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Abstract. There is increasing interest in the medical world in the possibility of
tailoring treatment to the individual patient. Statistically, the relevant task is to
identify interactions between covariates and treatments, such that the patient’s
value of a given covariate influences how strongly (or even whether) they are likely
to respond to a treatment. The most valuable data are obtained in randomized
controlled clinical trials of novel treatments in comparison with a control treat-
ment. We describe two techniques to detect and model such interactions. The first
technique, multivariable fractional polynomials interaction, is based on fractional
polynomials methodology, and provides a method of testing for continuous-by-
binary interactions and by modeling the treatment effect as a function of a con-
tinuous covariate. The second technique, subpopulation treatment-effect pattern
plot, aims to do something similar but is focused on producing a nonparametric
estimate of the treatment effect, expressed graphically. Stata programs for both
of these techniques are described. Real data for brain and breast cancer are used
as examples.

Keywords: st0164, mfpi, mfpi plot, stepp tail, stepp window, stepp plot, contin-
uous covariates, treatment–covariate interaction, clinical trials, fractional polyno-
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1 Introduction

There is increasing interest in the medical world in the possibility of tailoring treatment
to the individual patient. Recently (the field is still in its infancy), excitement has fo-
cused on the use of genetic testing to see if patients are likely to respond differently to
given therapies according to their genetic makeup. More prosaically, there is increasing
interest in examining data from randomized controlled clinical trials. Evidence of dif-
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ferential response to treatment is sought through interactions between treatment and
covariates. Because treatment is, by design, asymptotically independent of covariates,
such interactions, if they exist, should be essentially independent of other influential
covariates.

One issue that has received little attention in the literature is how to handle interac-
tions between continuous predictors and treatment. The traditional approach has been
to categorize continuous factors and apply standard tests of interaction. However, cat-
egorization is inefficient, and the results may depend strongly on the cutpoints chosen.
An alternative approach called multivariable fractional polynomials interaction (MFPI),
proposed by Royston and Sauerbrei (2004), uses fractional polynomials for continuous
predictors. A more exploratory technique, introduced by Bonetti and Gelber (2000) and
further developed by Bonetti and Gelber (2004), is the subpopulation treatment-effect
pattern plot (STEPP).

In this article, we aim to present software implementing the MFPI and STEPP algo-
rithms and providing postestimation plots, with examples. We give a brief description
of the two techniques here; detailed accounts can be found in the original articles and
elsewhere.

2 MFPI

2.1 Default algorithm

To investigate possible interactions between treatment and continuous covariates, Roys-
ton and Sauerbrei (2004) proposed the MFPI algorithm as an extension of the multivari-
able fractional polynomial (MFP) algorithm (Sauerbrei and Royston 1999) for building
regression models, by combining variable selection with determination of functional
forms for continuous predictors. See also [R] mfp in the Stata Reference Manual. Vari-
ables are selected by backward elimination. The algorithm examines in a systematic
fashion whether the effect of a continuous covariate is better modeled by a nonlinear
member of the class of fractional polynomial (FP) functions or by a linear function.

An FP function with one power term is known as an FP1 function. It takes the form
β1x

p1 , with the power, p1, chosen from the set S = (−2,−1,−0.5, 0, 0.5, 1, 2, 3), where
x

0 denotes log x (Royston and Altman 1994). An FP function with two power terms is
called an FP2 function and takes the form β1x

p1 + β2x
p2 , with p1 and p2 both chosen

from S. In the mathematical limit as p2 tends to p1, a so-called “repeated-powers” FP2

function is obtained, taking the form β1x
p1 +β2x

p2 log x. In all, there are 8 FP1 functions
(including the linear function) and 36 FP2 functions (including eight repeated-powers
functions).

The MFPI algorithm models the prognostic effect of z by FP2 transformations within
treatment groups, but under the constraint of the same powers. As explained by
Royston and Sauerbrei (2004), constraining the powers to be equal reduces instabil-
ity due to overfitting in the fitted functions. This can be done in a univariate setting
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or by adjusting the model for other covariates. Assume that the treatment variable, t,
has two levels, coded 0 and 1. The influence of covariate z on the estimated treatment
effect is determined by f̂(z) = f̂1(z) − f̂0(z), where f̂i(z), i = 0, 1, are the estimated
functions for the prognostic effect of z in treatment group i. The plot of f̂(z) together
with a pointwise confidence interval is called a treatment-effect plot. Comparing the
model with separate functions for z (i.e., functions with different βs, because the power
terms are the same) in treatment groups with a “main” effects model with the same
function (i.e., a function with an identical β) in both groups is a test of interaction.
The difference in deviances is compared with χ2 on 2 degrees of freedom (df). For the
investigation of an interaction of treatment with binary or categorical variables, MFPI

uses the usual likelihood-ratio test for an interaction in a model with main effects and
multiplicative interaction terms. Categorical variables with greater than two levels re-
quire the usual assumptions and df. They cause the usual difficulties, including pairwise
verses global comparisons and the need for trend tests for ordered categories.

