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Abstract. Meta-analysis of diagnostic test accuracy presents many challenges.
Even in the simplest case, when the data are summarized by a 2 × 2 table from
each study, a statistically rigorous analysis requires hierarchical (multilevel) models
that respect the binomial data structure, such as hierarchical logistic regression.
We present a Stata package, metandi, to facilitate the fitting of such models in
Stata. The commands display the results in two alternative parameterizations and
produce a customizable plot. metandi requires either Stata 10 or above (which has
the new command xtmelogit), or Stata 8.2 or above with gllamm installed.
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1 Introduction

There are several existing user-written commands in Stata that are intended primarily
for meta-analysis (see Sterne et al. [2007] for an overview). There is increasing interest in
systematic reviews and meta-analyses of data from diagnostic accuracy studies (Deeks
2001b; Devillé et al. 2002; Tatsioni et al. 2005; Gluud and Gluud 2005; Mallett et al.
2006; Gatsonis and Paliwal 2006), which presents many additional challenges compared
to more traditional meta-analysis applications, such as controlled trials. In particu-
lar, diagnostic accuracy cannot be adequately summarized by one measure; two mea-
sures are typically used, most often sensitivity and specificity or, alternatively, posi-
tive and negative likelihood ratios, and the two are correlated (Deeks 2001a). Meta-
analysis of diagnostic accuracy therefore requires different and more complex methods
than traditional meta-analysis applications, even in the simplest situation where the
data from each primary study are summarized as a 2 × 2 table of test results against
true disease status, both of which have been dichotomized. In addition, substantial
between-study heterogeneity is commonplace, and the models must account for this
(Lijmer, Bossuyt, and Heisterkamp 2002).

Several methods of meta-analyzing diagnostic accuracy data have been proposed, of
which two are statistically rigorous: the hierarchical summary receiver operating charac-
teristic (HSROC) model (Rutter and Gatsonis 2001) and the bivariate model (Reitsma et
al. 2005). In the absence of covariates, these turn out to be different parameterizations
of the same model (Harbord et al. 2007; Arends et al. 2008).

c© 2009 StataCorp LP st0163



212 Meta-analysis of diagnostic accuracy

The bivariate model can be fit in Stata by using the user-written gllamm command,
as pointed out by Coveney (2004). In Stata 10, the same model can be fit considerably
faster by using the new xtmelogit command. In either case, however, some data
preparation is required, the syntax is complex (particularly for gllamm), and the output
is not easy to interpret.

In this article, we present a new Stata command, metandi, to facilitate the fitting of
these hierarchical logistic regression models for meta-analysis of diagnostic test accuracy.
The metandi command fits the model and displays the estimates in both the HSROC and
bivariate parameterizations. metandi also displays some familiar summary measures
(sensitivity and specificity, positive and negative likelihood ratios, and the diagnostic
odds ratio). However, these simple summary measures fail to describe the expected
trade-off between sensitivity and specificity, which is best illustrated graphically. We
have therefore included a command, metandiplot, to simplify the plotting of graphical
summaries of the fitted model, namely, the summary receiver operating characteristic
(SROC) curve and the prediction region, and also to plot the summary point and its
confidence region.

The name metandi was chosen to indicate that, like metan (Bradburn, Deeks, and
Altman 1998), metandi takes the cell counts of 2× 2 tables as input but is designed for
meta-analysis of diagnostic accuracy.

metandi is not intended to provide a comprehensive package for diagnostic meta-
analysis by itself; other plots are also useful, such as forest plots showing within-study es-
timates and confidence intervals for sensitivity and specificity separately (Deeks 2001b).

Section 2 of this article introduces an example dataset, which we will use to illustrate
the commands. Section 3 then gives some background on methods and models that have
been proposed for meta-analysis of diagnostic accuracy. Sections 4 and 5 illustrate the
output of metandi and metandiplot on the example dataset. Section 6, which assumes
somewhat greater knowledge of both statistics and Stata, gives examples of the use
of predict after metandi for model checking and identification of influential studies.
Finally, sections 7 and 2, which are intended mainly as reference material, detail the
formal syntax of the commands, and the methods and formulas used.

