
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

    WP  2006-09 
 January 2006 

 
 
 

  Working Paper 
 
Department of Applied Economics and Management 
Cornell University, Ithaca, New York  14853-7801  USA 

 
 
 

Does Conditionality Generate 
Heterogeneity and Regressivity in 
Program Impacts? The Progresa 
Experience 

 
Juan Carlos Chavez-Martin del Campo 

 



 

 

 
 
 

 

It is the policy of Cornell University actively to support equality of educational 

and employment opportunity.  No person shall be denied admission to any 

educational program or activity or be denied employment on the basis of any 

legally prohibited discrimination involving, but not limited to, such factors as 

race, color, creed, religion, national or ethnic origin, sex, age or handicap.  

The University is committed to the maintenance of affirmative action 

programs  which will assure the continuation of such equality of opportunity. 



Does Conditionality Generate Heterogeneity and
Regressivity in Program Impacts? The Progresa

Experience

Juan Carlos Chavez-Martin del Campo∗

Department of Applied Economics and Management
Cornell University
jcc73@cornell.edu

January 18, 2006

Abstract

We study both empirically and theoretically the consequences of introduc-
ing a conditional cash transfer scheme for the distribution of program impacts.
Intuitively, if the conditioned-on good is normal, then better-off households
tend to receive a larger positive impact. I formalize this insight by means of
a simple model of child labor, applying the Nash-Bargaining approach as the
solution concept. A series of tests for heterogeneity in program impacts are
developed and applied to Progresa, an anti-poverty program in Mexico. It can
be concluded that this program exhibits a lot of heterogeneity in treatment
effects. Consistent with the model, and under the assumption of rank preserva-
tion, program impacts are distributionally regressive, although positive, within
the treated population
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1 Introduction

Nowadays, conditional cash transfer schemes (CCTS) constitute a key element of

many anti-poverty programs around the world. Following Das, Do, and Oler (2004),

a conditional cash transfer scheme can be broadly defined as ”...any scheme requiring

a specified course of action in order to receive a benefit as a conditional cash trans-

fer”. Examples of programs implementing CCTS are Oportunidades in Mexico, Red

de Proteccion Social in Nicaragua, and Bolsa Familia in Brazil. The aim of these

programs is to alleviate today’s poverty by transferring money to poor families, and

to short-circuit tomorrow’s, by making the transfers conditional. The conditionality

usually operates through lower bounds on human capital investment which takes the

form of requiring a minimum attendance rate to school, and constant health moni-

toring for the children.

What is the rationale behind imposing a conditionality to the beneficiaries of a

social program? if individuals are rational, there are no externalities, and policymak-

ers have full information, then there is no case for implementing CCTS. However,

these conditions are rarely met. If individuals are not fully rational, imposing a con-

ditionality may help them to increase their own welfare. For instance, if a beneficiary

is time inconsistent, then if may be optimal to impose the condition that transfers

should be received in several payments.1 If information is asymmetric in the sense

that the policymaker does not have some relevant information of the beneficiaries

such as income and asset holdings, then CCTS can be used as a screening mechanism

with the specific purpose of improving the targeting efficiency of the program. For

example, if the conditioned-on good is inferior, richer households are more likely to

be screened out of the program (Besley and Coate 1992).

There is a third rational for CCTS. In the presence of externalities, individuals

do not internalize the effect of their choices on others. By imposing a conditionality,

1See chapter 2 in this dissertation.
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policymakers may be able to move individuals towards a more efficient equilibrium.

One notorious case is that of child labor and human capital investment: parents

usually decide children’s time allocation between education and work. Since the

economic benefits of child labor are immediately felt, and the economic benefits of

education are only feasible in the long run, parents may not internalize the benefits of

human capital investment in their children. Therefore, CCTS can be used in this case

to restore efficiency by imposing lower bounds on variables such as school attendance.

Although CCTS may help policymakers to reach a more efficient economy and to

reduce poverty in the long run by increasing investments on human capital today (so

the children of the poor may escape poverty in the future), they could imply a tradeoff

between the equity and efficiency goals of policymakers, at least in the short run. In

particular, if the conditioned-on good is normal, then worse off households may be

receiving less ”effective” transfers than other groups of beneficiaries if participating

in the program imposes some sort of opportunity cost such as foregone wages from

child labor.

A good example of this tension is The Female Stipend Program in Bangladesh.

This program gives stipends to girls who attend at least 85% of classes at a secondary

school level with the explicit goal of increasing investment on human capital. All girls

can participate in this program independently of their socioeconomic background.

