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Abstract. This article describes an updated version of the metabias command,
which provides statistical tests for funnel plot asymmetry. In addition to the
previously implemented tests, metabias implements two new tests that are recom-
mended in the recently updated Cochrane Handbook for Systematic Reviews of
Interventions (Higgins and Green 2008). The first new test, proposed by Harbord,
Egger, and Sterne (2006, Statistics in Medicine 25: 3443–3457), is a modified ver-
sion of the commonly used test proposed by Egger et al. (1997, British Medical
Journal 315: 629–634). It regresses Z/

√
V against

√
V , where Z is the efficient

score and V is Fisher’s information (the variance of Z under the null hypothesis).
The second new test is Peters’ test, which is based on a weighted linear regression
of the intervention effect estimate on the reciprocal of the sample size. Both of
these tests maintain better control of the false-positive rate than the test proposed
by Egger at al., while retaining similar power.

Keywords: sbe19 6, metabias, meta-analysis, publication bias, small-study effects,
funnel plots

1 Introduction

Publication and related biases in meta-analysis are often examined by visually checking
for asymmetry in funnel plots. However, such visual interpretation is inherently subjec-
tive. Tests for funnel plot asymmetry (small-study effects [Sterne, Gavaghan, and Egger
2000]) examine whether the association between estimated intervention effects and a
measure of study size (such as the standard error of the intervention effect) is greater
than might be expected to occur by chance.

This update to the metabias command (Steichen 1998; Steichen, Egger, and Sterne
1998) implements two new tests for funnel plot asymmetry that are recommended in
the chapter addressing reporting biases (Sterne, Egger, and Moher 2008) in the recent
update to the Cochrane Handbook for Systematic Reviews of Interventions (Higgins
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198 Updated tests for small-study effects in meta-analyses

and Green 2008). The modified version of Egger’s test (Egger et al. 1997) proposed
by Harbord, Egger, and Sterne (2006) still uses linear regression but is based on the
efficient score and its variance, Fisher’s information. The test proposed by Peters et al.
(2006) is based on a weighted linear regression of the intervention effect estimate on
the reciprocal of the sample size. These tests address mathematical problems that
can occur with the commonly used Egger test and the rank correlation test proposed
by Begg and Mazumdar (1994), which was also available in the original version of
metabias. As with other recently updated meta-analysis commands, the syntax for
metabias now corresponds to that for the main meta-analysis command, metan.

2 Syntax

metabias varlist
[
if

] [
in

]
, egger harbord peters begg

[
graph nofit or rr

level(#) graph options
]

As in the metan command, varlist corresponds to either binary data—in this order:
cases and noncases for the experimental group, then cases and noncases for the control
group (d1 h1 d0 h0)—or the intervention effect and its standard error (theta se theta).

The Harbord and Peters tests require binary data. Although the Egger test can be
used with binary data, it is recommended only for studies with continuous (numerical)
outcome variables and intervention effects measured as mean differences with the format
theta se theta.

by is allowed with metabias; see [D] by.

3 Options

egger, harbord, peters, and begg specify that the original Egger test, Harbord’s mod-
ified test, Peters’ test, or the rank correlation test proposed by Begg and Mazumdar
(1994) be reported, respectively. There is no default; one test must be chosen.

graph displays a Galbraith plot (the standard normal deviate of intervention effect
estimate against its precision) for the original Egger test or a modified Galbraith
plot of Z/

√
V versus

√
V for Harbord’s modified test. There is no corresponding

plot for the Peters or Begg tests.

nofit suppresses the fitted regression line and confidence interval around the intercept
in the Galbraith plot.

or (the default for binary data) uses odds ratios as the effect estimate of interest.

rr specifies that risk ratios rather than odds ratios be used. This option is not available
for the Peters test.
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level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

graph options are any of the options documented in [G] graph twoway scatter. In
particular, the options for specifying marker labels are useful.

4 Background

A funnel plot is a simple scatterplot of intervention effect estimates from individual
studies against some measure of each study’s size or precision (Light and Pillemer 1984;
Begg and Berlin 1988; Sterne and Egger 2001). It is common to plot effect estimates
on the horizontal axis and the measure of study size on the vertical axis. This is
the opposite of the usual convention for twoway plots, in which the outcome (e.g.,
intervention effect) is plotted on the vertical axis and the covariate (e.g., study size)
is plotted on the horizontal axis. The name “funnel plot” arises from the fact that
precision of the estimated intervention effect increases as the size of the study increases.
Effect estimates from small studies will therefore scatter more widely at the bottom of
the graph, with the spread narrowing among larger studies. In the absence of bias, the
plot should approximately resemble a symmetrical (inverted) funnel. The metafunnel
command (Sterne and Harbord 2004) can be used to display funnel plots, while the
confunnel command (Palmer et al. 2008) can be used to display “contour-enhanced”
funnel plots.