2 Example: Lymphangiography for diagnosis of lymph
node metastasis

We shall illustrate the use of the metandi package on data from 17 studies of lym-
phangiography for the diagnosis of lymph node metastasis in women with cervical can-
cer. Lymphangiography is one of three imaging techniques in the meta-analysis of
Scheidler et al. (1997), and these data have been frequently used as an example for
methodological papers on meta-analysis of diagnostic accuracy (Rutter and Gatsonis
2001; Macaskill 2004; Reitsma et al. 2005; Harbord et al. 2007). These data are pro-
vided in the auxiliary file scheidler LAG.dta. The total number of patients in each
study ranges from 21 to 300. There is one observation in the dataset for each study.
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The data needed for meta-analysis consist of the number of true positives (tp), false
positives (fp), false negatives (fn), and true negatives (tn).

Figure 1 shows a SROC plot of these data, generated by the official Stata commands
given below. An SROC plot is similar to a conventional ROC plot (see, e.g., [R] roc) in
that it plots sensitivity (true-positive rate) against specificity (true-negative rate), but
here each symbol represents a different study rather than a different threshold within
the same study. It therefore makes no sense to connect the points with a line, but it can
be useful to indicate the size of each study by the symbol size. (It might be preferable
to use an ellipse or rectangle to separately indicate the number of people with [tp +
fn] and without [tn + fp] the disease of interest, but this is hard to achieve within the
current Stata graphics system.) By convention, the specificity is plotted on a reversed
scale (or equivalently, the false-positive rate is plotted on a conventional scale).

. use scheidler_LAG
(Lymphangiography for diagnosing lymph node metastases)

. generate sens = tp/(tp+fn)

. generate spec = tn/(tn+fp)

. label variable sens "Sensitivity"

. label variable spec "Specificity"

. local opts "xscale(reverse) xla(0(.2)1) yla(0(.2)1, nogrid) aspect(1) nodraw"

. scatter sens spec [fw=tp+fp+fn+tn], m(Oh) `opts´ name(sroccirc)

. scatter sens spec, mlabel(studyid) m(i) mlabpos(0) `opts´ name(sroclab)

. graph combine sroccirc sroclab, xsize(4.5) scale(*1.5)
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Figure 1. SROC plot of the lymphangiography data. Left panel: Studies indicated by
circles sized according to the total number of individuals in each study. Right panel:
Studies indicated by study ID numbers.



214 Meta-analysis of diagnostic accuracy

3 Models for meta-analysis of diagnostic accuracy

Several statistical methods for meta-analysis of data from diagnostic test accuracy stud-
ies have been proposed that account for the correlation between sensitivity and speci-
ficity (Moses, Shapiro, and Littenberg 1993; Rutter and Gatsonis 2001; Reitsma et al.
2005).

Moses, Shapiro, and Littenberg (1993) proposed a method of generating an SROC

curve by using simple linear regression. This method has frequently been used, but
the assumptions of simple linear regression are not met, and the method is therefore
approximate. There is also uncertainty as to the most appropriate weighting of the
regression (Walter 2002; Rutter and Gatsonis 2001).

Two more-complex but statistically rigorous approaches have been proposed that
overcome the limitations of the linear regression method: the HSROC model (Rutter
and Gatsonia 2001) and the bivariate model (Reitsma et al. 2005). Both approaches
are based on hierarchical models, i.e., both approaches involve statistical distributions
at two levels. At the lower level, they model the cell counts in the 2× 2 tables by using
binomial distributions and logistic (log-odds) transformations of proportions. Although
their motivation is distinct and they allow covariates to be added to the models in differ-
ent ways, it has been shown that the two models are equivalent when no covariates are
fit, as well as in certain models including covariates (Harbord et al. 2007; Arends et al.
2008).

3.1 HSROC model

The HSROC model (Rutter and Gatsonis 2001) assumes that there is an underlying
ROC curve in each study with parameters α and β that characterize the accuracy and
asymmetry of the curve. The 2×2 table for each study then arises from dichotomizing at
a positivity threshold, θ. The parameters α and θ are assumed to vary between studies;
both are assumed to have normal distributions as in conventional random-effects meta-
analysis. The accuracy parameter has a mean of Λ (capital lambda) and a variance of
σ2

α, while the positivity parameter θ has a mean of Θ (capital theta) and a variance of
σ2

θ . Because estimation of the shape parameter, β, requires information from more than
one study, it is assumed constant across studies. When no covariates are included in an
HSROC model, there are therefore five parameters: Λ, Θ, β, σ2

α, and σ2
θ .