Since education is usually a normal good, richer households are more likely to enroll

their daughters in secondary schools than households in the low tail of the income

distribution. Besides, the opportunity cost of enrolling a child into school or making

the 85% lower bound on school attendance is more likely to exceed the benefits

obtained from the stipend for the poorest households. Khandker et al (2003) notice

that the ”...untargeted stipend disproportionally affects the school enrollments of girls

from households with larger land wealth. Targeting towards the land poor may reduce

the overall enrollment gains of the program while equalizing enrollment effects across
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landholding classes.”

Despite the potential effects that CCTS programs have on the distribution of treat-

ment effects, most existing research on program evaluation of anti-poverty programs

focuses on mean impacts. There are, however, some studies for developed countries

that take the issue of heterogeneity in program impacts into account. In an excellent

study about heterogeneity in program impacts, Heckman, Smith and Clements (1997)

find strong evidence of heterogeneous impacts when evaluating the US Job Training

Partnership Act. In a similar spirit, Bitler, Gelbach, and Hoynes (2003) study the

Connecticut’s Job First program; they conclude that this welfare program exhibits a

lot of heterogeneity in program impacts, just as predicted by standard labor supply

theory.

In this paper, we study the distribution of program impacts in Progresa, recently

renamed Oportunidades. This anti-poverty program was introduced by the Mexican

government in 1997 and provides conditional cash transfers to poor families. Similar

to The Female Stipend Program in Bangladesh, the conditioned-on good is school

attendance which, not surprisingly, is a normal good in the case of Mexico (Lopez-

Acevedo and Salinas 2000). We take advantage of the experimental design of the

evaluation sample to identify the parameters of interest for this study.

Our empirical findings can be summarized in two main points. First, there is

strong evidence that heterogeneity in program impacts is a common phenomenon in

Progresa. Second, under the assumption of perfect positive dependence, and consis-

tent with the model developed in this paper, better off households tend to receive

larger positive program impacts than poorer households.

The paper is organized as follows. Section 2 describes Progresa, the evaluation

sample, and the selection of beneficiaries. Section 3 develops a simple household

bargaining model of child labor and human capital accumulation, and discusses its

connection with CCTS. Section 4 briefly analyzes the evaluation problem and presents
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average treatment effects of the program as a benchmark case. Section 5 develops

some tests for homogeneity in program impacts. Section 6 imposes a specific type of

monotonicity assumption: rank preservation, and makes this assumption operational

through the estimation of quantile treatment effects (QTE). Section 7 concludes.

Mathematical details, algorithms, and proofs are in the Appendices.

2 Progresa

In 1997, the Mexican government introduced the Programa de Educacion, Salud

y Alimentacion (the Education, Health, and Nutrition Program), better known as

Progresa, and recently renamed Oportunidades, as an important element of its more

general strategy to eradicate poverty in Mexico. The program is characterized by a

multiplicity of objectives such as improving the educational, health, and nutritional

status of poor families.

Progresa provides cash transfers, in-kind health benefits, and nutritional suple-

ments to beneficiary families. Moreover, the delivery of the cash transfers is exclu-

sively through the mothers, and is linked to children’s enrollment and school atten-

dance. The conditionality works as follows: in localities where Progresa operates,

those households classified as poor with children enrolled in grades 3 to 9 are eli-

gible to receive the grant every two months. The average bi-monthly payment to

a beneficiary family amounts to 20 percent of the value of bi-monthly consumption

expenditures prior to the beginning of the program. Moreover, these grants are esti-

mated taking into account the opportunity cost of sending children to school, given

the characteristics of the labor market, household production, and gender differences.

By the end of 2002, nearly 4.24 million families (around 20 percent of all Mexican

households) were incorporated into the program. These households constitute around

77 percent of those households considered to be in extreme poverty.
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2.1 Data: A Quasi-Experimental Design

Because of logistical and financial constraints, the program was introduced in sev-

eral phases. This sequentiality in the implementation of the Progresa was capitalized

by randomly selecting 506 localities in the states of Guerrero, Hidalgo, Michoacan,

Puebla, Queretaro, San Luis Potosi and Veracruz. Of the 506 localities, 320 localities

were assigned to the treatment group and the rest were assigned to the control group.

In total, 24,077 households were selected to participate in the evaluation sample. The

first evaluation survey took place in March 1998, 2 months before the distribution

of benefits started. 3 rounds of surveys took place afterwards: October/November

1998, June 1999, and November 1999. The localities that served as control group

started receiving benefits by December 2000. For the empirical application of the

methodologies developed in this paper, we will make use of the June 1999 round.

