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Abstract. The Skillings–Mack statistic (Skillings and Mack, 1981, Technometrics
23: 171–177) is a general Friedman-type statistic that can be used in almost any
block design with an arbitrary missing-data structure. The missing data can be
either missing by design, for example, an incomplete block design, or missing
completely at random. The Skillings–Mack test is equivalent to the Friedman
test when there are no missing data in a balanced complete block design, and the
Skillings–Mack test is equivalent to the test suggested in Durbin (1951, British
Journal of Psychology, Statistical Section 4: 85–90) for a balanced incomplete
block design. The Friedman test was implemented in Stata by Goldstein (1991,
Stata Technical Bulletin 3: 26–27) and further developed in Goldstein (2005, Stata
Journal 5: 285). This article introduces the skilmack command, which performs
the Skillings–Mack test.

The skilmack command is also useful when there are many ties or equal ranks
(N.B. the Friedman statistic compared with the χ2 distribution will give a conser-
vative result), as well as for small samples; appropriate results can be obtained by
simulating the distribution of the test statistic under the null hypothesis.

Keywords: st0167, skilmack, Skillings–Mack, Friedman, block design, nonpara-
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1 Introduction

There are many situations where the assumption of a normally distributed error distri-
bution is not true and hence statisticians need to apply distribution-free methods. A
common model for a randomized block design is

Yij = μ+ βi + τj + εij

where Yij is the response corresponding to the jth treatment in the ith block, μ is
the overall mean, τj is the jth treatment effect, and βi is the ith block effect. The
errors, εij , are independent and identically distributed with some continuous distri-
bution function. Without loss of generality, let there be k treatments and n blocks,
and let nij indicate whether there is an observation for the jth treatment in the ith
block. The usual null hypothesis is that the treatment effects are all identical, i.e.,
τ1 = · · · = τk. The Friedman test (Friedman 1937) is the distribution-free test for a
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completely balanced randomized block design (nij = 1 ∀i, j). The Friedman test was
implemented in Stata by Goldstein (1991) and further developed in Goldstein (2005).
Durbin proposed a Friedman-type test for a balanced incomplete block design (Durbin
1951), and Skillings and Mack (1981) proposed a more general Friedman-type test for
an unbalanced incomplete block design with an arbitrary missing-data structure. The
missing data can be missing by design or missing completely at random. This arti-
cle introduces the skilmack command, which calculates the Skillings–Mack (SM) test.
skilmack computes the SM test statistic by using the following steps:

• Remove any block with only one observation.

• Within each block, observations are ranked from 1 to ki, where ki is the number
of treatments in block i, and when ties occur ranks are averaged.

• The rank for Yij will be rij , but when an observation is missing, then the value
(ki + 1)/2 is used.

• Compute an adjusted treatment sum, Aj , where

Aj =
n∑

i=1

(
12

ki + 1

)1/2 (
rij − ki + 1

2

)
, for j = 1, . . . , k

As in the Friedman test, the SM test begins by reducing the data to within-block
ranks. In the Friedman test, the ranks are added within each treatment; however, when
there are missing data, it is necessary to center the ranks (by subtracting the average
rank for that block). The ranks are then weighted by {12/(ki + 1)}1/2. This weight is
chosen for two reasons: First, the range of {rij − (ki + 1)/2} is smaller for blocks with
missing data, and the weights attempt to address this imbalance. Second, it produces
a simple covariance structure on A1, . . . , Ak. To complete the calculation of the test
statistic, the covariance of the treatment sums is required.

Setting A = (A1, . . . , Ak−1), the covariance matrix for A under the null hypothesis,
H0, is given by

Σ0 =

⎛⎜⎜⎜⎜⎝
∑k

t=2 λ1t −λ12 −λ13 . . . −λ1,k−1

−λ12

∑k
t�=2 λ2t −λ23 . . . −λ2,k−1

...
...

...
. . .

...
−λ1,k−1 −λ2,k−1 −λ3,k−1 . . .

