1 .0201638311 .0806553245 .3024574669 .1814744802 .1109010712
2 .0088216761 .0352867045 .1323251418 .0793950851 .0485192187

Textbooks typically explain how to calculate expected frequencies under indepen-
dence for a two-way table. You take the product of row frequencies and column fre-
quencies and divide the result by the grand total. In Mata, and indeed in any matrix
language, we need to put the terms in precisely that order to set up the calculation con-
formably. Here the row sums are a 2× 1 matrix or column vector and the column sums
are a 1 × 5 matrix or row vector, and so their (matrix) product is a 2 × 5 matrix. The
sum of frequencies and its square are both scalars: here Mata uses / to mean division
of the elements of a matrix by a scalar.
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Now we just need to repeat the quasi-Bayes calculation for that different prior:

: priori = rowsum(freq) * colsum(freq) / sum(freq)^2

: diffi = freq - N * priori

: Ki = (N * N - sum(freq :* freq)) / sum(diffi :* diffi)

: qbi = N * ((freq :/ (N + Ki)) + (Ki / (N + Ki)) * priori)

: st_matrix("qbi", qbi)

: end

Let’s look at the results. The first set of smoothed frequencies, although crudely
derived, were not at all absurd, but these are better.

. matrix list qbi, format(%3.2f)

qbi[2,5]
c1 c2 c3 c4 c5

r1 1.86 7.43 25.57 9.82 3.32
r2 0.14 0.57 4.43 8.18 7.68

Note in particular how the two observed zeros are smoothed to different estimated
frequencies when marginal information is taken into account. Let’s emphasize once
more that no other information has yet been considered, such as whether there is an
interaction or the ordered nature of the repair record, but the story will be left at this
point.

4 More complicated situations

The main message so far is that quasi-Bayes smoothing is easy in principle and easy
in practice. Anyone interested in the idea is likely to want to apply it in much more
complicated situations. Here are some brief suggestions on Stata strategy and tactics.

To work with other setups, you may need to move beyond tabulate and deal directly
with appropriate modeling commands. A different data structure is then advisable. The
contract command ([D] contract) produces a dataset with cell frequencies as a key
variable. Note carefully the key options zero and nomiss. zero, which you will almost
certainly need, ensures that cells with zero frequencies are included explicitly in the new
dataset. nomiss, which you will probably want, discards cells for missing categories.

With this new dataset, you can then use an appropriate modeling command, choos-
ing between poisson or glm largely as a matter of taste or convenience.

5 Canned commands

Two new commands have been written to allow quasi-Bayes smoothing to be carried out
more conveniently and are published formally with this column. qsbayesi is intended as
an immediate command, with the twist that immediate here means working with Stata
matrices. qsbayes is for the more traditional situation in which observed frequencies
populate the values of a variable. This might be the result of a previous contract, as
mentioned in the previous section, or the frequencies might have been entered directly.
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5.1 Syntax for qsbayesi

qsbayesi freq matrix
[
prior matrix

] [
, prob format(format)

]
Description

qsbayesi takes a matrix of frequencies, freq matrix, and shrinks or smooths it toward
a set of frequencies implied by prior probabilities. This will have the effect of replacing
sampling zeros with positive estimates whenever the priors are positive. These estimates
minimize the total mean squared error between estimated and estimand probabilities.

If prior matrix is specified, it must be the same shape as freq matrix and sum to 1.
If prior matrix is not specified, it is taken to be a matrix of equal probabilities.

Options

prob specifies that probabilities rather than estimated frequencies be shown.

format(format) controls the format with which matrix output is printed.

5.2 Syntax for qsbayes

qsbayes datavar
[
priorvar

] [
if

] [
in

] [
, by(rowvar

[
colvar

[
layervar

] ]
)

generate(newvar) prob tabdisp options
]

Description

qsbayes takes datavar, which should be a set of frequencies, and shrinks or smooths
it toward a set of frequencies implied by prior probabilities. This will have the effect
of replacing sampling zeros with positive estimates whenever the priors are positive.
These estimates minimize the total mean squared error between estimated and estimand
probabilities.

If priorvar is specified, it must sum to 1 for the data used. If priorvar is not specified,
it is taken to be a set of equal probabilities.

Options

by(rowvar
[
colvar

[
layervar

] ]
) indicates that datavar refers to a table with rows (and

columns, if specified [and layers, if specified]) indexed by the variable(s) named,
which will structure a display of cell estimates using tabdisp. If by() is not specified,
cell estimates will be displayed according to observation numbers.

generate(newvar) generates a new variable containing results.
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prob specifies that probabilities rather than estimated frequencies be shown (and kept,
if desired).

tabdisp options are options of tabdisp. The default includes center.

6 Conclusion

Although it has not entered the mainstream of categorical data analysis, quasi-Bayes
smoothing is easy to understand and implement and is flexible according to researchers’
ideas and needs. This column has shown how to implement this method with a com-
bination of Stata and Mata and has introduced two new commands that may be used
according to circumstance. Those interested further should look both at the original ac-
count in Good (1965) and at the systematic discussion in Bishop, Fienberg, and Holland
(1975), who provide numerous details and examples going far beyond the introduction
here. A neatly choreographed example in which two social mobility tables are used to
smooth each other in various ways is especially entertaining and thought provoking.
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