2.2 Progresa’s selection of localities and beneficiary house-

holds

Progresa’s methodology to identify potential beneficiaries consists of two two main

stages: (1) the selection of localities; (2) the selection of beneficiary households within

selected localities. For the first stage, a marginality index was constructed for each

locality in Mexico. Based on this index, localities deemed to have a high marginality

level and with more than 50 and less than 2,500 inhabitants were considered priorities

for the program. Finally, budgetary constraints as well as program components that

require the presence of school and clinics for the implementation of the program were

considered to select the group of localities to be covered by the Progresa. For the

second stage, a census, ENCASEH (Encuesta de Caracteristicas Socioeconomics de los

Hogares), was conducted in each of the selected localities. Using this data, a measure

of monthly per capita income per household was constructed subtracting child income
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from total household income. A poverty line of 320 pesos per capita per month was

employed to create a new binary variable taking the value of 1 if household’s monthly

per capita income was below 320 pesos and 0 otherwise. Finally, discriminant analysis

was employed for each geographical region. By doing so, it was possible to identify the

variables that discriminate best between poor and non-poor households, and a rule to

classify households as poor or non-poor was developed by estimating a discriminant

score for each household.

3 A Simple Model of Human Capital Investment

and CCTS

In this section, we present a simple model of child labor and human capital invest-

ment. Our objective is to shed some light on the connection between these variables

and CCTS. We build this model as an extension of Baland and Robinson (2000),

although we do not adopt a unitary view of the household. Similar to Kanbur and

Haddad (1997) and Martinelli and Parker (2003), we adopt a bargaining perspective

for the intra-household resource allocation problem.

3.1 One-Sided Altruism

We consider a one-good economy. The single good in this economy is produced

with the linear technology

Y = L (1)

where L is labor input measured in efficiency units of labor. We assume that the

labor market is perfectly competitive.

There is a continuum of households who live for two periods, t = 1, 2. Each of these

households is composed by a man, a woman, and a child. We will refer to the man and
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the woman together as the parents for the rest of the section. In period 1, parents are

characterized by their income generating ability a, where a also represents efficiency

units of labor. We assume that households are distributed uniformly on [a, a], with

each household inelastically supplying a efficiency units of labor per period.

In period 1, the child is endowed with one unit of time. Parents decide how to

allocate the child’s time between child labor, l, and human capital accumulation, h.

They also decide how much to leave as a bequest to the child, b. For the sake of

simplicity, it is assumed that l is measured in efficiency units of labor, so the child is

endowed with one efficiency unit of labor in period 1. In the second period, the child’s

income generating ability is given by φ(h), where h = 1 − l and φ(·) is C2, strictly

increasing, and strictly concave function defined on [0, 1], with φ(0) = 1, φ′(1) < 1,

and φ′(0) > 1. This technology implies that the efficient investment level on human

capital, ho, is given implicitly by φ′(ho) = 1.2

Let (x1f , x2f ) and (x1m, x2m) denote the consumption levels of the father and the

mother for periods 1 and 2, respectively. The child is assumed to consume only in

period 2, with consumption level denoted by xc. The woman cares only about her own

consumption and the consumption of the child; similarly, the man cares only about

his own consumption and the consumption of the child. The father’s preferences are

represented by

Wf = α(lnx1f + ln x2f ) + (1− α) ln xc (2)

and the mother’s preferences are given by

Wm = β(lnx1m + ln x2m) + (1− β) lnxc (3)

where 1 > α > β > 0.

Besides choosing the time allocation of the child, parents can also decide to make

2In other words, ho is the level of human capital that maximizes the household’s intertemporal
income.
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positive bequests to him. We denote these bequest by b ∈ R+. Parents have access to

a storage technology, so they can transfer resources between periods by saving. We

denote the household’s saving level by s. Households are borrowing constrained in

the sense that parents can save but not borrow. Therefore, parents face the budget

constraints

x1f + x1m = a+ l − s (4)

x2f + x2m = a+ s− b, (5)

and

xc = φ(1− l) + b (6)

Decisions about x1f , x2f , x1m, x2m, xc, b, and s are made by the parents in the first

period by solving a generalized Nash bargaining problem with solution given by the

following program

Max(xα1fx
α
2fx

1−α
c − uf )γ(xβ1mxβ2mx1−β

c − um)1−γ (7)

The paremeter γ ∈ (0, 1) introduces asymmetry into the model. The ratio γ
1−γ can

be interpreted as as the relative bargaining power of the father with respect to the

mother. uf and um are referred to as threat points or disagreement points. For the

rest of the analysis we assume uf = um = 0.