∑k
t�=k−1 λk−1,t

⎞⎟⎟⎟⎟⎠
where λqt = λtq = (number of blocks in which both treatments q and t are observed).
Then the SM statistic is given by

SM = AΣ−1
0 A′

where Σ−1
0 is any generalized inverse for Σ0. Under H0, SM ∼ χ2

k−1 for large n.
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There are several situations where it would be appropriate to estimate the distribu-
tion of SM values under H0, and skilmack simulates this distribution.

The χ2 distribution is inadequate when the sample size is small, and unless n is very
large, it is preferable to use simulation to estimate the distribution of SM values under
H0, particularly for the tail. The χ2 approximation tends to be conservative. This is
especially true for significance levels of 0.01 or less.

For ties, or equal ranks, we will also want to simulate because there is less variation
between the weighted sum of centered ranks, Aj , or the sum of ranks in the Friedman
test, and so the χ2 distribution will give conservative p-values.

Unlike with the friedman command (Goldstein 2005), for skilmack the data are
required to be in the more usual long format, i.e., one column for the outcome measure,
one for the block identifier or ID, and one for the treatment or within-block repeated
variable.

2 The skilmack command

2.1 Syntax

skilmack varname
[
if

] [
in

]
, id(varname) repeated(varname)

[
covariance

forcesims(on | off) reps(#) seed(#) notable(noties | tiescov | both) ]
2.2 Options

id(varname) is required and specifies the factor variable containing the block identifiers.

repeated(varname) is required and specifies the factor variable containing the treat-
ment identifiers.

covariance specifies that the estimated covariance matrix is used in place of the no-ties
covariance matrix. The estimated covariance matrix is the sample covariance matrix
of the weighted sum of centered ranks from the simulations.

forcesims(on | off) forces whether simulations are used. Simulations will be run if and
only if there are ties, unless overridden by this option.

reps(#) sets the number of simulations. The default is reps(1000).

seed(#) specifies the random-number seed; time is used as the default seed. This
option allows an exact replication of the Monte Carlo simulations.

notable(noties | tiescov | both) suppresses the output table produced in the no-ties
section or in the case of ties when the covariance option is used (or both).
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3 Example

The following example was used in Hollander and Wolfe’s book on nonparametric sta-
tistical methods (Hollander and Wolfe 1999), which in turn is taken from Brady (1969).
The skilmack command will be demonstrated using this dataset. (Numbers in paren-
theses are within-subject ranks.)

Dysfluencies under each condition

ID R A N
1 3 (1) 5 (2) 15 (3)
2 1 (1) 3 (2) 18 (3)
3 5 (2) 4 (1) 21 (3)
4 2 (1) 6 (2)
5 0 (1) 2 (2) 17 (3)
6 0 (1) 2 (2) 10 (3)
7 0 (1) 3 (2) 8 (3)
8 0 (1) 2 (2) 13 (3)

The SM results from the above data are

. skilmack score, id(id) repeated(cond)

Weighted Sum of Centered Ranks

cond N WSumCRank SE WSum/SE

A 7 -1.73 3.74 -0.46
N 8 13.12 3.87 3.39
R 8 -11.39 3.87 -2.94

Total 0

Skillings Mack = 13.281
P-value (No ties) = 0.0013

N.B. As P-value <0.02, it is likely to be conservative (unless n large).
Consider obtaining a p-value from a simulated null distribution of SM -
see options.

As cautioned in the output, the p-value did turn out to be conservative, because
when we typed skilmack score, id(id) repeated(cond) forcesims(on) seed(1)
reps(100000), we got an empirical p-value of 0.

N.B. A large, negative WSumCRank (or WSum/SE) means a low ranking (e.g., 1) be-
cause of typically low scores. This was the case for condition R, which had the fewest
dysfluencies.

An informal examination of differences in the repeated measures can be made by
comparing the values of WSum/SE.
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4 Simulation

A dataset is simulated by sorting on random numbers, for each individual, to randomly
shuffle which data point belongs to which repeat. The sorting on random numbers is not
applied where there are missing data to preserve the missing-data structure. A value of
the test statistic is then calculated. This process is then repeated (default 1,000 times).
The p-value is the proportion of times that randomly generated values of SM are at least
as large as the value of SM from the actual data.

