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Abstract. Royston and Parmar (2002, Statistics in Medicine 21: 2175–2197)
developed a class of flexible parametric survival models that were programmed in
Stata with the stpm command (Royston, 2001, Stata Journal 1: 1–28). In this
article, we introduce a new command, stpm2, that extends the methodology. New
features for stpm2 include improvement in the way time-dependent covariates are
modeled, with these effects far less likely to be over parameterized; the ability to
incorporate expected mortality and thus fit relative survival models; and a superior
predict command that enables simple quantification of differences between any
two covariate patterns through calculation of time-dependent hazard ratios, hazard
differences, and survival differences. The ideas are illustrated through a study of
breast cancer survival and incidence of hip fracture in prostate cancer patients.
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1 Introduction

The first article in the first volume of the Stata Journal presented the stpm command,
which enabled the fitting of flexible parametric models (Royston and Parmar 2002),
as an alternative to the Cox model (Royston 2001). A further command, strsrcs,
extended the methods to incorporate expected mortality and thus fit relative survival
models (Nelson et al. 2007). Here we present a new command, stpm2, that combines the
standard and relative survival approaches, improves on the modeling of time-dependent
effects, and has much improved postestimation commands. Also, stpm2 is much faster
than stpm (sometimes over 10 times as fast).

c© 2009 StataCorp LP st0165



266 Flexible parametric models for survival analysis

Briefly, the flexible parametric approach uses restricted cubic spline functions to
model the baseline cumulative hazard, baseline cumulative odds of survival, or some
more general baseline distribution in survival analysis models. These models enable
proportional hazards, proportional-odds, and probit models to be fit but can be extended
to model time-dependent effects on each of these scales. The advantages of this approach
over the Cox model are the ease with which smooth predictions can be made, the
modeling of complex time-dependent effects, investigation of absolute as well as relative
effects, and the incorporation of expected mortality for relative survival models.

2 Methods

2.1 Flexible parametric models

A common parametric model for survival data is the Weibull model. The Weibull model
is a proportional hazards model but is often criticized for lack of flexibility in the shape
of the baseline hazard function, which is either monotonically increasing or decreasing.
The survival function, S(t), for a Weibull distribution is

S(t) = exp (−λtγ)

If we transform to the log cumulative hazard scale, we get

ln {H(t)} = ln[− ln{S(t)}] = ln(λ) + γ ln(t)

Thus, on the log cumulative hazard scale, we get a linear function of log time. If we
add covariates, we have

ln {H(t |xi)} = ln(λ) + γ ln(t) + xiβ

Thus the baseline log cumulative hazard function is ln(λ) + γ ln(t), with covariates
additive on this scale. This parameterization differs slightly from streg, where ln(λ) is
incorporated as an intercept in xiβ and ln(γ) is estimated as an ancillary parameter.
The basic idea of the flexible parametric approach is to relax the assumption of linearity
of log time by using restricted cubic splines.

So why do we model on this scale? First, under the proportional-hazards assump-
tion, the covariates can still be interpreted as (log) hazard ratios because proportional
hazards also imply proportional cumulative hazards. Second, the cumulative hazard as
a function of log time is generally a stable function; for example, in all Weibull models,
it is a straight line. It is easier to accurately capture the shape of more stable functions.
Third, it is easy to transform to the survival and hazard functions.

S(t) = exp {−H(t)} h(t) =
d

dt
H(t)

The hazard and survival functions are needed to feed into the likelihood when estimating
the model parameters.

The models we describe are parametric, and thus it is easy to obtain predictions.
However, through the use of splines, they are more flexible than standard parametric
models.
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2.2 Restricted cubic splines

Splines are flexible mathematical functions defined by piecewise polynomials, with some
constraints to ensure that the overall curve is smooth. The points at which the poly-
nomials join are called knots. The fitted function is forced to have continuous 0th, 1st,
and 2nd derivatives. The most common splines used in practice are cubic splines. Re-
gression splines are useful because they can be incorporated into any regression model
with a linear predictor.

stpm2 uses restricted cubic splines (Durrleman and Simon 1989). These have the
restriction that the fitted function is forced to be linear before the first knot and after
the final knot. Restricted cubic splines with K knots can be fit by creating K−1 derived
variables. For knots k1, . . . , kK , a restricted cubic spline function can be written as

s(x) = γ0 + γ1z1 + γ2z2 + · · · + γK−1zK−1

The derived variables, zj (also known as the basis functions), are calculated as follows:

z1 = x
zj = (x− kj)3+ − φj(x− k1)3+ − (1 − φj)(x− kK)3+ j = 2, . . . ,K − 1

where φj = (kK − kj)/(kK − k1).

The derived variables can be highly correlated, and by default, stpm2 orthogonalizes
the derived splines variables by using Gram–Schmidt orthogonalization.

2.3 Flexible parametric models: Incorporating splines

Because the models are on the log cumulative hazard scale, we can write a proportional
hazards model

ln{H(t |xi)} = ln {H0(t)} + xiβ

A restricted cubic spline function of ln(t), with knots k0, can be written as
s {ln(t) |γ,k0}. This is then used for the baseline log cumulative hazard in a propor-
tional (cumulative) hazards model:

ln{H(t |xi)} = ηi = s {ln(t) |γ,k0} + xiβ (1)

For example, with four knots, we can write

ln {H(t |xi)} = ηi = γ0 + γ1z1i + γ2z2i + γ3z3i + xiβ

We can transform to the survival and hazard scales:

S(t |xi) = exp{− exp(ηi)} h(t |xi) =
ds {ln(t) |γ,k0}

dt
exp(ηi)

The hazard function involves the derivatives of the restricted cubic splines functions.
However, these are easy to calculate:

s′(x) = γ1z
′
1 + γ2z

′
2 + · · · + γK−1z

′
K−1
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where

z′1 = 1
z′j = 3(x− kj)2+ − 3φj(x− kk1)

2
+ − 3(1 − φj)(x− kkk

)2+

When choosing the location of the knots for the restricted cubic splines, it is useful
to have some sensible default locations. In stpm2, the default knot locations are at the
centiles of the distribution of uncensored log event times as shown in table 1.