Funnel plots are commonly used to assess evidence that the studies included in a
meta-analysis are affected by publication bias. If smaller studies without statistically
significant effects remain unpublished, this can lead to an asymmetrical appearance of
the funnel plot. However, the funnel plot is better seen as a generic means of display-
ing small-study effects—a tendency for the intervention effects estimated in smaller
studies to differ from those estimated in larger studies (Sterne, Gavaghan, and Egger
2000). Small-study effects may be due to reporting biases, including publication bias
and selective reporting of outcomes (Chan et al. 2004), poor methodological quality
leading to spuriously inflated effects in smaller studies, or true heterogeneity (when
the size of the intervention effect differs according to study size) (Egger et al. 1997;
Sterne, Gavaghan, and Egger 2000). Apparent small-study effects can also be artifac-
tual, because, in some circumstances, sampling variation can lead to an association
between the intervention effect and its standard error (Irwig et al. 1998). Finally, small-
study effects may be due to chance; this is addressed by statistical tests for funnel plot
asymmetry.

For outcomes measured on a continuous (numerical) scale, tests for funnel plot asym-
metry are reasonably straightforward. Using an approach proposed by Egger et al.
(1997), we can perform a linear regression of the intervention effect estimates on their
standard errors, weighting by 1/(variance of the intervention effect estimate). This
looks for a straight-line relationship between the intervention effect and its standard
error. Under the null hypothesis of no small-study effects, such a line would be vertical
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on a funnel plot. The greater the association between intervention effect and standard
error, the more the slope would move away from vertical. The weighting is important
to ensure that the regression estimates are not dominated by the smaller studies. It is
mathematically equivalent, however, to a test of zero intercept in an unweighted regres-
sion on Galbraith’s radial plot (Galbraith 1988) of the standard normal deviate, defined
as the effect estimate divided by its standard error, against the precision, defined as the
reciprocal of the standard error; and in fact, this method is used in metabias. If the
regression line on a Galbraith plot is constrained to pass through the origin, its slope
gives the summary estimate of fixed-effects meta-analysis as suggested by Galbraith.
But if the intercept is estimated, a test of the null hypothesis of zero intercept tests for
no association between the effect size and its standard error.

The Egger test has been by far the most widely used and cited approach to test-
ing for funnel plot asymmetry. Unfortunately, there are statistical problems with this
approach because the standard error of the log odds-ratio is correlated with the size
of the odds ratio due to sampling variability alone, even in the absence of small-study
effects (Irwig et al. 1998); see Deeks, Macaskill, and Irwig (2005) for an algebraic ex-
planation of this phenomenon. This can cause funnel plots that were plotted using
log odds-ratios (or odds ratios on a log scale) to appear asymmetric and can mean
that p-values from the Egger test are too small, leading to false-positive test results.
These problems are especially prone to occur when the intervention has a large effect,
when there is substantial between-study heterogeneity, when there are few events per
study, or when all studies are of similar sizes. Therefore, a number of authors have
proposed alternative tests for funnel plot asymmetry. These are reviewed in a new
chapter in the recently updated Cochrane Handbook for Systematic Reviews of Inter-
ventions (Higgins and Green 2008), which also gives guidance on testing for funnel plot
asymmetry (Sterne, Egger, and Moher 2008).

4.1 Notation

We shall be primarily concerned with meta-analysis of 2 × 2 tables, where each study
contains an intervention group and a control group, and the outcome is binary. We
shall use the notation shown in table 1 for a single 2 × 2 table, using the letter d
to denote those who experience the event of interest and h for those who do not, with
subscripts 0 and 1 to indicate the control and intervention groups, respectively. We shall
concentrate on the log odds-ratio, φ, as the measure of intervention effect, estimated
by φ = log(d1h0/d0h1). The usual estimate of the variance of the log odds-ratio is the
Woolf formula (Woolf 1955), Var(φ) = 1/d0 + 1/h0 + 1/d1 + 1/h1, the square root of
which gives the estimated standard error, SE(φ).
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Table 1. Notation for a single 2 × 2 table

Outcome

Experienced event Did not experience event
d (disease) h (healthy) Total

Group 1 (intervention) d1 h1 n1

Group 2 (control) d0 h0 n0

Total d h n

The Egger test is based on a two-sided t test of the null hypothesis of zero slope in a
linear regression of φ against SE(φ), weighted by 1/Var(φ) (Sterne, Gavaghan, and Egger
2000). This is equivalent to a two-sided t test of the null hypothesis of zero intercept in
an unweighted linear regression of φ/SE(φ) against 1/SE(φ), which are the axes used in
the Galbraith plot.