Proposition 1 If savings and bequests are interior, then parents are investing the

efficient level of human capital on the child. Moreover, human capital is a normal

good.

PROOF: See Appendix.
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3.2 Two-Sided Altruism

We now introduce a particular form of altruism from children to parents. We will

show that the results we obtained above can be extended to this new setting. We

assume that children derive utility both from consumption in the second period and

from any transfer to their parents:

Wc = π ln xc + (1− π) ln τ c (8)

where xc is child’s consumption when adult, τ c is the transfer given to the parents,

and π ∈ (0, 1).

Household choices are timed as follows. In period 1, parents choose investment

on human capital and saving. Period 2 is divided in two subperiods. In the first

subperiod, they choose the level of bequests. In the second subperiod, children decide

how much to transfer to their parents. Therefore, they face the following budget

constraint:

xc + τ c = φ(1− l) + b (9)

We solve for the equilibrium by backward induction. For the second subperiod, it

is easy to show that children choose the following levels of own consumption and

transfers to their parents:

xc = π(φ(1− l) + b) (10)

τ c = (1− π)(φ(1− l) + b) (11)

Since both parents are assumed to be forward looking, parents anticipate the effect

that their current decisions have both on child consumption and the transfers received

from him. Therefore, the solution to the Nash bargaining problem is given by the

solution to
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Max(xα1fx
α
2f (φ(1− l) + b)1−α)γ(xβ1mx

β
2m(φ(1− l) + b)1−β)1−γ (12)

subject to the constraints

x1f + x1m = a+ l − s (13)

x2f + x2m = a+ s+ (1− π)φ(1− l)− πb (14)

Proposition 2 In the model with two-sided altruism, if savings and bequests are

interior, then parents invest the optimal level of human capital on the child. Moreover,

human capital is a normal good.

PROOF: See Appendix.

3.3 Conditional Cash Transfers: Efficiency vs Equity

We now introduce a social planner whose objective is to help households to invest

the optimal amount of human capital ho on the child. The planner implements the

following policy: It provides a transfer τ̄ to all households that invest at least the

optimal level of human capital. Formally,

τ =





τ̄ if h ≥ ho

0 otherwise

Let V (τ̄ , a, lo) denote the indirect utility of a household with income generating

ability a if it accepts the conditionality imposed by the policymaker. Similarly, let

V (0, a, l∗(a)) denote its indirect utility if it does not, where l∗(a) is the optimal choice

of child labor for a household that does not participate in the program. Clearly, a

household will accept the conditionality if V (τ̄ , a, lo) − V (0, a, l∗(a)) > 0. If child

labor is an inferior good, or equivalently, human capital investment is a normal good,

it can be shown that this difference is increasing on a, so better off households are
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more likely to accept the conditionality. Since the opportunity cost of participating

in the program is given by the foregone income coming from child labor, l∗(a)− lo, the

effective transfer received by a household with income generating ability a is given

by:

τ e(a) =





τ̄ + lo − l∗(a) if V (τ̄ , a, lo)) > V (0, a, l∗(a))

0 otherwise

Clearly, effective transfers τ e(a) are non-decreasing on a for households partici-

pating in the program.3 Therefore, within this group, better off households tend to

receive a larger positive impact from the program.

More generally, we can distinguish three types of households with choices depend-

ing on their income generating ability a. The first type of household invests less than

the optimal level of human capital ho even when the CCTS is available, so it does not

receive any transfer at all. The second type of household was investing less than the

optimal level ho before the scheme was available, but increases its investment level to

ho once he becomes a beneficiary of the program. Finally, the third type of household

was already investing the optimal level of human capital, so it always participate in

the program since it represents a pure income transfer to the household.

4 The Evaluation Problem

Although randomization helps to answer many of the questions raised by policy-

makers, there are many other questions that remain unanswered, in particular those

related with the distribution of program impacts across the population of beneficia-

ries.

To formalize the inferential problem, let each member j of population J be exposed

to a mutually exclusive and exhaustive binary set of treatments T = {0, 1}, and

3Given the assumptions of the model, in particular the concavity of φ(·), for any level of generating
ability a, lo is a lower bound for the optimal choice of child labor: i.e. l∗(a) ≥ lo
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have a response function yj(t) : T → R mapping treatments into outcomes. The

population is a probability space (J,Ω, P ) and y(·) : J → R×R is a random variable

mapping the population into their response functions. Therefore, there exist two

potential states of the world for each member j of J : (yj(0), yj(1)). Lets denote

program participation by the indicator variable dj, where dj = 1 indicates program

participation, and dj = 0 otherwise. The analyst observes dj, but he cannot observe

yj(0) and yj(1)) simultaneously. More formally, he observes yj = djyj(1) + (1 −
dj)yj(0). The fact that one cannot observe both outcomes for each individual is

known as the evaluation problem.