Knots Degrees of freedom (df) Centiles
1 2 50
2 3 33, 67
3 4 25, 50, 75
4 5 20, 40, 60, 80
5 6 17, 33, 50, 67, 83
6 7 14, 29, 43, 57, 71, 86
7 8 12.5, 25, 37.5, 50, 62.5, 75, 87.5
8 9 11.1, 22.2, 33.3, 44.4, 55.6, 66.7, 77.8, 88.9
9 10 10, 20, 30, 40, 50, 60, 70, 80, 90

Table 1. Default positions of internal knots for modeling the baseline distribution func-
tion and time-dependent effects in flexible parametric survival models. Knots are posi-
tions on the distribution of uncensored log event times.

2.4 Likelihood

The contribution to the log likelihood for the ith individual for a flexible parametric
model on the log cumulative hazard scale can be written as

lnLi = di (ln [s′{ln(ti) |γ,k0}] + ηi) − exp(ηi)

where di is the event indicator. The likelihood can be maximized (using a few tricks)
with Stata’s optimizer, ml. The main trick is to define an additional equation for
the derivatives of the spline function and constrain the parameters to be equal to the
equivalent spline functions in the main linear predictor. This is how the implementation
of stpm2 differs from stpm. In stpm, there was a separate ml equation for each spline
parameter. Two advantages of stpm2 are the increased speed and the fact that more
parsimonious modeling of time-dependent effects can be performed.

2.5 Extending to time-dependent effects

One of the main advantages of the flexible parametric approach is the ease with which
time-dependent effects can be fit. In the proportional (cumulative) hazards model in
(1), the baseline log cumulative hazard is modeled using restricted cubic splines. To
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make effects time dependent, we can just form interactions with the spline terms and
the covariates of interest. In stpm, any time-dependent effects had to have the same
number of knots at the same locations as the baseline effect. This tended to over-
parameterize the time-dependent effects because, generally, the underlying shape of the
baseline hazard is more complex than any departures from it. Thus, in stpm2, time-
dependent effects are allowed to have fewer knots and have these knots at different
locations than for the baseline effect. If there are D time-dependent effects, then we
can write

ln {Hi(t |xi)} = s {ln(t) |γ,k0} +
D∑

j=1

s {ln(t) | δk,kj}xij + xiβ

The default knot locations for a specified number of degrees of freedom (df) are the
same as those listed for the baseline hazard in table 1. The number of spline variables
for a particular time-dependent effect will depend on the number of knots, kj . For
each time-dependent effect, there is an interaction between the covariate and the spline
variables. The model is allowing for nonproportional cumulative hazards, and there will
be a bit of work to convert this to the hazard-ratio scale.

2.6 Hazard ratios

The most common method of summarizing differences between two groups is the hazard
ratio. When the hazard ratio becomes a function of time, it is generally best to plot
it, with 95% confidence intervals, as a function of time. Because the models described
so far are on the (log) cumulative hazard scale and we want to quantify difference on
the (log) hazard scale, we have to perform a nonlinear transformation of the model
parameters.

Consider a model with one dichotomous covariate, x1, taking on the values 1 and
0 and that has a time-dependent effect. The log hazard-ratio comparing x1 = 1 with
x1 = 0 at time t0 can be written as

ln(HR) = ln [s′ {ln(t0) |γ,k0} + s′ {ln(t0) | δ1,k1}] − ln [s′ {ln(t0) | δ1,k1}]
+ s {ln(t0) | δ1,k1} + β1

Because this is a nonlinear function of the parameters, the standard error (and thus
the confidence interval) of the log hazard-ratio at time t0 is obtained with the delta
method by using the Stata predictnl command, where the derivatives are calculated
numerically. This is a further enhancement over stpm.

2.7 Other predictions

stpm2 also enables other useful predictions for quantifying differences between groups.
The first of these is the difference in hazard rates between any two covariate patterns.
The second is the difference in survival curves between any two covariate patterns.
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Confidence intervals are obtained by applying the delta method by using predictnl.
It is also possible to calculate and compare centiles of the survival distribution. This
involves an iterative process using the Newton–Raphson algorithm.

2.8 Delayed entry

stpm2, like most Stata st commands, can incorporate delayed entry. This means that
some subjects become at risk at some time after time t = 0. This is also known as left-
truncation. A common example in epidemiology is when age is used as the time scale,
so subjects become at risk at the age they were diagnosed with the disease under study
(Cheung, Gao, and Khoo 2003). A further example, used in relative survival models,
is when using period analysis where up-to-date estimates of survival are obtained by
artificially left-truncating the time scale so that only the most recent data are used
to estimate survival (Brenner and Gefeller 1997). Delayed entry is also needed when
incorporating time-dependent covariates or piecewise time-dependent effects similarly
to the Cox model (Cleves et al. 2008).

2.9 Modeling on other scales

Royston and Parmar (2002) discuss the use of models on other scales. These include
flexible proportional-odds models, probit models, and a more general model that involves
transformation of the survival function based on a suggestion by Aranda-Ordaz (1981).
All these models are available in stpm2.