3.2 Bivariate model

The bivariate model (Reitsma et al. 2005) models the sensitivity and specificity more
directly. It assumes that their logit (log-odds) transforms have a bivariate normal
distribution between studies. The logit-transformed sensitivities are assumed to have a
mean of μA and a variance of σ2

A, while the logit-transformed specificities have a mean
of μB and a variance of σ2

B. The trade-off between sensitivity and specificity is allowed
for by also including a correlation, ρAB , that is expected to be negative. The bivariate
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model, like the HSROC model, therefore has five parameters when no covariates are
included: μA, μB , σ2

A, σ2
B , and ρAB .

4 metandi output

The output from running metandi on the lymphangiography data is shown below (the
nolog option suppresses the iteration log and is used here merely to save space):

. use scheidler_LAG, clear
(Lymphangiography for diagnosing lymph node metastases)

. metandi tp fp fn tn, nolog

True positives: tp False positives: fp
False negatives: fn True negatives: tn

Meta-analysis of diagnostic accuracy

Log likelihood = -91.391372 Number of studies = 17

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Bivariate
E(logitSe) .7266321 .1544626 .4238909 1.029373
E(logitSp) 1.638955 .2505372 1.147911 2.129999

Var(logitSe) .1249622 .1306738 .0160943 .9702552
Var(logitSp) .8232703 .4055446 .3135009 2.161952
Corr(logits) .2387873 .4557706 -.6067877 .8308258

HSROC
Lambda 2.187142 .3086554 1.582189 2.792096
Theta .0705698 .3271092 -.5705525 .7116921
beta .9426366 .5764601 1.64 0.102 -.1872044 2.072478

s2alpha .7946708 .5114529 .2250873 2.805586
s2theta .1220778 .1082908 .0214569 .6945553

Summary pt.
Se .6740658 .0339356 .6044139 .7367944
Sp .8373927 .0341147 .7591292 .8937849
DOR 10.65029 3.296352 5.806411 19.53509
LR+ 4.145361 .9181013 2.685598 6.398582
LR- .389225 .0452324 .3099427 .4887875

1/LR- 2.569208 .2985712 2.045879 3.226402

Covariance between estimates of E(logitSe) & E(logitSp) .0045838

The bivariate and HSROC parameter estimates are displayed along with their stan-
dard errors and approximate 95% confidence intervals in the standard Stata format. The
bivariate location parameters, μA and μB , are denoted by E(logitSe) and E(logitSp);
the variance parameters, σ2

A and σ2
B, are shown as Var(logitSe) and Var(logitSp);

and the correlation, σAB , is shown as Corr(logits). The HSROC parameters are de-
noted by using the notation of Rutter and Gatsonis (2001) given in section 3.1, spelling
out Greek letters with capital initials for the capital Greek letters Λ and Θ, and showing
σ2

α and σ2
θ as s2alpha and s2theta.
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z statistics and p-values are not given for most of the parameters because param-
eter values of zero do not correspond to null hypotheses of interest. The exception is
the HSROC shape (asymmetry) parameter, β (beta), where β = 0 corresponds to a
symmetric ROC curve in which the diagnostic odds ratio does not vary along the curve.

The output also gives summary values and confidence intervals for the sensitivity
(Se) and specificity (Sp) (back-transformed from E(logitSe) and E(logitSp)), as well
as values for the diagnostic odds ratio (DOR) and the positive and negative likelihood
ratios (LR+ and LR-) at the summary point. The summary likelihood ratios will not, in
general, be the same as would be obtained by first calculating the likelihood ratios for
each study and meta-analyzing these. Such an approach has been deprecated in favor of
the approach implemented here (Zwinderman and Bossuyt 2008). A summary value for
the inverse of the negative likelihood ratio (1/LR-) is also given, because larger values of
the inverse of the negative likelihood ratio indicate a more accurate test, and comparing
this with the positive likelihood ratio can indicate whether a positive or negative test
result has greater impact on the odds of disease.

Finally, the output shows the covariance between μ̂A and μ̂B . This is needed to draw
confidence and prediction regions, and is included to make it easier to do so in external
software, such as the Cochrane Collaboration’s Review Manager 5 (Nordic Cochrane
Centre 2007).