4.1 Average Treatment Effects

Following the traditional approach in the program evaluation literature, the aver-

age treatment effect on the treated (ATE) is given by

τ = E[y(1)− y(0)|d = 1] (15)

Randomization guarantees the identification of ATE since we have P (y0 | d = 1) =

P (y0 | d = 0). In fact, it turns out that ATE can be consistently estimated under the

weaker assumption that d is independent of y(0).4

Columns 2 and 3 reports estimated mean outcomes for treatment and control

samples, respectively. The first two rows concern total per capital expenditure and

total per capita purchase of food items. The fourth column provides average treatment

effects of the program on each of these variables. These results show that the effect of

Progresa on total monthly per capita expenditure was about 26 pesos (a 15% mean

effect), while its ATE on total monthly per capita food purchase was about 20 pesos.

These treatment effects are statistically significant at the 1% level.

4To see this point, decompose the difference E[y(1)] − E[y(0)] as follows E[y|d = 1] − E[y|d =
0)] = E[Y (0)|d = 1]− E[y(0)|d = 0] + τ = τ .
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Table 1: Per Capita Mean Outcomes and Treatment Effects

Outcome Treatment Control τ 95% CI
(n=6946) (m=4098)

Total Expenditure 202.815 176.341 26.474 [20.731,32.217]
(3.410)

Food Purchase 148.385 128.4156 19.970 [16.149,23.790]
(2.028)

From the discussion on the program evaluation problem, we know that the identi-

fication of the joint distribution P (y1, y0) is, in general, not possible. There is a case,

however, where one can identify the distribution of program impacts P (y1− y0). The

dummy-endogenous-variable model (Heckman 1978) assumes that

yj(1) = yj(0) + τ

Defining τ as the treatment effect, this assumption implies homogeneous treatment

responses. Therefore, the distribution of program impacts is the Dirac measure at τ :

P (y(1)− y(0) | d = 1) = P (τ | d = 1) (16)

Under random treatment selection, we have τ = E[y(1) − y(0)|d = 1], which is

identified. Hence, the dummy-endogenous variable model identifies the distribution

of program impacts.

4.2 Fréchet Space

Because of the evaluation problem, one cannot observe an individual’s outcome

in both treatment and control states. Therefore, it is not possible to identify the

distribution of program impacts without imposing more structure on the problem at

hand. However, we may be able to partially identify some features of the distribution
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of the random vector (y(0), y(1)) when P (y(1)) and P (y(0)) are identified.5

Let us introduce the following notation. H denotes the bi-dimensional cumulative

distribution function of the random vector (y(0), y(1)), where H(t) = P (y0 ≤ t1, y1 ≤
t2), with t = (t1, t2) ∈ R2. H denotes the Fréchet Space given the marginals, that is

H(F0, F1) is the space of all cumulative distribution functions H(t) on R2 with fixed

marginal cumulative distribution functions F0(t1) = P (y0 ≤ t1) and F1(t2) = P (y1 ≤
t2). We denote by EH the expectation operator under the joint distribution H.

Frechett (1951) showed that the distribution H(x1, x2) belongs to H(F0, F1) if and

only if

H−(t1, t2) ≤ H(t1, t2) ≤ H+(t1, t2) (17)

for all (t1, t2) ∈ R2 , where

H−(t1, t2) = max{F1(t2) + F0(t1)− 1, 0} (18)

H+(t1, t2) = min{F0(t1), F1(t2)} (19)

More recently, Ruschendorf (1981) showed that these bounds are sharp.

Tchen (1980) has established a result that will be proved to be very useful for

the purposes of the present analysis. This result states that nonnegative and convex

functions are monotone on the Fréchet Space:

Lemma 1 (Tchen 1980) For any convex nonnegative function ψ defined on R,

EHψ(y1 − y0) ∈ [EH+ψ(y1 − y0), EH−ψ(y1 − y0)
]

for all H ∈ H(F1, F2).

5For a review of the partial identification approach see Manski (2003).
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4.3 Partial Identification of Mobility Treatment Effects

Because of the evaluation problem, many distributional scenarios are consistent

with the data at hand. Could it be possible to ”measure” this multiplicity of scenarios

through some statistic? In this section we provide a way to do it by applying the

same kind of logic we can find in studies of economic mobility.