2.10 Relative survival

Relative survival is a common method used in population-based cancer studies. In
these studies, mortality associated with the cancer under study is of the most interest.
However, cause of death information is often not available or is otherwise considered to
be unreliable. Therefore, mortality associated with the disease of interest is estimated
by incorporating expected (or background) mortality, which can usually be obtained
from national or regional life tables. In relative survival, the all-cause survival function,
S(t), can be expressed as the product of the expected survival function, S∗(t), and the
relative survival function, R(t):

S(t) = S∗(t)R(t)

Transforming to the hazard scale gives

h(t) = h∗(t) + λd(t)

where h(t) is the all-cause hazard (mortality) rate, h∗(t) is the expected hazard (mor-
tality) rate, and λd(t) is the excess hazard (mortality) rate associated with the disease
of interest. Thus the mortality rate is the sum of two components: the background
mortality rate and the excess mortality rate associated with the disease. The flexible
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parametric modeling approach was extended to relative survival and implemented in
the strsrcs command available from the Statistical Software Components archive.

All the models and postestimation features described so far can be extended to
relative survival. This means adapting the likelihood function. The general likelihood
function for a relative survival model can be written as

lnLi = di ln{h∗(ti) + λd(ti)} + ln{S∗(ti)} + ln{R(ti)}

S∗(ti) does not depend on the model parameters and can be excluded from the like-
lihood. This means that to fit these models, the user needs to merge in the expected
mortality rate, h∗(ti), at time of death, ti. This is important because many of the
other models for relative survival involve fine splitting of the time scale or numerical
integration (Lambert et al. 2005; Remontet et al. 2007). With large datasets, this can
be computationally intensive. The relative survival models fit using stpm2 are much
quicker to fit than some of the standard models.

3 stpm2

3.1 Syntax

stpm2
[
varlist

] [
if

] [
in

]
, scale(scalename)

[
df(#) knots(numlist)

tvc(varlist) dftvc(df list) knotstvc(numlist) knscale(scale)

bknots(knotslist) noorthog bhazard(varname) noconstant stratify(varlist)

theta(est |#) alleq eform keepcons level(#) showcons constheta(#)

inittheta(#) lininit maximize options
]

You must stset your data before using stpm2; see [ST] stset.

3.2 Options

Model

scale(scalename) specifies on which scale the survival model is to be fit.

scale(hazard) fits a model on the log cumulative hazard scale, i.e., the scale of
ln[−ln{S(t)}]. If no time-dependent effects are specified, the resulting model has
proportional hazards.

scale(odds) fits a model on the log cumulative odds scale, i.e., ln[{1−S(t)}/S(t)].
If no time-dependent effects are specified, then this is a proportional-odds model.

scale(normal) fits a model on the normal equivalent deviate scale, i.e., a probit
link for the survival function invnorm{1 − S(t)}.
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scale(theta) fits a model on a scale defined by the value of θ for the Aranda-
Ordaz family of link functions, i.e., ln[{S(t)(−θ) − 1}/θ]. θ = 1 corresponds to a
proportional-odds model, and θ = 0 corresponds to a proportional cumulative-
hazard model.

df(#) specifies the df for the restricted cubic spline function used for the baseline
hazard rate. # must be between 1 and 10, but a value between 1 and 5 is usually
sufficient. The knots are placed at the centiles of the distribution of the uncensored
log times as shown in table 1. Using df(1) is equivalent to fitting a Weibull model
when using scale(hazard).

knots(numlist) specifies knot locations for the baseline distribution function, as op-
posed to the default locations set by df(). The locations of the knots are placed
on the scale defined by knscale(). However, the scale used by the restricted cubic
spline function is always log time. Default knot positions are determined by the
df() option.

tvc(varlist) specifies the names of the variables that are time dependent. Time-
dependent effects are fit using restricted cubic splines. The df is specified using
the dftvc() option.

dftvc(df list) specifies the df for time-dependent effects. The potential df is between 1
and 10. With 1 degree of freedom, a linear effect of log time is fit. If there is more
than one time-dependent effect and a different df is required for each time-dependent
effect, then the following syntax can be used: dftvc(x1:3 x2:2 1), where x1 has
3 df, x2 has 2 df, and any remaining time-dependent effects have 1 df.

knotstvc(numlist) specifies the location of the internal knots for any time-dependent
effects. If different knots are required for different time-dependent effects, then this
option can be specified as follows: knotstvc(x1 1 2 3 x2 1.5 3.5).

knscale(scale) sets the scale on which user-defined knots are specified. knscale(time)
denotes the original time scale, knscale(log) denotes the log time scale, and
knscale(centile) specifies that the knots are taken to be centile positions in the
distribution of the uncensored log survival times. The default is knscale(time).

bknots(knotslist) is a two-element list giving the boundary knots. By default, these
are located at the minimum and maximum of the uncensored survival times. They
are specified on the scale defined by knscale().

noorthog suppresses orthogonal transformation of spline variables.

bhazard(varname) is used when fitting relative survival models. varname gives the
expected mortality rate at the time of death or censoring. stpm2 gives an error
message when there are missing values of varname, because this usually indicates
that an error has occurred when merging the expected mortality rates.

noconstant; see [R] estimation options.
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stratify(varlist) is provided for backward compatibility with stpm. Members of varlist
are modeled with time-dependent effects. See the tvc() and dftvc() options for
stpm2’s way of specifying time-dependent effects.

theta(est |#) is provided for backward compatibility with stpm. est requests that
θ be estimated, whereas # fixes θ to #. See constheta() and inittheta() for
stpm2’s way of specifying θ.