MFPI allows adjustment for other variables in a multivariable setting in the context
of different types of regression models. Royston and Sauerbrei (2004) propose the deter-
mination of an “adjustment” model as a preliminary step, preferably by MFP, without
considering the covariate z. For more details, see Royston and Sauerbrei (2004).

2.2 Some variants

The algorithm just described was published by Royston and Sauerbrei (2004). However,
some modifications are possible. For reasons that soon become apparent, let’s term
the published algorithm FLEX1 (i.e., the least flexible). The first variant (FLEX2) is to
determine the best-fitting FP power(s) in the interaction model, constraining the powers
of z to be the same for each level of the treatment variable. These same powers are
then used for the main effect of z. For binary t, the z × t interaction model has 3 df
(1 power, 2 βs) for FP1 functions and 6 df (2 powers, 4 βs) for FP2 functions of z. The
corresponding main-effects models have 1 and 2 df. Therefore, the test of interaction
has 2 and 4 df for FP1 and FP2 functions, respectively.

The second variant (FLEX3) takes the same approach to the interaction but reesti-
mates the FP powers for the main effect. This increases the flexibility of the main effect
function and thereby reduces the df for the interaction. The test of interaction has 1
and 2 df for FP1 and FP2 functions, respectively.

The third variant (FLEX4) optimizes the powers at all levels of the treatment variable
for the interaction and for the main effect. The required powers in such a model actually
have to be estimated by MFP, making FLEX4 the most computationally intensive of the
4 variants (the least intensive is FLEX1). The df for the test of interaction are the same
as for FLEX2.

Significance tests for interactions in the FLEX2, FLEX3, and FLEX4 variants, based on
the χ2 distribution with the stated df, should be regarded as provisional. For example,
the constraint on the powers for the interaction model in FLEX2 may affect the df but is
not explicitly accounted for. Limited simulation studies have confirmed that likelihood-
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ratio tests for FLEX1 preserve the correct nominal size (Sauerbrei, Royston, and Zapien
2007). Simulation work is required to assess the type I error probabilities of the other
three variants.

These variants are available via the flex() option of the mfpi routine, described in
sections 4–6.

3 STEPP

The STEPP is based on dividing the observation into subgroups defined with respect to
the covariate (z) of interest and estimating the effect of treatment (t) separately within
each subpopulation. To increase the number of patients who contribute to each point
estimate and hence to improve the precision of the individual estimates, subpopulations
overlap.

Two ways of defining subpopulations are proposed, as indicated in figure 1.

Figure 1. Diagrammatic representation of a STEPP. Left panel: sliding-window variant;
right panel: tail-oriented variant. The horizontal axis indexes the various subpopula-
tions (shaded area) for which treatment effects are estimated and shows the range of
covariate values used to define the cohort of patients included in each subpopulation.
Adapted from Sauerbrei, Royston, and Zapien (2007) by permission of Elsevier.

The horizontal axis in figure 1 indexes the various subpopulations for which treatment
effects are estimated and shows the range of covariate values used to define the cohort
of patients included in each subpopulation.

The tail-oriented (TO) variant has the overall population as the center group. With
increasing distance from the center, more and more patients with high covariate values
(to the left side) or low covariate values (to the right side) are deleted. Subpopulations
in the sliding-window (SW) variant have an overlapping part and a part that differs
between neighboring subpopulations. The number of subpopulations and the percentage
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of overlapping patients are important parameters of this variant. To define the size of the
subpopulations, the SW variant has two parameters, n1 and n2. A subpopulation must
have at least n2 patients, of which at least n2 − n1 patients are required to be different
between neighboring subpopulations. Therefore, n2 must exceed n1. The amount of
discreteness of the continuous variable determines the size of each subpopulation. The
TO variant has a parameter, g, giving g − 1 subpopulations where patients with larger
values are eliminated and g − 1 subpopulations excluding patients with smaller values,
a total of 2g − 1 subpopulations. For further details on how the subpopulations are
created, see Bonetti and Gelber (2000).

If there is no interaction between z and t, the estimated treatment effects in the
subpopulations defined by z should be similar to the treatment effect in the overall
population. Plots showing the estimated treatment effect, with confidence intervals, in
the subpopulations and tests based on the deviation of treatment effects in the subpop-
ulations from those in the overall population are suggested for the investigation of an
interaction between z and t. Each z-based subgroup is represented by the mean of its
z values. For more details, see Bonetti and Gelber (2004). We considered several tests;
because testing seems to be a topic of active research, we did not include any tests in
the present software.

Unlike with MFPI, although STEPP is defined in terms of a treatment effect, t, that
varies with z, there is no requirement that t be a discrete variable. STEPP could be used
equally well to investigate an interaction between z (modeled “nonparametrically”) and
a continuous variable, t (modeled linearly). The plot would show the variation in a
regression coefficient estimated in the various subgroups created by STEPP. As with
MFPI, for a multilevel treatment variable, STEPP can be applied to produce a separate
treatment-effect plot for each treatment in comparison with the chosen base level of t.