4.2 New tests for funnel plot asymmetry

Harbord’s modification to Egger’s test is based on the component statistics of the score
test, namely, the efficient score, Z, and the score variance (Fisher’s information), V .
Z is the first derivative, and V is minus the second derivative of the log likelihood
with respect to φ evaluated at φ = 0 (Whitehead and Whitehead 1991; Whitehead
1997). The intercept in a regression of Z/

√
V against

√
V is used as a measure of the

magnitude of small-study effects, with a two-sided t test of the null hypothesis of zero
intercept giving a formal test for small-study effects. This is identical to a test of nonzero
slope in a regression of Z/V against 1 =

√
V with weights V . If all marginal totals are

considered fixed, V has no sampling error and hence no correlation with Z. If, as seems
more realistic, n0 and n1 are considered fixed but d and h are not, the correlation
remains lower than that between φ and its variance as calculated by the Woolf formula,
leading to reduced false-positive rates (Harbord, Egger, and Sterne 2006).

Using standard likelihood theory (Whitehead 1997), it can also be shown that when
φ is small and n is large, φ ≈ Z/V and Var(φ) ≈ 1/V . It follows that the modified test
becomes equivalent to the original Egger test when all trials are large and have small
effect sizes. A plot of Z =

√
V against

√
V is therefore similar to Galbraith’s radial plot

of φ = SE(φ) against 1/SE(φ), as noted by Galbraith himself (Galbraith 1988).

When the parameter of interest is the log odds-ratio, φ, the efficient score is

Z = d1 − dn1/n

and the score variance evaluated at φ = 0 is

V = n0n1dh/n
2(n− 1)
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The formula for V given above is obtained by using conditional likelihood, conditioning
on the marginal totals d and h in table 1. When the parameter of interest is the
log risk-ratio, it can be shown by using standard profile likelihood arguments that
Z = (d1n− dn1)/h and V = n0n1d/(nh).

The Peters test is based on a linear regression of φ on 1/n, with weights dh/n. The
slope of the regression line is used as a measure of the magnitude of small-study effects,
with a two-sided t test of the null hypothesis of zero slope giving a formal test for small-
study effects. This is a modification of Macaskill’s test (Macaskill, Walter, and Irwig
2001), with the inverse of the total sample size as the independent variable rather than
total sample size. The use of the inverse of the total sample size gives more balanced
type I error rates in the tail probability areas than where there is no transformation of
sample size (Peters et al. 2006). For balanced trials (n0 = n1), the weights dh/n are
proportional to V .

When there is little or no between-trial heterogeneity, the Harbord and Peters tests
have false-positive rates close to the nominal level while maintaining similar power to
the original linear regression test proposed by Egger et al. (1997) (Harbord, Egger, and
Sterne 2006; Peters et al. 2006; Rücker, Schwarzer, and Carpenter 2008).

5 Example

We shall use an example taken from a systematic review of randomized trials of nicotine
replacement therapies in smoking cessation (Silagy et al. 2004), restricted to the 51 trials
that used chewing gum as the method of delivery.

. use nicotinegum
(Nicotine gum for smoking cessation)

. describe

Contains data from nicotinegum.dta
obs: 51 Nicotine gum for smoking cessation
vars: 5 8 Jan 2009 12:02
size: 663 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

trialid byte %9.0g
d1 int %8.0g Intervention successes
h1 int %9.0g Intervention failures
d0 int %8.0g Control successes
h0 int %9.0g Control failures

Sorted by: trialid

A standard fixed-effects meta-analysis, with intervention effects measured as odds
ratios, suggests that there was a beneficial effect of the intervention (unusually for a
medical meta-analysis, the event of interest here, smoking cessation, is good news rather
than bad):
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. metan d1 h1 d0 h0, or nograph