Reporting

alleq reports all equations used by ml. The models are fit using various constraints for
parameters associated with the derivatives of the spline functions. These parameters
are generally not of interest and thus are not shown by default. Also, an extra
equation is used when fitting delayed-entry models; again, this is not shown by
default.

eform reports the exponentiated coefficients. For models on the log cumulative-hazard
scale, scale(hazard), this gives hazard ratios if the covariate is not time dependent.
Similarly, for models on the log cumulative-odds scale, scale(odds), this option will
give odds ratios for non–time-dependent effects.

keepcons prevents the constraints imposed by stpm2 on the derivatives of the spline
function when fitting delayed-entry models from being dropped. By default, the
constraints are dropped.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

showcons lists in the output the constraints used by stpm2 for the derivatives of the
spline function and when fitting delayed-entry models; the default is to not list them.

Max options

constheta(#) constrains the value of θ; i.e., it is treated as a known constant.

inittheta(#) specifies an initial value for θ in the Aranda-Ordaz family of link func-
tions.

lininit obtains initial values by fitting only the first spline basis function (i.e., a linear
function of log survival time). This option is seldom needed.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no

]
log,

trace, gradient, showstep, hessian, shownrtolerance, tolerance(#),
ltolerance(#), gtolerance(#), nrtolerance(#), nonrtolerance,
from(init specs); see [R] maximize. These options are seldom used, but difficult
may be useful if there are convergence problems when fitting models that use the
Aranda-Ordaz family of link functions.
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4 stpm2 postestimation

stpm2 is an estimation command and thus shares most of the features of Stata estima-
tion commands; see [U] 20 Estimation and postestimation commands. The range
of predictions available postestimation when using stpm2 has been much extended com-
pared with the range available for stpm. The predictions available are briefly described
below.

4.1 Syntax

predict newvar
[
if

] [
in

] [
, at(varname #

[
varname # . . .

]
)

centile(# | varname) ci cumhazard cumodds density hazard

hdiff1(varname #
[
varname # . . .

]
) hdiff2(varname #

[
varname #

. . .
]
) hrdenominator(varname #

[
varname # . . .

]
) hrnumerator(varname

#
[
varname # . . .

]
) martingale meansurv normal sdiff1(varname #[

varname # . . .
]
) sdiff2(varname #

[
varname # . . .

]
) stdp survival

timevar(varname) xb xbnobaseline zeros centol(#) deviance dxb

level(#)
]

4.2 Options

Main

at(varname #
[
varname # . . .

]
) requests that the covariates specified by varname

be set to #. This is a useful way to obtain out-of-sample predictions. If at() is used
together with zeros, then all covariates not listed in at() are set to zero. If at()
is used without zeros, then all covariates not listed in at() are set to their sample
values.

centile(# | varname) requests the #th centile of survival-time distribution, calculated
using the Newton–Raphson algorithm (or requests the centiles stored in varname).

ci calculates a confidence interval for the requested statistic and stores the confidence
limits in newvar lci and newvar uci.

cumhazard predicts the cumulative hazard function.

cumodds predicts the cumulative odds-of-failure function.

density predicts the density function.

hazard predicts the hazard rate (or excess hazard rate if stpm2’s bhazard() option was
used).
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hdiff1(varname #
[
varname # . . .

]
) and hdiff2(varname #

[
varname # . . .

]
)

predict the difference in hazard functions, with the first hazard function defined by
the covariate values listed for hdiff1() and the second, by those listed for hdiff2().
By default, covariates not specified using either option are set to zero. Setting the
remaining values of the covariates to zero may not always be sensible. If # is set to
missing (.), then varname has the values defined in the dataset.

Example: hdiff1(hormon 1) (without specifying hdiff2()) computes the differ-
ence in predicted hazard functions at hormon = 1 compared with hormon = 0.

Example: hdiff1(hormon 2) hdiff2(hormon 1) computes the difference in pre-
dicted hazard functions at hormon = 2 compared with hormon = 1.

Example: hdiff1(hormon 2 age 50) hdiff2(hormon 1 age 30) computes the
difference in predicted hazard functions at hormon = 2 and age = 50 compared
with hormon = 1 and age = 30.

hrdenominator(varname #
[
varname # . . .

]
) specifies the denominator of the haz-

ard ratio. By default, all covariates not specified using this option are set to zero.
See the cautionary note in hrnumerator() below. If # is set to missing (.), then
the covariate has the values defined in the dataset.

hrnumerator(varname #
[
varname # . . .

]
) specifies the numerator of the (time-

dependent) hazard ratio. By default, all covariates not specified using this option
are set to zero. Setting the remaining values of the covariates to zero may not always
be sensible, particularly on models other than those on the cumulative hazard scale
or when more than one variable has a time-dependent effect. If # is set to missing
(.), then the covariate has the values defined in the dataset.

martingale calculates martingale residuals.

meansurv calculates the population-averaged survival curve. This differs from the pre-
dicted survival curve at the mean of all the covariates in the model. A predicted
survival curve is obtained for each subject, and all the survival curves in a popula-
tion are averaged. The process can be computationally intensive. It is recommended
that the timevar() option be used to reduce the number of survival times at which
the survival curves are averaged. Combining meansurv with the at() option enables
adjusted survival curves to be estimated.

normal predicts the standard normal deviate of the survival function.

sdiff1(varname #
[
varname # . . .

]
) and sdiff2(varname #

[
varname # . . .

]
)

predict the difference in survival curves, with the first survival curve defined by the
covariate values listed for sdiff1() and the second, by those listed for sdiff2().
By default, covariates not specified using either option are set to zero. Setting the
remaining values of the covariates to zero may not always be sensible. If # is set to
missing (.), then varname has the values defined in the dataset.