Technical note

On rare occasions, during model fitting, gllamm may report an error, such as “con-
vergence not achieved: try with more quadrature points” or (less transparently) “log
likelihood cannot be computed”. Increasing the number of integration points beyond
metandi’s default of 5 by using the nip() option (e.g., nip(7)) may resolve this.

5 metandiplot

The metandiplot command produces a graph of the model fit by metandi, which must
be the last estimation-class command executed. For convenience, the metandi command
has a plot option, which produces the same graph. If metandiplot is not followed by
a varlist, then the study-specific estimates (shown by the circles in figure 2) are not
included in the graph. The metandiplot command has options to alter the default
appearance of the graph or to turn off any of the plot elements. These options are not
available when using the plot option to metandi. metandiplot can be run many times
with different options without refitting the model with metandi.
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. metandiplot tp fp fn tn
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Figure 2. Plot of fitted model from metandiplot

The resulting graph (figure 2) shows the following summaries, together with circles
showing the individual study estimates:

• A summary curve from the HSROC model

• A summary operating point, i.e., summary values for sensitivity and specificity

• A 95% confidence region for the summary operating point

• A 95% prediction region (confidence region for a forecast of the true sensitivity
and specificity in a future study)

The default is to include all the summaries listed above, which can result in a rather
cluttered graph, so options are included to remove any of the elements; for example,
predopts(off) turns off the prediction region. See section 7.2 for more information
about metandiplot options.
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By default, the summary HSROC curve is displayed only for sensitivities and speci-
ficities at least as large as the smallest study-specific estimates if a varlist is included.

The shape of the prediction region is dependent on the assumption of a bivariate
normal distribution for the random effects and should therefore not be overinterpreted; it
is intended to give a visual representation of the extent of between-study heterogeneity,
which is often considerable.

6 predict after metandi

Many of Stata’s standard postestimation tools will not work after metandi or will not
work as expected, because metandi temporarily reshapes the data before fitting the
model.

The notable exception is predict, which can be used to obtain posterior predictions
(empirical Bayes estimates) of the sensitivity and specificity in each study (mu), as well
as various statistics that can be useful for detecting outliers (e.g., ustd) and influential
observations (cooksd).

The help file provides basic commands for examining diagnostics. We take the
opportunity here to provide slightly more customized displays.

Empirical Bayes estimates give the best estimate of the true sensitivity and specificity
in each study, and these estimates will be “shrunk” toward the summary point compared
with the study-specific estimates shown in figure 1.
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. predict eb
(option mu assumed; posterior predicted Se & Sp)

. metandiplot, addplot(scatter eb1 eb0, msymbol(o))
> legend(label(5 "Empirical Bayes"))
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Figure 3. Empirical Bayes estimates

Comparing figure 3 with figure 2 shows that the shrinkage is generally greater for
sensitivity than for specificity in this example, reflecting both the smaller variance of
sensitivity (on the logit scale) and the fact that most studies have fewer participants
with disease than without disease, leading to more precise estimates of specificity than
of sensitivity.

Cook’s distance is a measure of the influence of a study on the model parame-
ters and can be used to check for particularly influential studies. Cook’s distance is
calculated using gllapred and so is available in Stata 10 only if the gllamm option
was used with metandi. gllapred calculates Cook’s distance to measure influence on
all model parameters including the variance parameters (Skrondal and Rabe-Hesketh
2004, sec. 8.6.6). To check for outliers, standardized predicted random effects can be
interpreted as standardized study-level residuals.
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. metandi tp fp fn tn, gllamm nolog
(output omitted )

. predict cooksd, cooksd
(Cook´s distance may take a few seconds...)

. predict ustd_Se ustd_Sp, ustd

. local opts "mlabel(studyid) mlabpos(0) m(i) nodraw"

. scatter cooksd studyid,`opts´ name(cooksd)

. scatter ustd_Se ustd_Sp, xscale(rev) xla(, grid) xline(0) yline(0) `opts´
> name(ustd)

. graph combine cooksd ustd, xsize(5) scale(*1.5)
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Figure 4. Left panel: Cook’s distance. Right panel: Standardized residuals (standard-
ized predicted random effects).