4 Syntax

mfpi regression cmd
[
yvar

] [
xvarlist

] [
if

] [
in

] [
weight

]
, with(withvar)[

adjust(adj list) adjvars(varlist) all detail df(df list) flex(#)

fp1(fp1 varlist) fp2(fp2 varlist) gendiff(stubname) genf(stubname)

linear(linear varlist) mfpopts(mfp options) noscaling select(select list)

showmodel topcoded regression cmd options
]

mfpi plot varname
[
if

] [
in

]
, stubname(stubname)

[
vn(#) level(#)

plot(plot) graph options
]

stepp tail regression cmd
[
yvar

]
zvar

[
covarlist

] [
if

] [
in

] [
weight

]
,

gen(stubname) g(#) with(varlist)
[
regression cmd options

]
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stepp window regression cmd
[
yvar

]
zvar

[
covarlist

] [
if

] [
in

] [
weight

]
,

gen(stubname) n1(#) n2(#) with(varlist)
[
regression cmd options

]
stepp plot stubname

[
, vn(#) plot(plot) graph options

]
where regression cmd may be clogit, cnreg, glm, intreg, logistic, logit, mlogit,
nbreg, ologit, oprobit, poisson, probit, qreg, regress, rreg, stcox, stpm, stpm2,
streg, or xtgee. All weight types supported by regression cmd are allowed.

stubname for stepp plot is as specified in the gen(stubname) option of stepp tail
and stepp window (see also the vn() option described in section 6.2). varname for
mfpi plot is a member of linear varlist, fp1 varlist, or fp2 varlist.

5 Description

mfpi is designed to investigate the interaction of a categorical covariate (withvar) with
a covariate(s) specified by any combination of the fp1(), fp2(), or linear() options.
Often withvar will be the treatment variable in a randomized controlled trial of one or
more treatments against the control.

mfpi plot produces a treatment-effect plot derived from variables saved with the
gendiff() option of mfpi. With more than two treatments, the control arm is taken as
the group with the lowest value of withvar. Only pairwise comparisons with this level
are supported.

stepp tail and stepp window compute STEPP estimators for graphical exploration
of a treatment–covariate interaction. stepp tail provides the TO estimator, and
stepp window provides the SW estimator. zvar is the continuous covariate whose inter-
action with the treatment is to be studied, and covarlist is a list of other covariates used
to adjust each fitted model to the treatment variable(s) defined by with(). The results
can be plotted with stepp plot.

6 Options

6.1 Options for mfpi

with(withvar) is required and defines the categorical variable whose interactions with
variables specified in linear(), fp1(), or fp2() are of interest. withvar must have
at least two distinct, nonmissing values, but the codes are arbitrary because they
are mapped to 0, 1, 2, etc., internally. The category corresponding to the lowest
value is taken as the reference category (level 0).

adjust(adj list) determines the adjustment of FP-transformed variables. The most
likely requirement is to suppress adjustment for all such variables, which is done with
adjust(no). The default behavior is adjustment to the mean of each continuous
predictor. For further details, see the description of the same option in [R] fracpoly.
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adjvars(varlist) includes varlist as linear main-effects terms in all the fitted models.

all allows prediction (see the gendiff() and genf() options) for all available cases,
irrespective of exclusion by if, in, or weights.

detail gives additional details of the fitted models.

df(df list) sets up the df for each predictor in xvarlist. The df (not counting the
regression constant, cons) are twice the degree of the FP, so, for example, a member
of xvarlist fit as a second-degree FP (FP2) has 4 df. The first item in df list can be
either # or varlist:#. Subsequent items must be varlist:#. Items are separated by
commas, and varlist is specified in the usual way for variables. With the first type
of item, the df for all predictors are taken to be #. With the second type of item,
all members of varlist (which must be a subset of xvarlist) have # df.

The default df for a predictor of type varlist specified in xvarlist but not in df list
are assigned according to the number of distinct (unique) values of the predictor, as
follows:

No. of distinct values Default df

1 (invalid—covariate has variance 0)
2–3 1
4–5 min(2, dfdefault(#))
≥ 6 dfdefault(#)

dfdefault(#) is an option of mfp (see the mfpopts() option and help mfp); the
default is dfdefault(4), meaning an FP2 function.

Here are some examples of df():

• In df(4), all variables have 4 df.

• In df(2, weight displ:4), weight and displ have 4 df, and all other vari-
ables have 2 df.

• In df(1, weight displ:4, mpg:2), weight and displ have 4 df, mpg has 2
df, and all other variables have 1 df.

• In df(weight displ:4, 2), all variables have 2 df because the final 2 overrides
the earlier 4.

flex(#) defines the flexibility of the main-effects and interaction models, where # = 1
is the least flexible and # = 4 is the most flexible (see section 2.2). The default is
flex(1).

fp1(fp1 varlist) defines a list of continuous variables whose interactions with withvar
are to be investigated by fitting FP functions of degree 1 (i.e., FP1 functions) to each
member of fp1 varlist in turn, at each level of withvar. Also see flex().
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fp2(fp2 varlist) defines a list of continuous variables whose interactions with withvar
are to be investigated by fitting FP functions of degree 2 (i.e., FP2 functions) to each
member of fp2 varlist in turn, at each level of withvar. Also see flex().