Study | OR [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
1 | 2.253 1.277 3.972 2.18
2 | 1.850 0.989 3.460 1.98
3 | 1.039 0.708 1.524 6.96
4 | 1.416 0.599 3.350 1.21
5 | 0.977 0.497 1.919 2.33
6 | 4.773 1.910 11.932 0.70
7 | 1.761 0.796 3.893 1.26
8 | 3.159 1.138 8.768 0.69
9 | 1.533 0.771 3.048 1.83
10 | 1.385 0.888 2.160 4.55
11 | 2.949 1.009 8.615 0.61
12 | 2.293 1.239 4.245 1.92
13 | 1.234 0.490 3.106 1.12
14 | 2.624 1.026 6.708 0.87
15 | 2.035 0.783 5.289 0.82
16 | 2.822 1.329 5.994 1.13
17 | 0.869 0.461 1.636 2.82
18 | 0.887 0.326 2.408 1.10
19 | 3.404 1.689 6.861 1.18
20 | 2.170 1.101 4.279 1.59
21 | 1.412 0.572 3.487 1.08
22 | 2.029 0.800 5.148 0.97
23 | 0.955 0.294 3.098 0.77
24 | 1.250 0.472 3.311 1.00
25 | 1.847 0.461 7.397 0.41
26 | 3.327 1.371 8.077 0.76
27 | 1.434 0.843 2.441 3.16
28 | 1.333 0.428 4.155 0.72
29 | 1.235 0.931 1.638 11.86
30 | 3.142 1.776 5.558 1.84
31 | 3.522 0.853 14.543 0.28
32 | 1.168 0.704 1.937 3.81
33 | 1.511 0.835 2.735 2.45
34 | 3.824 1.150 12.713 0.39
35 | 1.165 0.405 3.349 0.85
36 | 1.345 0.349 5.188 0.50
37 | 0.483 0.042 5.624 0.26
38 | 1.713 1.212 2.421 6.33
39 | 1.393 0.572 3.389 1.09
40 | 1.844 1.204 2.822 4.30
41 | 1.460 0.775 2.751 2.18
42 | 1.269 0.776 2.075 3.84
43 | 4.110 1.564 10.799 0.59
44 | 2.082 1.504 2.881 6.57
45 | 1.714 0.523 5.621 0.57
46 | 1.294 0.749 2.236 2.98
47 | 5.313 0.701 40.255 0.20
48 | 2.703 0.509 14.357 0.25
49 | 2.124 0.928 4.858 1.07
50 | 1.760 0.549 5.643 0.58
51 | 1.460 0.679 3.140 1.49
---------------------+---------------------------------------------------
M-H pooled OR | 1.658 1.515 1.815 100.00
---------------------+---------------------------------------------------
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Heterogeneity chi-squared = 62.04 (d.f. = 50) p = 0.118
I-squared (variation in OR attributable to heterogeneity) = 19.4%

Test of OR=1 : z= 10.99 p = 0.000

The metan command automatically creates the variables ES, corresponding to the
odds ratio, and selogES, corresponding to the standard error of the log odds-ratio. We
can use these to derive variables for input to the metafunnel command:

. generate logor = log(_ES)

. generate selogor = _selogES

We now use metafunnel to draw a funnel plot with the log odds-ratio, φ, on the hor-
izontal axis and its standard error, SE(φ), on the vertical axis. The egger option draws
a line corresponding to the weighted regression of the log odds-ratio on its standard
error that is the basis of Egger’s regression test; see figure 1.

. metafunnel logor selogor, egger

0
.5

1
1.

5
s.

e.
 o

f l
og

or

−2 −1 0 1 2 3
logor

Funnel plot with pseudo 95% confidence limits

Figure 1. Funnel plot of the log odds-ratio, φ, against its standard error, SE(φ), including
the fitted regression line from the standard regression (Egger) test for small-study effects

The funnel plot appears asymmetric, with smaller studies (those with larger stan-
dard errors) tending to have larger (more beneficial) odds ratios. This may suggest
publication bias.

We use the metabias command to perform a test of small-study effects employing
the commonly used Egger test.
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. metabias d1 h1 d0 h0, egger

Note: data input format tcases tnoncases ccases cnoncases assumed.
Note: odds ratios assumed as effect estimate of interest
Note: peters or harbord tests generally recommended for binary data

Egger´s test for small-study effects:
Regress standard normal deviate of intervention
effect estimate against its standard error

Number of studies = 51 Root MSE = 1.082

Std_Eff Coef. Std. Err. t P>|t| [95% Conf. Interval]

slope .2832569 .1188368 2.38 0.021 .0444455 .5220683
bias .7045941 .3566387 1.98 0.054 -.0120982 1.421286

Test of H0: no small-study effects P = 0.054

The estimated bias coefficient is 0.705 with a standard error of 0.357, giving a p-value
of 0.054. The test thus provides weak evidence for the presence of small-study effects.