While the goal of analyzing treatment effects is to predict the outcomes that

would occur if different treatment rules were applied to the population (Manski 2003),

the study of economic mobility centers on quantifying the movement of the units of

analysis through the distribution of economic well-being over time. More precisely,

research on economic mobility tries to connect past and present, ”establishing how

dependent one’s current economic position is on one’s past position...” (Fields 2001).

In this sense, the analysis of economic mobility does not have to face the evaluation

problem since both states, past and present, are observed in principle.

Suppose for a moment that we were able to identify counterfactual outcomes for

two individuals. One of the individuals experiences a program impact of +100, the

other individual experiences a decrease in the outcome of interest of -100. Keeping

everything else constant, how much outcome movement has taken place? The stan-

dard approach to answer this question is to estimate the average treatment effect, so

the net effect of the treatment is zero. After this simple exercise, one is left with the

feeling that overall the treatment effect has been totally neutral. However, the fact

that the two individuals considered in this simple example registered changes in their

outcomes implies that the treatment is not neutral at all.

Fields and Ok (1996) define a measure of mobility that considers symmetric income

movements6 as
∫ | w−z | dH(w, z), where wi and zi are the incomes of individual i at

two different points on time. We can extend this measure to the context of program

6Symmetric outcome movement arises when individuals’ outcomes change from one state to
another and one is concerned about the magnitude of these fluctuations but not their direction.
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evaluation by redefining these variables, so our measure of mobility treatment effects

would be given by

m =

∫
| y1 − y0 | dH(y1, y0) (20)

In contrast to mobility analysis, when analyzing treatment effects one has no infor-

mation on counterfactual outcomes for the treated population, so we cannot identify

this measure. However, we can partially identify m since the absolute value function

is convex and positive (Lemma 3.1).

One complication arises since most data sets, and the Progresa data set is not

the exception, have unbalanced sample sizes, that is to say, the number of observa-

tions in the treatment group is not the same than the number of observations in the

control group. We circumvent this problem by using quantiles of the empirical distri-

butions F̂0 and F̂1
7. Table presents some estimations of m based on 100, 500, and 900

quantiles. The bootstrap confidence intervals were estimated using 2000 bootstrap

replications. The ratio mH+/mH− is around six to one, which indicates that a great

number of distributional scenarios are compatible with the data at hand. Because

Table 2: Mobility Treatment Effects

Number of Quantiles [mH+ ,mH− ] 95% Normal CI 90% Percentile CI

100 [25.719, 147.524] [21.167,151.148] [22.280, 152.076]
500 [26.461, 156.838] [22.156,161.246] [23.030, 160.954]
900 [26.004, 158.575] [21.609,163.339] [23.178, 162.985]

of the evaluation problem, one cannot discard the possibility of having an important

subset of the treated population receiving negative treatment effects when ATE are

strictly positive. Let L = {j ∈ J : yj(1) < yj(0)} denote the set of members of popu-

lation J that register a loss as a result of participating in the program. Although it

is not possible to identify the set of individuals who belong to this set in general, we

7The applied algorithm is described in more detail in Appendix B.

16



can partially identify a parameter that may shed some light on the potential negative

effects of being exposed to the treatment, at least in average sense.8 We define the

average loss of participating in the program as follows9

LH =

∫
1L(y(1)− y(0))dH (21)

=

∫
min(y(1)− y(0), 0)dH (22)

Lemma 2 Sharp bounds on L are given by [LH− , LH+ ].

PROOF: See Appendix.

Table 3: Average Loss

Number of Quantiles [LH− , LH+ ] 95% Normal CI 90% Percentile CI

100 [-61.589,0.000] [-64.752,0.000] [-64.326,0.000]
500 [-66.062, -.724] [-69.784,0.000] [-69.083,-.004]
900 [-66.607, -.317] [-70.356,0.000] [-69.947,-.020]

Table 3 presents some estimations of L based on 100, 500, and 900 quantiles (the

bootstrap confidence intervals were also estimated using 2000 bootstrap replications).

Even though these worst case bounds may seem exaggerated at a first sight, espe-

cially the lower bound, they are a reminder that ATE may be missing a lot of relevant

information. This empirically corroborates the fact that the evaluation problem gen-

erally implies the existence of multiple distributional scenarios consistent with the

data generating process.

8Notice that these are worst case bounds. Monotonicity assumption motivated my program
design and economic theory can be proved to be very helpful to improve inference.

91L is the indicator function which is equal to one if j ∈ L, and 0 otherwise.
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5 Testing for Homogeneity in Program Impacts

In this section, we apply a partial identification approach that will allow us to

develop simple tests to evaluate the hypothesis of homogeneous treatment effects on

the treated.