gendiff(stubname) generates a new variable(s) called stubname# j that contains fj −
f0 , the difference between the estimated functions (at level j minus level 0 of with-
var), for the #th member of the list composed of linear varlist, fp1 varlist, and
fp2 varlist, in that order. The difference fj − f0 is an estimate of the covariate-
specific effect of level j compared with level 0 (e.g., the covariate-specific treatment
effect). gendiff() also creates new variables called stubname#s j, which contains
the standard error of fj − f0 , and stubname#lb j and stubname#ub j, the lower and
upper 95% confidence limits, thus providing the quantities necessary for a treatment-
effect plot.

genf(stubname) generates new variables called stubname# 0, stubname# 1, etc., that
contain the fitted functions at levels 0, 1, etc., of withvar, respectively, for the #th
member of the list composed of linear varlist, fp1 varlist, and fp2 varlist, in that
order. For variables in fp1 varlist and fp2 varlist, the same FP transformation is used
at each level of withvar. The estimated function at level 0 of withvar is adjusted to
have mean 0.

linear(linear varlist) defines a list of variables whose linear interactions with withvar
are to be investigated. If a categorical variable in linear varlist has more than two
levels, the necessary dummy variables must be created and placed between paren-
theses to indicate that they should be tested together. More properly, linear varlist
is a list of variables of which some may be dummies for categorical variables.

For example, linear((who2 who3)) binds binary predictors (dummy variables)
who2 and who3 together to create a predictor with 2 df for its main effect.

mfpopts(mfp options) supplies mfp options to mfpi for the creation of the adjustment
model from xvarlist.

noscaling suppresses scaling of all the continuous variables that are subject to FP

transformation. The default is automatic application of scale factors; the behavior
can be turned off for all such variables by using noscaling. For further details, see
the description of the same option for fracpoly and fracgen in [R] fracpoly.

select(select list) sets the nominal p-values (significance levels) for variable selection
among xvarlist by backward elimination. See the select() option of mfp for further
details. A typical usage is select(0.05), which selects all variables in xvarlist that
are significant at the 5% level according to a backward stepwise algorithm.

showmodel shows the variables selected from xvarlist by mfp, together with their FP

powers, where relevant. showmodel is a concise alternative to detail.

topcoded top-codes the with() variable, that is, the reference category is the highest
value of withvar. The default is bottom-coding, that is, the reference category is the
lowest value of withvar.
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regression cmd options are any options for regression cmd.

6.2 Options for mfpi plot

stubname(stubname) is required if the gendiff() option to mfpi was not specified. If
the gendiff() option to mfpi was specified, then stubname is the string specified
in gendiff().

vn(#) identifies the variable in linear(), fp1(), and fp2(), in that order, whose
associated treatment effect is to be plotted. Only one variable can be plotted in a
given call to mfpi plot. For example, if linear(x1 x2) fp1(x1 x3) fp2(x3) was
specified, the list of variables is x1 x2 x1 x3 x3, and the total number of variables
is 5 (not 3). Thus # would be an integer between 1 and 5. The default is vn(1).

level(#) defines the desired comparison between levels of withvar. Levels of withvar
are coded 0, 1, 2, etc., with the reference category being level 0. For example,
specifying level(2) would give a treatment-effect plot comparing level 2 of withvar
with level 0. The default is level(1).

plot(plot) provides a way to add other plots to the generated graph.

graph options are any options of graph twoway, such as xtitle() and ytitle().

6.3 Options for stepp tail and stepp window

gen(stubname) creates five new variables: stubnameb, stubnamese, stubnamemean,
stubnamelb, and stubnameub. stubnameb is the estimated regression coefficient in
each subpopulation; stubnamese is its standard error; stubnamemean contains the
mean of zvar in each subpopulation; and stubnamelb and stubnameub are pointwise
95% confidence limits for stubnameb. If with() includes more than one variable,
the created variables have 2, 3, etc., appended to the names, e.g., stubnameb2. The
confidence level of the intervals can be altered by using the standard Stata set level
# command.

g(#) (stepp tail only) defines the number of subpopulation groups. The actual num-
ber of subpopulations used is 2×# −1.

n1(#) (stepp window only) defines the number of individuals belonging to only one of
two neighboring subpopulations.

n2(#) (stepp window only) defines the number of individuals in a subpopulation. The
overlap between two neighboring subpopulations is n2() minus n1() individuals.

with(varlist) defines the list of variables whose interactions with zvar are to be studied.
Typically, varlist will comprise just one binary variable, representing the two arms
of a parallel-group clinical trial.

regression cmd options are any options for regression cmd.
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6.4 Options for stepp plot

vn(#) specifies an integer defining the variable number in with(), when more than one
variable is specified. When only one variable is specified, vn() is optional.

plot(plot) provides a way to add other plots to the generated graph.

graph options are any options of graph twoway, such as xtitle() and ytitle().

7 Example 1: Glioma study

7.1 MFPI analysis

As with many Stata commands, mfpi is not as complex as it first appears in a formal
description. It is best explained through illustrative examples.

A randomized trial to compare two chemotherapy regimes included 447 patients with
malignant glioma, an aggressive type of brain cancer. At the time of the analysis, 293
patients had died, and the median survival time from the date of randomization was
about 11 months. Survival times are analyzed with the Cox model. Apart from therapy,
data on several variables that might affect survival time were recorded (see table 1).