Example: sdiff1(hormon 1) (without specifying sdiff2()) computes the differ-
ence in predicted survival curves at hormon = 1 compared with hormon = 0.
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Example: sdiff1(hormon 2) sdiff2(hormon 1) computes the difference in pre-
dicted survival curves at hormon = 2 compared with hormon = 1.

Example: sdiff1(hormon 2 age 50) sdiff2(hormon 1 age 30) computes the
difference in predicted survival curves at hormon = 2 and age = 50 compared with
hormon = 1 and age = 30.

stdp calculates the standard error of prediction and stores it in newvar se. stdp is
available only with the xb and dxb options.

survival predicts survival time (or relative survival if the bhazard() option was used).

timevar(varname) defines the variable used as time in the predictions. The default is
timevar( t). This is useful for large datasets where, for plotting purposes, predic-
tions are needed for only 200 observations, for example. Some caution should be
taken when using this option because predictions may be made at whatever covari-
ate values are in the first 200 rows of data. This can be avoided by using the at()
option or the zeros option to define the covariate patterns for which you require
the predictions.

xb predicts the linear predictor, including the spline function.

xbnobaseline predicts the linear predictor, excluding the spline function, i.e., only the
time-fixed part of the model.

zeros sets all covariates to zero (baseline prediction). For example, predict s0,
survival zeros calculates the baseline survival function.

Subsidiary

centol(#) defines the tolerance when searching for the predicted survival time at a
given centile of the survival distribution. The default is centol(0.0001).

deviance calculates deviance residuals.

dxb calculates the derivative of the linear predictor.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.
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5 Examples

For the initial models, we use data from the public-use dataset of all England and Wales
cancer registrations between 1 January 1971 and 31 December 1990 with follow-up to
31 December 1995 (Coleman et al. 1999). Covariates of interest include the effect of
deprivation—defined in terms of the area-based Carstairs score (Coleman et al. 1999)—
age, and calendar period of diagnosis. There are five deprivation groups ranging from
the least deprived (most affluent) to the most deprived quintile in the population. For
the initial analysis, we will concentrate on women aged under 50 at diagnosis, who
were diagnosed with breast cancer between 1986 and 1990, and we will compare the
five deprivation groups. Follow-up is restricted to 5 years after diagnosis. All-cause
mortality is the outcome, although given their age, most of the women who die will die
from the cancer. There are 24,889 women included in the analysis.

5.1 Proportional hazards models

A Cox proportional hazards model comparing the effect of deprivation group (with the
most affluent group as the baseline) is shown below:

. stcox dep2-dep5, noshow nolog

Cox regression -- Breslow method for ties

No. of subjects = 24889 Number of obs = 24889
No. of failures = 7366
Time at risk = 104638.953

LR chi2(4) = 62.19
Log likelihood = -73302.997 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

dep2 1.048716 .0353999 1.41 0.159 .9815786 1.120445
dep3 1.10618 .0383344 2.91 0.004 1.03354 1.183924
dep4 1.212892 .0437501 5.35 0.000 1.130104 1.301744
dep5 1.309478 .0513313 6.88 0.000 1.212638 1.414051

The hazard ratios for the deprivation group indicate that the mortality rate increases
with increasing deprivation group, with the most deprived group having a mortality rate
31% higher than the most affluent group.

A flexible parametric proportional-hazards model is also fit and shown below:

(Continued on next page)
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. stpm2 dep2-dep5, df(5) scale(hazard) eform nolog

Log likelihood = -22502.633 Number of obs = 24889

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
dep2 1.048752 .0354011 1.41 0.158 .9816125 1.120483
dep3 1.10615 .0383334 2.91 0.004 1.033513 1.183893
dep4 1.212872 .0437493 5.35 0.000 1.130085 1.301722
dep5 1.309479 .0513313 6.88 0.000 1.212639 1.414052
_rcs1 2.126897 .0203615 78.83 0.000 2.087361 2.167182
_rcs2 .9812977 .0074041 -2.50 0.012 .9668927 .9959173
_rcs3 1.057255 .0043746 13.46 0.000 1.048715 1.065863
_rcs4 1.005372 .0020877 2.58 0.010 1.001288 1.009472
_rcs5 1.002216 .0010203 2.17 0.030 1.000218 1.004218

The df(5) option implies using 5 df (4 internal knots) at their default locations. The
scale(hazard) option states that the model is being fit on the log cumulative hazard
scale. The estimated hazard ratios and their 95% confidence intervals are very similar
to the Cox model, and in fact, there is no difference up to four decimal places. We have
yet to find an example of a proportional hazards model where there is a large difference
in the estimated hazard ratios between these two models.

The advantage of using the parametric approach is the ease of obtaining predictions.
The following code obtains the predictions for the linear predictor, the survival function,
and the hazard function. Confidence intervals can be obtained by adding the ci option.
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predict xb, xb
predict s, survival
predict h, hazard
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Figure 1. Predictions from proportional hazards model for breast cancer data

Figure 1(a) shows the predicted log cumulative hazard function. This is the scale we
are modeling on. Figure 1(b) also shows the predicted log cumulative hazard function,
but now it is plotted against log time. This shows the reason why the splines are a
function of log time; the curve is generally much more stable on this scale. Figure 1(c)
shows the predicted survival curves for the five deprivation groups. This shows that
survival is worse as deprivation increases. Finally, figure 1(d) shows the predicted hazard
function. The hazard function has been multiplied by 1,000 to give the mortality rate
per 1,000 person-years. There is an initial sharp decrease in the hazard rate, followed by
an increase until about 1.5 years. Because these fitted values come from a proportional
hazards model, these lines are all proportional.