Consider testing

H0 : y(1)− y(0) = c a.s.

versus

H1 : y(1)− y(0) 6= c a.s.

For some real number c = E(y1)− E(y0).

Define the functional

Φ(F0, F1) =

∫
ψ(y(1)− y(0))dH+ − ψ(

∫
y(1)dF1 −

∫
y(0)dF0) (23)

where ψ(·) : R → R+ belongs to the class of nonnegative and strictly convex real

valued functions. The following result will be proved to be very helpful for testing

the hypothesis of homogeneous program impacts:

Proposition 3 Let ψ(·) : R→ R+ be any nonnegative and strictly convex real valued

function. If Φ(F0, F1) > 0, then y(1)− y(0) 6= c a.s.

PROOF: See Appendix.

Therefore, we could test the hypothesis of homogeneity in program impacts through

testing the hypothesis H0 : Φ(F0, F1) = 0. As an example, let Wα denote the family

of functionals defined by

{
Φα(F0, F1) : Φα =

∫
(|y(1)− y(0)|αdH+ − |

∫
y(1)dF1 −

∫
y(0)dF0|α, α ≥ 2

}

18



It can be shown that ψ(x) =| x |α is a strictly convex function10 for α ≥ 2 (See

Appendix). Therefore, Φα(F0, F1) > 0 implies y(1)− y(0) 6= c a.s.

From here, we can derive an indirect way of testing the null hypothesis by statis-

tically comparing the hypothesis

H0 : Φα(F0, F1) = 0

versus

H1 : Φα(F0, F1) 6= 0

Corollary 1 The hypothesis of homogeneous treatment effects can be rejected if

V ar(Y (1)) 6= V ar(Y (0))

PROOF: See Appendix.

Corollary 3.1 can be proved to be very helpful if we impose more structure on the

problem. Let Yi(1) ∼ N(µ1, σ
2
1) and Yj(0) ∼ N(µ0, σ

2
0), i = 1, . . . , n, j = 1, . . . ,m, be

two independent random samples. Notice that

S2
1/σ

2
1

S2
0/σ

2
0
∼ Fn−1,m−1

where S2
i , i = 0, 1, is the sample variance, and Fn−1,m−1 is the F distribution with

n − 1 and m − 1 degrees of freedom. Therefore, if the populations are normally

distributed, we can test H0 by statistically testing the hypothesis σ1

σ0
= 1.

Table 4: F test for H0 : σ1

σ0
= 1

S2
0 S2

1 f =
S2

1

S2
0

n m P (Fn−1,m−1 < f)

18791.13 27779.93 1.478 6946 4098 1

From table 3.4, it is clear that we can reject the hypothesis that both populations

share the same standard deviation. Consequently, the hypothesis of homogeneity

10Notice that V arH+(Y (0)− Y (1)) is a member of Wα since V arH+(Y (0)− Y (1)) = Φ2.
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in program impacts is also rejected. However, this test is not accurate unless the

distributions of the populations are close to normal.11

We also apply other tests for equality of variances that are less sensitive to de-

partures from normality. Levene’s test (1960) tends to be more robust than the F

test when the distribution is not Gaussian. Brown and Forsythe (1974) extended

Levene’s test to use either the median or the trimmed mean instead of the mean. Let

W0, W.50, and W.10 denote, respectively, the original Levene’s statistic, the Levene’s

statistic replacing the mean by the median, and the Levene’s statistic with a 10%

trimmed mean.12 All of these tests reject the null hypothesis at the 1% level (see

table 3.5).13

Table 5: Levene’s statistics
W0 W.10 W.50

9.003 7.796 8.019

Another alternative is to use bootstrap methods to estimate the distribution of the

statistic Φ̂ by resampling the evaluation samples (Efron 1979). Let P (Φ̂−Φ | F0, F1)

denote the exact, finite sample distribution of Φ̂− Φ. Using standard notation from

the bootstrap literature, let Φ̂∗−Φ̂ be computed from observations obtained according

to the empirical distributions F̂0 and F̂1 in the same way Φ̂−Φ is computed from the

true observations Yi(1) ∼ F1 and Yj(0) ∼ F0, i = 1, . . . , n, j = 1, . . . ,m. Finally, let

Q∗β denote the β-quantile of the CDF of Φ̂∗ − Φ̂. That is

Q∗β = inf{Φ̂∗ : P (Φ̂∗ − Φ̂ | F̂0, F̂1) ≥ β} (24)

11A skewness and kurtosis test rejects the hypothesis of normality. In fact, the hypothesis of
symmetry can also be easily rejected.