Table 1. Glioma data

Name Details Name Details

sex Sex cort Cortisone (Y/N)
time Interval to diagnosis epi Epilepsy (Y/N)

(1 = short, 2 = long) amnesia Amnesia (Y/N)
gradd1 Malignancy grade† ops Organic psychosyndrome (Y/N)
gradd2 . . . aph Aphasia (Y/N)
age Age, yr (continuous) karno Karnofsky index (continuous)
surgd1 Resection type† therapy Randomized treatment
surgd2 . . . survtime Time to death, days∗

convul Convulsions (Y/N) cens Censoring∗(0 = censored, 1 = died)
∗response variable
†categorical predictor represented by two or more dummy variables and considered
as an independent predictor

The two categorical variables, each with three levels (the type of surgical resection
and the grade of malignancy), were each represented by two dummy variables. Here
we consider the Karnofsky index as a continuous variable (it has 13 distinct values).
Complete data on these predictors were available for 411 patients (274 events) and are
used here. The study has previously been used in methodological investigations (e.g.,
Ulm et al. [1989]; Sauerbrei and Schumacher [1992]).
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Suppose we wish to investigate interactions between therapy and the two available
continuous predictors, age and karno. We apply mfpi to these variables and include all
the other variables as possible confounders. We use the select(0.05) option to select
the confounder model at the 5% significance level. The list of candidate variables for
the confounder model includes age and karno; each of these variables is automatically
removed from the confounder model when its interaction with therapy is considered,
and the parameters for the other variables are reestimated. We consider linear, FP1,
and FP2 as possible models for age and karno:

. use glioma
(Glioma, complete cases+cont var)

. mfpi stcox sex time gradd1 gradd2 age karno surgd1 surgd2 convul cort epi
> amnesia ops aph, with(therapy) linear(age karno) fp1(age karno) fp2(age karno)
> select(.05) showmodel

Variables in adjustment model

sex: not selected
time: not selected

gradd1: power(s) = 1
gradd2: not selected

age: power(s) = 1
karno: not selected
surgd1: power(s) = 1
surgd2: not selected
convul: not selected

cort: not selected
epi: power(s) = 1

amnesia: not selected
ops: not selected
aph: not selected

Interactions with therapy (411 observations). Flex-1 model (least flexible)

Var Main Interact idf Chi2 P Deviance tdf AIC

age Linear Linear 1 3.19 0.0740 2684.515 3 2690.515
karno Linear Linear 1 13.65 0.0002 2669.695 3 2675.695
age FP1(2) FP1(2) 1 2.54 0.1107 2684.298 4 2692.298
karno FP1(-2) FP1(-2) 1 8.04 0.0046 2674.981 4 2682.981
age FP2(1 2) FP2(1 2) 2 2.96 0.2275 2683.881 7 2697.881
karno FP2(-2 3) FP2(-2 3) 2 13.83 0.0010 2669.050 7 2683.050

idf = interaction degrees of freedom; tdf = total model degrees of freedom

A word of explanation about idf and tdf may be helpful. Both are df only for
the interaction or main effects (or both) in question, ignoring the df for the adjustment
model (if any). tdf is the total of the df for the function in each treatment group
plus the df for the treatment effect. For example, in the above output, tdf for the FP2

× FP2 interaction is 7; this is made up of 1 for therapy, 4 for the four βs (two FP2

terms times two treatment groups) and 2 for the two FP2 powers. idf is the df for the
interaction terms. In the example just discussed, the main effect has two fewer df than
the interaction (two βs rather than four), so idf is 2. tdf is used when calculating
the Akaike’s information criterion (AIC), whereas idf is used in testing the deviance
difference of the interaction.
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The results regarding interactions are clear. Because all three p-values for age are
not significant at the 5% level, there is no definite evidence of an interaction between
age and therapy. We will not consider age any further. For karno, however, there is
strong evidence of an interaction. We are faced with a choice of three models (linear,
FP1, and FP2) for karno in its interaction with therapy. The AIC statistic presented in
the final column offers a method of selecting among these models. The AIC is a type
of likelihood that penalizes for model complexity. It is defined as the deviance (minus
twice the maximized log likelihood for the interaction model) plus twice the df of the
model. The model that minimizes the AIC can be chosen as the appropriate model. In
this example, we select the linear interaction model because its AIC of 2675.695 is lower
than that of the FP1 model (2682.981) and the FP2 model (2683.050).

To visualize the interaction between karno and therapy, we refit the linear interac-
tion model with the gendiff() option, and we construct a treatment-effect plot from
the saved d1 1, d1lb 1, and d1ub 1 variables (see figure 21):

. mfpi stcox, adjvars(gradd1 age surgd1) with(therapy) linear(karno) gendiff(d)

. mfpi_plot karno, ytitle("Log relative hazard")
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Figure 2. Glioma data. Left panel: treatment-effect plot for therapy by linear karno
interaction; right panel: prognostic effect of karno in each therapy group. The model
is adjusted for three other prognostic variables.