5.2 Time-dependent effects

One option to fit time-dependent hazard ratios is to use stsplit to split the time scale
and fit piecewise hazard ratios. See Cleves et al. (2008) for examples of how to do this
for a Cox model. However, we will concentrate on continuous time-dependent effects
using restricted cubic splines.

For simplicity, we have dropped the three middle deprivation groups and are just
comparing the most deprived group with the most affluent group. The following code
allows the effect of deprivation group 5 (dep5) to be time dependent:
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. stpm2 dep5, df(5) scale(hazard) tvc(dep5) dftvc(3) nolog

Log likelihood = -8751.407 Number of obs = 9721

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
dep5 .3002046 .0400425 7.50 0.000 .2217228 .3786865
_rcs1 .7910193 .0208548 37.93 0.000 .7501446 .8318939
_rcs2 -.030325 .0163107 -1.86 0.063 -.0622933 .0016433
_rcs3 .0533712 .0076102 7.01 0.000 .0384555 .068287
_rcs4 .0074654 .00348 2.15 0.032 .0006448 .014286
_rcs5 -.00016 .0016231 -0.10 0.921 -.0033412 .0030212

_rcs_dep51 -.0970786 .0306738 -3.16 0.002 -.1571981 -.0369591
_rcs_dep52 .0196886 .0230924 0.85 0.394 -.0255717 .064949
_rcs_dep53 .0012426 .0098037 0.13 0.899 -.0179723 .0204574

_cons -1.480394 .0240537 -61.55 0.000 -1.527539 -1.43325

The tvc(dep5) option states that the dep5 variable is to be time dependent. The
dftvc(3) option requests that the time dependence be modeled using restricted cu-
bic splines with 2 internal knots. The baseline is still being modeled using 5 df.
Thus there are five derived spline variables for the baseline log cumulative hazard
( rcs1- rcs5) and three derived spline variables for the time-dependent effect of dep5
( rcs dep51- rcs dep53).

Figure 2 shows the estimated hazard rates for the two deprivation groups from this
model together with the estimated hazard rates from a proportional hazards model.
This clearly shows that the hazard rates become closer over time and that the time-
dependent effects are noticeably different from those from the proportional hazards
model.
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Figure 2. Hazard rates for most deprived versus most affluent group from model with
time-dependent effects

It is useful to quantify differences between groups, but each parameter estimated
from the above model is fairly meaningless taken on its own, and so it is best to obtain
predictions for functions of interest by using the predict command:

. predict hr, hrnum(dep5 1) hrdenom(dep5 0) timevar(timevar) ci

. predict hdiff, hdiff1(dep5 1) hdiff2(dep5 0) timevar(timevar) ci

. predict sdiff, sdiff1(dep5 1) sdiff2(dep5 0) timevar(timevar) ci

The time-dependent hazard ratio is obtained with the hrnum() and hrdenom() op-
tions. These options are fairly general and can be used to obtain the estimated hazard
ratio for potentially any two covariate patterns, but this simple model is just comparing
the hazard ratio for when dep5 = 1 with when dep5 = 0. Alternative comparisons can
be made by calculating the difference in the hazard rates by using the hdiff1() and
hdiff2() options and for the difference in survival functions by using the sdiff1()
and sdiff2() options.

Figure 3(a) shows the time-dependent hazard ratio with 95% confidence intervals.
The deprived group has a mortality rate about twice that of the affluent group at the
start of follow-up. The ratio decreases as follow-up time increases. After about 3.5
years, the hazard rates are very similar, which we can see because the hazard ratio
is approximately 1. Figure 3(b) shows the difference in hazard rates between the two
groups. In the first year of follow-up, there are approximately 40 more deaths per
1,000 person-years in the deprived group when compared with the affluent group. This
difference decreases over time, and from about 3.5 years, there is very little difference
between the two groups. Figure 3(c) shows the estimated survival curves from the
two groups, which clearly show a difference that is quantified in figure 3(d). At 3
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years postdiagnosis, there is an approximate 6% difference in survival, which stays
approximately constant to the end of follow-up at 5 years.
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Figure 3. Comparison of affluent and deprived groups: (a) hazard ratio, (b) hazard
difference, (c) survival curves, and (d) difference in survival curves

It is useful to investigate how changing the number of knots impacts the estimated
hazard ratio. Figure 4 shows the estimated hazard ratio for a model using 5 df for
the baseline hazard and between 1 and 5 df (using the dftvc() option) for the time-
dependent effect of deprivation group. The lowest Akaike’s information criterion and
Bayesian information criterion are for the model with 1 df, indicating that the time-
dependent effect can be expressed as a linear function of log time. However, the four
other models have very similar fitted values, with some evidence of over-fitting with 5
df.



P. C. Lambert and P. Royston 283

1

1.5

2

2.5

3

ha
za

rd
 ra

tio

0 1 2 3 4 5
Time from Diagnosis (years)

1 df
2 df
3 df
4 df
5 df

Figure 4. Comparison of time-dependent hazard ratios for models with 5 df for baseline
effect and between 1 and 5 df for time-dependent effect

A disadvantage of modeling on the log cumulative hazard scale when compared with
the more standard modeling on the log hazard scale is that when there are two variables
with time-dependent effects, the hazard ratio for the first variable can be dependent on
the level of the second variable. This is shown in figure 5 where year of diagnosis
has been added to the model as a time-dependent effect. The hazard ratio, and its
95% confidence interval, for deprivation group has been calculated at 1986 and 1990.
Although there is close agreement between the two hazard ratios, they are not identical
as they would be when modeling on the log hazard scale.