The same results can be produced by using the derived variables logor and selogor:

. metabias logor selogor, egger

(output omitted )

We now use Harbord’s modified test:

. metabias d1 h1 d0 h0, harbord graph

Note: data input format tcases tnoncases ccases cnoncases assumed.
Note: odds ratios assumed as effect estimate of interest

Harbord´s modified test for small-study effects:
Regress Z/sqrt(V) on sqrt(V) where Z is efficient score and V is score variance

Number of studies = 51 Root MSE = 1.092

Z/sqrt(V) Coef. Std. Err. t P>|t| [95% Conf. Interval]

sqrt(V) .3468707 .126528 2.74 0.009 .0926032 .6011382
bias .5273137 .3866755 1.36 0.179 -.2497398 1.304367

Test of H0: no small-study effects P = 0.179

The estimated intercept is 0.527 with a standard error of 0.387, giving a p-value
of 0.179. The modified test thus suggests little evidence for small-study effects. The
modified Galbraith plot of Z/

√
V versus

√
V is shown in figure 2.

(Continued on next page)
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 95% CI for intercept

Figure 2. Modified Galbraith plot of Z/
√
V versus

√
V

Finally, we will use Peters’ test for small-study effects:

. metabias d1 h1 d0 h0, peters

Note: data input format tcases tnoncases ccases cnoncases assumed.
Note: odds ratios assumed as effect estimate of interest

Peter´s test for small-study effects:
Regress intervention effect estimate on 1/Ntot, with weights SF/Ntot

Number of studies = 51 Root MSE = .3897

Std_Eff Coef. Std. Err. t P>|t| [95% Conf. Interval]

bias 26.20225 14.58572 1.80 0.079 -3.108842 55.51334
constant .4197904 .0776552 5.41 0.000 .2637364 .5758443

Test of H0: no small-study effects P = 0.079

In this example, the p-value from Peters’ test is closer to that from Egger’s test
than it is to the p-value from Harbord’s test. These differing results emphasize the
importance of selecting a test in advance; picking a test result from among several is
strongly discouraged.
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6 Saved results

For all tests, the following scalars are returned:

r(N) number of studies
r(p bias) p-value of the bias estimate

For the regression-based tests (Harbord, Peters, and Egger), the following scalars
are returned:

r(df r) degrees of freedom
r(bias) estimate of bias (the constant in the regression equation for the

Egger and Harbord tests, and the slope for the Peters test)
r(se bias) standard error of bias estimate
r(rmse) root mean squared error of fitted regression model

For Begg’s test, the following scalars are returned:

r(score) Kendall’s score (P –Q)
r(score sd) standard deviation of Kendall’s score
r(p bias ncc) p-value for Begg’s test (not continuity-corrected)

7 Discussion

We have described how to use the metabias command to perform two tests for funnel
plot asymmetry. These tests are among those recommended in the Cochrane Hand-
book for Systematic Reviews of Interventions (Higgins and Green 2008) because they
reduce the inflation of the false-positive rate (type I error) that can occur for the Egger
test, while retaining power compared with alternative tests. metabias allows only one
test to be specified. Systematic reviewers should ideally specify their chosen test in
advance of the analysis and should avoid choosing from among the results of several
tests. Although simulation studies comparing the different tests have been reported
(Harbord, Egger, and Sterne 2006; Peters et al. 2006; Rücker, Schwarzer, and Carpen-
ter 2008), no test currently has been shown to be superior in all circumstances. A fuller
discussion of these issues is available in chapter 10 (Sterne, Egger, and Moher 2008) of
the Cochrane Handbook.

Tests for funnel plot asymmetry should not be seen as a foolproof method of detecting
publication bias or other small-study effects. We recommend that tests for funnel plot
asymmetry be used only when there are at least 10 studies included in the meta-analysis.
Even then, power may be low. False-positive results may occur in the presence of
substantial between-study heterogeneity, and no test performs well when all studies are
of a similar size. Although funnel plots, and tests for funnel plot asymmetry, may alert
us to a problem that needs considering when interpreting the results of a meta-analysis,
they do not provide a solution to this problem.

(Continued on next page)
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