What we see is quite dramatic. For patients with low karno, the log-hazard ratio
is about 1, indicating that the more aggressive experimental therapy (therapy==1) can
actually kill people. Patients with a low Karnofsky index are very sick and may not

1. The mfpi plot command produces the left graph in figure 2. The command used to produce the
graph on the right is not shown.
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be able to tolerate toxic chemotherapy. For patients with high karno, the log-hazard
ratio is about −0.8, indicating a substantial reduction in the hazard. This type of
interaction, where there is a reversal of effect depending on the value of a covariate,
is known as qualitative and is rarely seen in clinical research. Alternatively described,
the prognostic effect of karno goes in opposite directions in the two treatment groups
(right-hand graph).

As a crude check of a postulated interaction derived by complex FP modeling,
Royston and Sauerbrei (2004) suggest dividing the continuous covariate into two to
four groups and plotting Kaplan–Meier graphs of the treatment effect in each group.
The resulting survival curves are not adjusted for other covariates, but if the interac-
tion is robustly present in the data, the changing treatment effect should nevertheless
be apparent in the resulting graphs. We create four approximately equal groups by cat-
egorizing karno at ≤ 60, 61 to 75, 76 to 85, and > 85 and produce the Kaplan–Meier
survival estimates:

. generate byte kg = 1 + (karno>60) + (karno>75) + (karno>85)

. forvalues j = 1/4 {

. sts graph if kg==`j´, by(therapy) xtitle("") ytitle("") title("Group `j´")

. name(g`j´) legend(off) plot1opts(clp(l)) plot2opts(clp(-))

. }

. graph combine g1 g2 g3 g4, l1title("Survival probability")
> b2title("Survival time, yr")

Although the trend across karno categories is not perfect, the graphs (see figure 3)
clearly show the reversal of the direction of the treatment effect in groups 1 and 4 that
we expect from figure 2.
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Figure 3. Glioma data. Kaplan–Meier plots of the treatment effect in four about equally
sized groups according to karno. Solid lines, therapy==0; dashed lines, therapy==1.
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The Kaplan–Meier graphs in figure 3 are unadjusted for confounders, whereas the MFPI

model included adjustment for three important prognostic factors (gradd1, age, and
surgd1). However, univariate analysis showed that the karno by therapy interaction
was still highly significant.

In addition to the graphs, Royston and Sauerbrei (2004) suggest presenting unad-
justed and adjusted estimates of the treatment effects in the covariate subgroups con-
sidered. In this example, adjustment does not make much difference.

7.2 STEPP analysis

The use of the STEPP technique has two main associated decisions:

• Tail or window variant?

• What parameter values?

We illustrate both variants. As we have pointed out elsewhere, the TO variant seems
to produce much more interpretable graphs than the SW variant (Sauerbrei, Royston,
and Zapien 2007), but for information and completeness we present both here.

The value of g for the TO variant should not be so small that one can hardly see any
detail of the putative interaction, nor so large that the result is unstable. Values in the
range 4 ≤ g ≤ 10 appear quite suitable (giving between 7 and 19 points on the graph).

For the SW variant, n2 is more critical than n1 because it represents the subpopu-
lation size, effectively the sample size for each fitted model. A reasonable range for n2

may be 50 to 90. We took n2 = 50 and n1 to be 10 less than n2.

To use the STEPP technique to investigate the interaction between the variables
karno and therapy, we use the same confounder model (gradd1, age, surgd1, and
epi) as derived by MFPI. For example, for the TO variant with g = 6,

. stepp_tail stcox karno gradd1 age surgd1 epi, gen(z) with(therapy) g(6)

. stepp_plot z, ytitle("Log relative hazard") xtitle("Karnofsky index")

Figure 4 shows the resulting plots for g = 6 and g = 10.

(Continued on next page)
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Figure 4. Glioma data. STEPPs (TO variant), adjusting for four prognostic factors.

The “message” from each plot is essentially the same: there is a linear interaction
between karno and therapy. The cost of choosing a larger value of g is typically a
slight increase in the uncertainty of the estimated treatment effect (reflected in wider
pointwise confidence intervals). Because karno has only 13 distinct values (30 to 100 in
steps of 5), increasing g in this example has much less of an effect than it would have with
a truly continuous covariate (see, for example, Sauerbrei, Royston, and Zapien [2007]).
MFPI always provides an estimate of the treatment effect over the complete range of
values of a covariate.

Figure 5 illustrates the karno × therapy interaction using the SW variant of the
STEPP with n1 = 40 and n2 = 50. Although the conclusion from the plot is essentially
the same as from figures 3 and 4, the uncertainty band is wider and the result is more
“noisy”.
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Figure 5. Glioma data. STEPP (SW variant), adjusting for three prognostic factors.

8 Example 2: Node-positive breast cancer

From July 1984 to December 1989, the German Breast Cancer Study Group recruited
720 patients with primary node-positive breast cancer into a “comprehensive cohort
study” in which eligible patients are either randomized or treated according to one of
the therapies under investigation (Schmoor, Olschewski, and Schumacher 1996). Hor-
monal treatment with tamoxifen (TAM) and the duration of CMF-chemotherapy (three
versus six cycles) were evaluated in a 2 × 2 design. The recurrence-free survival time
of 686 patients (299 events) with complete data for the standard prognostic factors
age, menopausal status, tumor size, tumor grade, number of positive lymph nodes, and
progesterone (PgR) and estrogen receptor (ER) status is analyzed.