(Continued on next page)
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Figure 5. Comparison of time-dependent hazard ratio for deprivation group for different
levels of a second time-dependent covariate

5.3 Age as the time scale

We now switch to a different dataset to show how to model with age as the time scale.
The study compares incidence of hip fracture of 17,731 men diagnosed with prostate
cancer treated with bilateral orchiectomy with 43,230 men with prostate cancer not
treated with bilateral orchiectomy and 362,354 men randomly selected from the general
population (Dickman et al. 2004). The outcome was femoral hip fractures. The risk of
fracture is likely to vary by age, and thus age is used as the main time scale. With age
as the time scale, the hazard rate gives us the age-specific incidence rates.

Delayed entry is defined using the stset command, and stpm2 then has exactly
the same syntax as that for a standard analysis. For example, in the code below,
the date of hip fracture or censoring is stored in the variable dateexit, the date of
cancer diagnosis is stored in the variable datecancer and the date of birth is stored in
the variable datebirth. With use of the enter(), origin(), and exit() options, we
can declare that a subject becomes at risk on the date he or she was diagnosed with
cancer and stops being at risk on the day he or she had a hip fracture or was censored
(death, migration, or end of study) or reached the age of 100. We then fit proportional
and nonproportional hazard models for the effect for subjects without an orchiectomy
(noorc) and for subjects with an orchiectomy (orc).
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Figure 6(a) shows the incidence rate of hip fracture as a function of age from a
proportional hazards model with 5 df for the baseline hazard. This shows how the
incidence rate of hip fracture increases with age. There appears to be a difference in
the incidence rate between the three groups with a hazard ratio of 1.37 (95% CI: 1.28 to
1.46) for prostate cancer patients without orchiectomy and 2.10 (95% CI: 1.93 to 2.28) for
patients with orchiectomy. However, there is strong evidence of nonproportionality of
the incidence (hazard) rates in these data, and figure 6(b) shows the estimated incidence
rates as a function of age with 3 df used for the time-dependent effect. There appears
to be a greater difference in the hazard rates (on the log scale) for younger patients.
Figure 6(c) quantifies this difference with a time-dependent hazard ratio comparing
those receiving an orchiectomy with the control group. There is a twentyfold difference
in the incidence of hip fracture for the youngest men. For those aged 85 and over, the
relative increase in risk is lower but is still double that in the control group. However,
the large increase in risk at a young age is actually less important in terms of the number
of individuals affected. Figure 6(d) shows the difference in the incidence rates between
those receiving a bilateral orchiectomy and the control group. The difference at younger
ages, where the relative increase is greatest, is lower than at older ages. This is due to
the incidence rate being so low at younger ages.

stset dateexit, fail(frac = 1) enter(datecancer) origin(datebirth) ///
id(id) scale(365.25) exit(time datebirth + 100*365.25)

stpm2 noorc orc, df(5) scale(h) eform
stpm2 noorc orc, df(5) scale(h) tvc(noorc orc) dftvc(3)
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Figure 6. Analysis of orchiectomy data using age as the time scale: (a) predicted
incidence rates as a function of age from a proportional hazards model, (b) predicted
incidence rates as a function of age from a nonproportional hazards model, (c) incidence-
rate ratio as a function of age for orchiectomy versus control, and (d) difference in hazard
rates for orchiectomy versus control
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5.4 Multiple time scales

There are in fact two time scales of interest in the orchiectomy study. Not only is the
age of the patient of interest but also is the time since orchiectomy. Multiple time scales
are usually modeled using Poisson regression (Carstensen 2004). In stpm2, a second
time scale can be modeled using stsplit and including dummy covariates for each
time interval. Thus one time scale is modeled continuously, and the other is modeled
using categories.

. stsplit fu, at(1 2 3 4 5 7 10 15) after(datecancer)
(1475609 observations (episodes) created)

. xi: stpm2 i.fu noorc orc year_diag, df(5) scale(hazard) nolog eform
i.fu _Ifu_0-15 (naturally coded; _Ifu_0 omitted)
note: delayed entry models are being fitted

Log likelihood = -16475.169 Number of obs = 1898907

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
_Ifu_1 1.022544 .0363008 0.63 0.530 .9538148 1.096226
_Ifu_2 1.004172 .0371311 0.11 0.910 .9339707 1.079649
_Ifu_3 1.007609 .038827 0.20 0.844 .9343118 1.086656
_Ifu_4 .9785442 .0398745 -0.53 0.595 .9034311 1.059902
_Ifu_5 .992808 .0357086 -0.20 0.841 .9252304 1.065321
_Ifu_7 .9951544 .0370239 -0.13 0.896 .9251715 1.070431
_Ifu_10 .9931954 .0427913 -0.16 0.874 .9127694 1.080708
_Ifu_15 .9449704 .0652245 -0.82 0.412 .8254027 1.081858

noorc 1.36563 .047332 8.99 0.000 1.275942 1.461623
orc 2.100881 .0888205 17.56 0.000 1.933813 2.282382

year_diag .9980222 .0018848 -1.05 0.294 .9943349 1.001723
_rcs1 2.314448 .1905098 10.19 0.000 1.969619 2.719648
_rcs2 .8731181 .0237939 -4.98 0.000 .8277064 .9210213
_rcs3 1.023806 .0050983 4.72 0.000 1.013862 1.033847
_rcs4 1.00204 .0023906 0.85 0.393 .9973658 1.006737
_rcs5 1.003079 .0013675 2.25 0.024 1.000402 1.005762