Figure 4 shows both Cook’s distance and the standardized residuals. (The residual
corresponding to specificity has been plotted on a reversed axis to correspond with the
convention for ROC plots used in figure 1.) These two graphs are best read in com-
bination. Cook’s distance shows which studies are influential, while the standardized
residuals give some insight into why. According to Skrondal and Rabe-Hesketh (2004),
a typical cutpoint for declaring a value of Cook’s D to be “large” is four times the
number of parameters divided by the number of clusters (here studies). (Definitions of
Cook’s D differ, hence so does the cutpoint—the definition used by Stata in [R] regress
postestimation divides by the number of parameters.) Because there are five param-
eters in this model, this suggests a cutpoint of 20 divided by the number of studies
for interpreting Cook’s D after metandi, giving 20/17 ≈ 1.2 for the lymphangiography
meta-analysis. Here, study 1 is particularly influential, followed by study 3. Studies
1 and 3 have high standardized residuals for specificity, leading to influence on both
the mean and variance of logit-transformed specificity. Study 13 has a large (negative)
standardized residual for sensitivity but does not appear to be so influential as judged
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by its Cook’s distance. Further investigation of the effect of individual studies on the
model could be undertaken by refitting the model and leaving out each study in turn.

7 Syntax and options for commands

7.1 The metandi command

Syntax

metandi tp fp fn tn
[
if

] [
in

] [
, plot gllamm force ip(g | m) nip(#)

nobivariate nohsroc nosummarypt detail level(#) trace nolog
]

by is allowed with metandi; see [D] by.

Options

plot requests a plot of the results on an SROC plot. This is a convenience option
equivalent to executing the metandiplot command after metandi with the same list
of variables, tp, fp, fn, and tn (and the same if and in qualifiers, if specified). Greater
control of the plot is available through the options of the metandiplot command
when issued as a separate command after metandi.

gllamm specifies that the model be fit using gllamm. This is the default in Stata 8 and
9, so the option is of use only in Stata 10, in which the model is fit using xtmelogit
by default.

force forces metandi to attempt to fit data where one or more studies have tp+fn = 0
(or tn+ fp = 0), i.e., where there are no individuals that are positive (negative) for
the reference standard. Without this option, metandi exits with an error when such
data exist. Problems may be encountered in fitting such data, particularly when the
model is fit using xtmelogit. Sensitivity (specificity) cannot be estimated within
such studies, so they are not included in the plot produced by metandiplot.

ip(g | m) specifies the quadrature (numerical integration) method used to integrate out
the random effects: ip(g), the default, gives Cartesian product quadrature, while
ip(m) gives spherical quadrature, which is available in gllamm but not in xtmelogit.
Spherical quadrature can be more efficient, though its properties are less well known
and it can sometimes cause the adaptive quadrature step to take longer to converge.
See Rabe-Hesketh, Skrondal, and Pickles (2005).

nip(#) specifies the number of integration points used for quadrature. Higher values
should result in greater accuracy but typically at the expense of longer execution
times. Specifying too small a value can lead to convergence problems or even failure
of adaptive quadrature; if you receive the error “log likelihood cannot be computed”,
try increasing nip(). For Cartesian product quadrature, nip() specifies the num-
ber of points for each of the two random effects; the default is nip(5). For spher-
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ical quadrature, nip() specifies the degree, d, of the approximation; the default is
nip(9), and the only values currently supported by gllamm are 5, 7, 9, 11, and 15.
These defaults give approximately the same accuracy, because degree d for spherical
quadrature approximately corresponds in accuracy to (d + 1)/2 points per random
effect for Cartesian product quadrature (Rabe-Hesketh, Skrondal, and Pickles 2005,
app. B).

nobivariate, nohsroc, and nosummarypt suppress reporting of the bivariate param-
eter estimates, the HSROC parameter estimates, or the summary point estimates,
respectively.

detail displays the output of all gllamm or xtmelogit commands issued.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

trace adds a display of the current parameter vector to the iteration log.

nolog suppresses display of the iteration log.