With an effective sample size of 299, the study is too small for a sensitive investigation
of interactions. Here is it used to illustrate some issues of the two approaches.

It is well established that ER status predicts response to hormonal adjuvant therapy
with TAM. The risk of disease recurrence is reduced to a much greater extent by TAM

in ER-positive patients than in ER-negative patients (Early Breast Cancer Trialists’
Collaborative Group 1998). Here we will explore the TAM × ER interaction “näıvely”,
using the MFPI and STEPP methods.

8.1 MFPI

Applying mfpi with all covariates as potential confounding factors, selecting the con-
founder model at the 5% significance level, and looking for an interaction between er
and tam gives the following results:
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. use gbsg.dta, clear
(German breast cancer data)

. mfpi stcox age meno size gradd1 gradd2 nodes pgr, with(tam) linear(er)
> fp1(er) fp2(er) select(0.05) showmodel

Variables in adjustment model

age: power(s) = -2 -.5
meno: not selected
size: not selected

gradd1: power(s) = 1
gradd2: not selected
nodes: power(s) = 1 2

pgr: power(s) = .5

Interactions with tam (686 observations). Flex-1 model (least flexible)

Var Main Interact idf Chi2 P Deviance tdf AIC

er Linear Linear 1 0.02 0.8959 3419.810 3 3425.810
er FP1(3) FP1(3) 1 0.14 0.7094 3417.415 4 3425.415
er FP2(-.5 3) FP2(-.5 3) 2 3.97 0.1377 3412.954 7 3426.954

idf = interaction degrees of freedom; tdf = total model degrees of freedom

The confounder model includes gradd1 and FP transformations of age, nodes, and pgr.
According to the reported p-values, there is no evidence of an interaction between er
and tam. In “hypothesis generation mode” (i.e., where a dataset was being screened for
the presence of interactions, with no predefined expectations), that would be the end
of the matter. However, we have used only the least flexible of our variants to look for
interactions. In the next step, we show that FLEX2 gives a different result.

With the following command, FLEX2, the first variant of MFPI, is invoked:

. mfpi stcox age meno size gradd1 gradd2 nodes pgr, flex(2) with(tam) linear(er)
> fp1(er) fp2(er) select(0.05)

Interactions with tam (686 observations). Flex-2 model (intermediate)

Var Main Interact idf Chi2 P Deviance tdf AIC

er Linear Linear 1 0.02 0.8959 3419.810 3 3425.810
er FP1(-2) FP1(-2) 2 5.99 0.0499 3414.315 4 3422.315
er FP2(-2 3) FP2(-2 3) 4 6.28 0.1793 3410.879 7 3424.879

idf = interaction degrees of freedom; tdf = total model degrees of freedom

Changing the approach for investigating interactions has no impact on the adjustment
model that is selected. However, the best FP1 and FP2 functions have different power
terms than before. In particular, the FP1 power (−2) fits the data better than the power
of 3 chosen with FLEX1 (deviances 3414.3 and 3417.4, respectively). The model with
the lowest AIC is FP1. For that model, we find the interaction is just significant at the
5% level. The treatment-effect plot for the FP1 model is shown in figure 6, plotted on a
log scale of er + 1 for legibility.

It is clear from figure 6 that the er × tam interaction is rather distinctive: patients
with zero er do not respond to tam, patients with very low but still positive values may
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Figure 6. GBSG data. Treatment-effect plot for er × tam interaction, estimated by mfpi
with flex(2) option. FP1 curves with power −2 were fit in each treatment group.

respond to a degree, and patients with higher values show a highly significant effect of
tam (a hazard reduction of about 40%). Such an interpretation is entirely consistent
with medical knowledge.

Why does the FLEX1 analysis fail so badly to detect the er × tam interaction? One
reason is that when adjusted for other factors, er has little or no prognostic importance.
fracpoly can be used to examine the prognostic effect of er in a model adjusted for
the other variables and transformations chosen:

. fracpoly stcox er age -2 -0.5 gradd1 nodes 1 2 pgr 0.5 tam, compare

(output omitted )

Fractional polynomial model comparisons:

er df Deviance Dev. dif. P (*) Powers

Not in model 0 3420.726 3.807 0.433
Linear 1 3419.827 2.907 0.406 1
m = 1 2 3417.554 0.634 0.728 3
m = 2 4 3416.920 -.5 3

(*) P-value from deviance difference comparing reported model with m = 2 model

The p-value for testing an FP2 function for er against exclusion of er is 0.43, so
an FP2 main effect of er would not be selected by a stepwise algorithm operating at a
conventional significance level. More importantly, the FLEX1 (default) version of MFPI

determines the required power transformation for er, considering only the main effect of
tam and ignoring the possible interaction between er and tam. Because the main effect
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of er is uninfluential, the best-fitting power (3) for FP1 models is poorly estimated and
depends on chance. By contrast, FLEX2 takes the interaction into account when finding
the best-fitting power, which turns out to be quite different (−2) and gives a dissimilar
functional form.