This is a proportional hazards model. The rcs# terms model the baseline (log)
cumulative hazard (as a function of attained age). The Ifu # terms are dummy vari-
ables for years since diagnosis, where the coefficients are (log) hazard ratios comparing
all intervals with the reference (0–1 years). There appears to be little effect of follow-up,
as was found in the original article. Time-dependent effects could be added for age by
using the tvc() and dftvc() options. Time-dependent effects for years since diagnosis
could be added by incorporating interactions between the exposure covariates (noorc
and orc) and the Ifu # terms.
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5.5 Relative survival

Relative survival (or excess mortality) models can be fit simply by adding the bhazard()
option. Estimation and predictions continue as for standard models. This is one of the
key advantages of stpm2 in that it brings standard survival and relative survival models
into the same framework. We return to the breast cancer data, but we now include
women aged over 50 years. We will compare five age groups: <50, 50–59, 60–69, 70–
79, and 80+. The analysis of all-cause mortality can be misleading because the older a
woman becomes, the more likely it is that she will die of other causes. Relative survival
models overcome this by incorporating the expected mortality due to other causes. The
expected hazard rate at the time of death or censoring needs to be merged into the
dataset. The easiest way to do this is to create the relevant updated merge variable
after using stset, as follows.

stset survtime, failure(dead == 1) exit(time 5) id(ident)
gen age = int(min(agediag + _t,99))
gen year = int(yeardiag + _t)
sort sex region caquint year age
merge sex region caquint year age using "../../Data/popmort_UK", nokeep

An all-cause flexible parametric model including age group can be seen below.

. stpm2 agegrp2-agegrp5, df(5) scale(hazard) eform nolog

Log likelihood = -139425.46 Number of obs = 115331

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
agegrp2 1.116145 .0183245 6.69 0.000 1.080801 1.152644
agegrp3 1.284454 .0195326 16.46 0.000 1.246736 1.323313
agegrp4 1.979577 .029436 45.92 0.000 1.922716 2.038119
agegrp5 4.155234 .0631771 93.68 0.000 4.033236 4.280922

_rcs1 2.452246 .010547 208.56 0.000 2.431661 2.473005
_rcs2 .9542421 .0027479 -16.26 0.000 .9488715 .9596432
_rcs3 .9695571 .0015477 -19.37 0.000 .9665283 .9725953
_rcs4 1.015823 .0009726 16.40 0.000 1.013918 1.017731
_rcs5 .9996703 .0005226 -0.63 0.528 .9986466 1.000695

Not surprisingly, there is a large effect of age with older women being at increased
risk. However, it is not known which of these deaths are due to breast cancer and which
are due to other causes. We thus fit a relative survival model by using the bhazard()
option:

(Continued on next page)
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. stpm2 agegrp2-agegrp5, df(5) scale(hazard) bhazard(rate) eform nolog

Number of obs = 115331
Wald chi2(4) = 3267.44

Log likelihood = -133915.41 Prob > chi2 = 0.0000

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
agegrp2 1.051428 .0182859 2.88 0.004 1.016192 1.087886
agegrp3 1.072864 .0181672 4.15 0.000 1.037842 1.109069
agegrp4 1.411935 .0250603 19.44 0.000 1.363662 1.461917
agegrp5 2.651379 .0510765 50.62 0.000 2.553137 2.753401

_rcs1 2.342038 .0111471 178.80 0.000 2.320292 2.363988
_rcs2 .9607407 .0030349 -12.68 0.000 .9548108 .9667075
_rcs3 .9697656 .0017879 -16.65 0.000 .9662677 .9732762
_rcs4 1.022492 .0011734 19.38 0.000 1.020195 1.024794
_rcs5 1.000382 .0006277 0.61 0.543 .9991522 1.001613

In a relative survival model, we get excess hazard ratios as opposed to hazard ratios.
The excess hazard ratios are lower than the hazard ratios because the latter incorporate
mortality due to both breast cancer and mortality due to other causes.

All the topics covered so far are easily extended to relative survival. Thus we can
fit models with smooth estimates of the baseline excess hazard. We can estimate ex-
cess hazard ratios and time-dependent excess hazard ratios. We can model on the
proportional-odds and other scales. We can use age as the time scale. We can use
multiple time scales. We can easily obtain predictions of the baseline excess hazard,
relative survival, time-dependent excess hazard ratios, difference in excess hazard rates,
etc.

One useful summary is to report centiles of the survival function. The table below
shows the time at which the relative survival function = 0.75, i.e., an estimate of the
time at which 25% of women have died of breast cancer, with 95% confidence intervals.

. tabdisp agegrp, cellvar(c25 c25_lci c25_uci) format(%4.2f)

agegrp c25 c25_lci c25_uci

1 3.94 3.83 4.05
2 3.41 3.31 3.51
3 2.89 2.81 2.97
4 1.75 1.70 1.80
5 0.48 0.45 0.51

5.6 Further possibilities

There are other possibilities from these models that have not been covered in this
article. These include obtaining average and adjusted survival curves by using the
meansurv option, obtaining up-to-date estimates of survival by using period analysis
(Brenner and Gefeller 1997), dealing with multiple events, and estimating the net and
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crude probabilities of death from relative survival models, to mention but a few. We
aim to write further articles for the Stata Journal on some of these topics.

6 Conclusion

The Cox model is perhaps overused in medical and other research. For a proportional
hazards model, the estimates you get from a Cox model and the flexible parametric
approach will be very similar. However, with the flexible parametric approach, you get
several advantages associated with parametric models. The new Stata stpm2 command
takes the methodology a step further, and we hope that these models will become a
useful tool in medical and other research.
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