If there are ties (equal ranks), average ranks are assigned, e.g., 1.5, 1.5, 3. Assigning
average ranks is perhaps the most common way of dealing with ties. However, one may
prefer to force ranks to be randomly assigned when they are tied. (This can effectively
be done by adding a small random amount to each score.)

The SM statistic can be calculated when there are ties; however, the p-value cal-
culated from the assumed χ2 null distribution becomes more and more conservative
the more ties there are. To provide a more accurate p-value, simulations are used to
approximate the distribution of SM values under the null hypothesis, conditional on the
particular missing-data structure and tied rankings.

With the covariance option, the SM statistic can be redefined by estimating the
covariance matrix of the weighted sums of centered ranks and using this in place of
the covariance matrix (which is accurate when there are no ties, but not when there
are many ties). A new table is produced with different standard errors, and a new
SM statistic and p-value are calculated. The tables can be suppressed by using the
notable() option.

5 Friedman test dealing with ties

Because the SM test is equivalent to the Friedman test in a completely balanced design
with no missing data (Skillings and Mack 1981) even when there are ties, skilmack can
be used to perform the Friedman test when there are ties.

(Continued on next page)
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. recode score .=2 /* to create a full dataset with a tie */
(score: 1 changes made)

. skilmack score, id(id) repeated(cond) seed(1) reps(10000)

Weighted Sum of Centered Ranks

cond N WSumCRank SE WSum/SE

A 8 -2.60 4.00 -0.65
N 8 13.86 4.00 3.46
R 8 -11.26 4.00 -2.81

Total 0

Skillings Mack = 13.562
P-value (No ties) = 0.0011

N.B. As P-value <0.02, it is likely to be conservative (unless n large).
Consider obtaining a p-value from a simulated null distribution of SM -
see options.

Ties exist. Above SEs and P-value approximate, if not too many ties;
24 rows of [id, score]; 23 different combinations; n(id) = 8

Consider using the p-value below, (which is found from a simulated
conditional null distribution of SM - see options -

simulating ...........)

Empirical P-value (Ties) ~ 0.0000

Equivalence with the Friedman test is illustrated below.

. reshape wide score, i(cond) j(id)
(note: j = 1 2 3 4 5 6 7 8)

Data long -> wide

Number of obs. 24 -> 3
Number of variables 3 -> 9
j variable (8 values) id -> (dropped)
xij variables:

score -> score1 score2 ... score8

. friedman score*

Friedman = 13.5625
Kendall = 0.8477
P-value = 0.0011

There are several things to notice here. First, the SM statistic is the Friedman
statistic, and because they have the same approximate χ2 distribution under the null
hypothesis, the p-values (ignoring the issue of ties) are the same. Second, the skilmack
command gives information on how many ties there are. There were 23 different combi-
nations of (id, score) (maximum possible 24 and minimum possible 8). Because there
were few ties, one could argue that there is little need to get a better approximate null
distribution since it will differ only slightly from the χ2 distribution assumed in the no-
ties case. However, a simulated null distribution is desirable here because the dataset
and the p-value are small. The p-value conditional on the particular ties, and coming
from comparison of the test statistic with the simulated null distribution, should be,
and was, lower than the p-value ignoring ties and coming from the χ2 distribution. The
approximate null distribution will differ each time unless the seed is set and will be
more accurate with more simulations leading to a more reliable p-value.
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6 Summary

The SM test does not seem to be readily available in main statistical packages. skilmack
is the first Stata implementation of the SM test, which is a generalization of the Friedman
test. It is a distribution-free method and can be applied to a variety of situations; for
example, it can be used to analyze an incomplete block design. The SM test is equivalent
to the Friedman test when there are no missing data. The simulations option allows a
more theoretically correct p-value to be estimated when ties exist in the dataset, and
this can be used regardless of whether there are missing data.
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