7.2 The metandiplot command

Syntax

metandiplot
[
tp fp fn tn

] [
if

] [
in

] [
weight

] [
, notruncate level(#)

predlevel(numlist) npoints(#) subplot options addplot(plot)

twoway options
]

Options

notruncate specifies that the HSROC curve will not be truncated outside the region
of the data. By default, the HSROC curve is not shown when the sensitivity or
specificity is less than its smallest study estimate.

level(#) specifies the confidence level, as a percentage, for the confidence contour.
The default is level(95) or as set by set level; see [U] 20.7 Specifying the
width of confidence intervals.

predlevel(numlist) specifies the levels, as a percentage, for the prediction contour(s).
The default is one contour at the same probability level as the confidence region.
Up to five prediction contours are allowed.

npoints(#) specifies the number of points to use in drawing the outlines of the confi-
dence and prediction regions. The default is npoints(500).

subplot options, which are summopts(), confopts(), predopts(), curveopts(), and
studyopts(), control the display of the summary point, confidence contour, predic-
tion contour(s), HSROC curve, and study symbols, respectively. The options within
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each set of parentheses are simply passed through to the appropriate twoway plot.
Any of the plots can be turned off by specifying, for example, summopts(off).

addplot(plot) allows adding additional graph twoway plots to the graph; see [G] ad-
dplot option. For example, empirical Bayes predictions could be generated by using
predict after metandi and then added to the graph. See section 6.

twoway options are most of the options documented in [G] twoway options, including
options for titles, axes, labels, schemes, and saving the graph to disk. However, the
by() option is not allowed.

7.3 The predict command after metandi

Syntax

predict
[
type

]
newvarlist

[
if

] [
in

] [
, statistic

]
statistic description

mu posterior predicted (empirical Bayes) sensitivity and specificity;
the default

u posterior means (empirical Bayes predictions, BLUPs) of
random effects

sdu posterior standard deviations of random effects
ustd standardized posterior means of random effects
linpred linear predictor with empirical Bayes predictions plugged in:

linpred = xb + u
cooksd Cook’s distance for each study; available only when model was

fit using gllamm

Most of the above statistics require newvarlist to consist of two new variables to store
them: one for the statistic associated with sensitivity and one for the statistic associated
with specificity. If newvarlist contains only one newvar, the statistics associated with
sensitivity and specificity will be stored in newvar1 and newvar0, respectively. cooksd,
however, is computed once for each study and therefore requires only one newvar. See
section 6 for examples.

(Continued on next page)
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7.4 Saved results

metandi saves the following results in e():

Scalars
e(N) number of studies e(ll) log likelihood

Macros
e(cmd) metandi e(predict) program used to implement
e(tpfpfntn) names of tp fp fn tn predict

variables e(properties) b V
e(cmd) metareg

Matrices
e(b) bivariate coefficient vector e(V) variance–covariance matrix of
e(b hsroc) HSROC coefficient vector the bivariate estimators

e(V hsroc) variance–covariance matrix of
the HSROC estimators

Functions
e(sample) marks estimation sample

8 Methods and formulas

It is possible to use routines for linear mixed models to fit an approximate version
of the bivariate model obtained by using empirical logit transforms of the estimated
sensitivity and specificity in each study together with their estimated standard errors
(Reitsma et al. 2005). However, the small cell counts common in diagnostic accuracy
studies can lead to poor performance of such approximations. Generalized mixed mod-
els, in particular, hierarchical (mixed-effects) logistic regression, can handle the binomial
nature of the data directly and are therefore preferable (Chu and Cole 2006; Riley et al.
2007).

Such models are complex to fit, however, because they require numerical integration
(quadrature) to integrate out the random effects. metandi uses gllamm or xtmelogit
to fit the bivariate model by using adaptive quadrature, then transforms the parameter
estimates to those of the HSROC model by using the delta method (Cox 1998).

Because the bivariate model can sometimes prove difficult to fit, some care has been
taken to provide good starting values. First, two separate univariate models are fit
to sensitivity and specificity. These provide excellent starting values for the two mean
and two variance parameters of the bivariate model. A reasonable starting value for
the correlation parameter is obtained from the correlation between the posterior means
(empirical Bayes predictions) of the two univariate models.

We now give the mathematical forms of the bivariate and HSROC models in the
absence of covariates. See Rutter and Gatsonis (2001); Reitsma et al. (2005); and Har-
bord et al. (2007) for information on the models with covariates, which are not currently
supported by metandi.
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8.1 The bivariate model

Following Reitsma et al. (2005), we denote the sensitivity in the ith study by pAi and
the specificity by pBi, and base analysis on their logit transforms:

μAi = logit(pAi)

μBi = logit(pBi)

(We use the letter μ where Reitsma et al. (2005) used θ to avoid a clash of notation
with the HSROC model defined in the next section.)