The p-values for the FP1 interaction between er and tam according to FLEX3 and
FLEX4 are 0.07 and 0.14, respectively. FLEX3 reestimates the power for the main effect.
Overall, this improves the model fit, but the interaction effect is slightly reduced. Sim-
ilarly, the interaction effect in FLEX4 is reduced by allowing more flexible and therefore
better-fitting main effects.

As stated earlier, the sample size is insufficient for MFPI to have sufficient power to
detect the er × tam interaction.

8.2 STEPP

Using the adjustment model selected with MFP, figure 7 shows some examples of STEPPs
of the er × tam interaction.
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Figure 7. GBSG data. TO and SW STEPPs of the er × tam interaction, adjusted for
other prognostic variables.

The dramatically better performance of the TO variant is apparent here. The plot
demonstrates some instability of the treatment-effect function for the TO variant, mainly
caused by selecting a large value for g (g = 10 gives 19 subgroups). Although the two
graphs tell basically the same story as each other (and as figure 6), the SW variant is
much noisier and consequently much harder to interpret. Lacking the result from TO or
from MFPI, many researchers, being shown only the SW plot, would doubt the existence
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of an interaction. The main issue with the TO variant is the possibility of bias in the
estimated treatment effect for very low values of er, which the FP1 analysis indicates is
falling very rapidly as er increases. The averaging across subpopulations may slightly
reduce the rate of change in this region of values, leading to bias.

Finally, Kaplan–Meier plots of the tam effect according to suitable ranges of er
confirm the nature of the interaction (see figure 7.5 of Royston and Sauerbrei [2008]).

9 Discussion

We have presented a comprehensive implementation of the MFPI algorithm as described
by Royston and Sauerbrei (2004) and have included some hitherto unpublished variants
of the algorithm in the software. In our experience so far, the basic FLEX1 variant
usually works well. It may fail in the situation we illustrate in the GBSG study, in which
a variable with no main effect interacts with a treatment variable. Here the main effect
of er was negligible because we include, in the adjustment model, the highly correlated
variable pgr. Eliminating pgr from the list of candidates for the adjustment model,
FLEX1 selects power −0.5 for er. The treatment-effect function is similar to figure 6.
This situation may actually be quite common in clinical trials but is rarely looked for
(perhaps to avoid a charge of “data-dredging”). We encourage users to explore at
least the FLEX1 and FLEX2 variants with their data. FLEX3 and FLEX4 are provided
because they seem to us to be natural alternatives; we hope that also making them
available will encourage others to experiment with their own data, to build up further
experience of the best approaches. Simulation studies are required to better understand
the properties, advantages, and disadvantages of the four variants. Although the type I
error for the interaction test in the FLEX1 variant of MFPI appears to be approximately
correct (Sauerbrei, Royston, and Zapien 2007), that of the other three variants remains
to be studied.

STEPP, as described in the original articles (Bonetti and Gelber 2000; Bonetti and
Gelber 2004), includes statistical significance tests of the interaction. We decided not
to implement these in our Stata routines. The main reason is that in some sense,
the tests are not well defined because the results must to an extent depend on the
parameters (g, or n1 and n2) that govern the STEPP estimates. As with categorization
of a continuous covariate prior to regression modeling (a practice frowned on by some
statisticians, including ourselves), the placing of cutpoints and ensuing interpretation
of results is a process fraught with danger. We think that the main benefit of the
STEPP technique is as an exploratory or confirmatory tool (confirmatory in the sense of
providing independent backup for results determined using MFPI). MFPI can easily be
used to search for possible interactions, e.g., when a longer list of potential predictive
markers is available in a large randomized trial (Filipits et al. 2007). The TO variant
of the STEPP technique can be used as a check for possible interactions identified with
MFPI. Confirmation of the MFPI result with the STEPP technique verifies only that the
significant interaction is not caused by mismodeling the data. Validation in independent
data is still required.
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An obvious issue with interaction research is that of multiplicity. Royston and
Sauerbrei (2004) distinguished between the cases of a predetermined hypothesis (as
with er and tam in primary breast cancer) and a “hypothesis-searching” situation in
which interactions are trawled for (as in the glioma example). Because often in the latter
situation many interactions are considered, it may be sensible to use a more stringent
p-value for testing interactions, for example, 0.01 rather than the conventional 0.05 level
or rather than the use of AIC as a model selection criterion. The problem with using a
formal correction for multiplicity (e.g., Bonferroni or Bonferroni-Holm), as some have
advocated, is loss of power in a situation in which power is already likely to be low. It
seems that type II errors, meaning that real interactions are overlooked, need greater
consideration. Clearly, interactions discovered in hypothesis-generation mode need to
be validated in independent data.

A further extension of MFPI, called MFPIgen, is described in our book (Royston and
Sauerbrei 2008). It models continuous by continuous interactions with FP methodology.
A separate Stata routine implementing MFPIgen is being prepared and will be reported
in a later article.
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