The bivariate model is a random-effects model in which the logit transforms of the
true sensitivity and true specificity in each study have a bivariate normal distribu-
tion across studies, thereby allowing for the possibility of correlation between them
(Reitsma et al. 2005):(

μAi

μBi

)
∼ N

{(
μA

μB

)
,ΣAB

}
with ΣAB =

(
σ2

A σAB

σAB σ2
B

)

8.2 The HSROC model

The HSROC model (Rutter and Gatsonis 2001) was originally formulated in terms of the
probability, πij , that a patient in study i with disease status j has a positive test result,
where j = 0 for a patient without the disease and j = 1 for a patient with the disease.
Therefore, sensitivity pAi = πi1 and specificity pBi = 1 − πi0.

The HSROC model for study i takes the form

logit(πij) = (θi + αiXij) exp(−βXij) (1)

where Xij = −1/2 for those without disease (j = 0) and +1/2 for those with disease
(j = 1). Both θi and αi are allowed to vary between studies. In the model without
covariates fit by metandi, they are assumed to have independent normal distributions
with θi ∼ N(Θ, σ2

θ) and αi ∼ N(Λ, σ2
α). The model is nonlinear in the parameter β

and therefore cannot be fit in gllamm directly.

We can rewrite (1) as two separate equations for the logit transforms of sensitivity
pAi and specificity pBi, thus connecting to the parameters μAi and μBi of the bivariate
model above:

μAi = logit(pAi) = b−1(θi +
1
2
αi)

μBi = logit(pBi) = −b(θi − 1
2
αi)

This tells us that μAi and μBi are linear combinations of two random variables,
θi and αi, with independent normal distributions, and that they therefore must have a
bivariate normal distribution. Some straightforward further algebra gives the explicit re-
lationship between the parameters of the two models (Harbord et al. 2007; Arends et al.
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2008), enabling HSROC parameter estimates to be obtained by transforming the bivari-
ate parameter estimates. Standard errors for the transformed parameter estimates are
obtained by the delta method, which gives the same standard errors that would be ob-
tained from standard maximum-likelihood methods if the HSROC model were fit directly
(Cox 1998).

8.3 Methods and formulas for metandiplot

HSROC curve

The HSROC model gives rise to an SROC curve by allowing the threshold parameter, θi,
to vary while holding the accuracy parameter, αi, fixed at its mean, Λ. The expected
sensitivity for a given specificity is then given by (Rutter and Gatsonis 2001; Macaskill
2004)

logit(sensitivity) = Λe−β/2 − e−β logit(specificity)

Bivariate confidence and prediction regions

Confidence and prediction regions in SROC space can be constructed by using the esti-
mates from the bivariate model (Reitsma et al. 2005; Harbord et al. 2007). An elliptical
joint confidence region for μA and μB is most easily specified by using a parametric rep-
resentation (Douglas 1993)

μA = μ̂A + sA c cos t (2)

μB = μ̂B + sB c cos(t+ arccos r) (3)

where sA and sB are the estimated standard errors of μ̂A and μ̂B , r is the estimate of
their correlation, and varying t from 0 to 2π generates the boundary of the ellipse. The
constant c has been called the boundary constant of the ellipse (Alexandersson 2004);
c =

√
2f2,n−2;α, where n is the number of studies and f2,n−2;α is the upper 100α% point

of the F distribution with degrees of freedom 2 and n− 2 (Douglas 1993; Chew 1966).
This ellipse is then back-transformed to conventional ROC space to give a confidence
region for the summary operating point.

A prediction region giving the region that has a given probability (e.g., 95%) of
including the true sensitivity and specificity of a future study is generated similarly.
The covariance matrix for the true logit sensitivity and logit specificity in a future
study is

ΣAB + Var
(
μ̂A

μ̂B

)
In practice, both terms are estimated by fitting the model to the data. The parameters
sA, sB , and r in (2) and (3) can then be replaced by the corresponding quantities derived
from this covariance matrix to give the prediction ellipse in logit ROC space, which is
then back-transformed to a prediction region for the true sensitivity and specificity of
a future study in conventional ROC space.



R. M. Harbord and P. Whiting 227

8.4 Methods and formulas for predict

If metandi fit the model by using gllamm, then predict after metandi uses gllapred;
see Rabe-Hesketh, Skrondal, and Pickles (2004). If metandi fit the model by using
xtmelogit, predict after metandi uses the prediction facilities of xtmelogit; see
[XT] xtmelogit postestimation.
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