12Brown and Forsythe(1974) reached the conclusion that using the trimmed mean performed
best when the underlying data followed a Cauchy distribution (i.e., heavy-tailed) and the median
performed best when the underlying data followed a (i.e., skewed) distribution. Using the mean
provided the best power for symmetric, moderate-tailed, distributions

13The Levene’s test rejects the null hypothesis if W > F1,n+m−2 where F1,n+m−2 is the upper
critical value of the F distribution for some predetermined significance level.
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A commonly applied method to testH0 is to assume that Φ̂−Φ is normally distributed,

and then to use the bootstrap estimate of the standard deviation as an approximate

estimator of the true sample variance. That is

Φ̂− Φ

σ̂∗
∼ N(0, 1) (25)

However, under the null, Φ is at the boundary of the parameter space since Φ ≥ 0.

This implies that the random quantity Φ̂/σ̂∗ is always positive, and hence it cannot

be normally distributed with mean zero and variance one.

One possible solution for this problem is to follow Efron (1987) by assuming the

existence of a monotone increasing transformation ϕ(·) : R→ R such that

ϕ(Φ̂)− ϕ(Φ) ∼ N(zΦ, σ
2
Φ) (26)

for every choice of Φ (zΦ is know as the bias correction term). For the purpose of

the present study, we can weaken this assumption by requiring just symmetry for the

distribution of ϕ(Φ̂)− ϕ(Φ).

Proposition 4 Suppose there exists a strictly increasing function ϕ(·) : R→ R such

that

ϕ(Φ̂)− ϕ(Φ) | F0, F1 ∼ V

ϕ(Φ̂∗)− ϕ(Φ̂) | F̂0, F̂1 ∼ V

where V is continuously and symmetrically distributed about γ ∈ R, satisfying

FV (2γ + F−1(β)) > 0

for some β ∈ (0, 1/2). Then

Reject H0 if min Φ̂∗ > 0

21



is a level β test.

PROOF: See Appendix.

We estimate the bootstrap cdf of Φ̂∗2 using B = 2000 bootstrap replications.

From table 3.6, it can be inferred that the null hypothesis of homogeneous treatment

effects can be easily rejected under the assumptions of the proposition. For instance,

if V ∼ N(−σγ, σ2), we have

P (ϕ(Ψ̂∗)− ϕ(Ψ̂)) = P (σZ − σγ < 0)

= P (Z < γ)

= FZ(γ)

A plug in estimator for γ is therefore given by

γ̂ = F−1
Z

(
#{ϕ(Φ̂∗) < ϕ(Φ̂)}

B

)

= F−1
Z

(
#{Φ̂∗ < Φ̂}

B

)

where the last equality follows from the monotonicity of ϕ(·). As expected, the sign

of this parameter is strictly negative, taking values in the range (F−1
Z (.25), F−1

Z (.50))

for #q ∈ {100, 300, 600, 800, 1000}, where #q indicates the number of quantiles used

in the estimation. Therefore, we can reject the null hypothesis at the 1% level under

the assumption of normality.

Andrews (2000) argues that the bootstrap may not be consistent when the pa-

rameter of interest is on a boundary of the parameter space. One possible solution is

to draw subsamples of size k < min(n,m) from the original data with replacement.

This sampling method is identical to the standard bootstrap in every aspect, but the
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size of each replication.14 Another possible advantage of this method is that we can

estimate the bootstrap distribution of Φ̂∗ without using the quantiles of the empirical

distributions as the original data. Table 3.7 presents several quantiles of the boot-

strap distribution of Φ̂∗2 for k ∈ {1000, 2000, 3000, 3500, 4000}. Under the assumption

of normality and bias correction, the hypothesis of homogeneity in program impacts

can be rejected at the 1% level.

6 Identification of Program Impacts under Mono-

tonicity Assumptions

The bounds implied by the Fréchet Space of bivariate distributions proved to be

very helpful for developing a test for homogeneity of program impacts. However, with-

out further assumptions, it is an impossible task to pin down the actual distribution

of treatment effects even in the case of a random experiment.

Inference on the distribution of program impacts may be improved by imposing

assumptions implied by economic theory or any other mechanism related with the

data generating process such as program design. Manski (1997) investigates what

may be learned about treatment response under the assumptions of monotone, semi-

monotone, and concave-monotone response functions. He shows that these assump-

tions have identifying power, particularly when compared to a situation where no prior

information exists (worst case bounds). Typically, the type of monotonicity assump-

tions applied by econometricians dealing with partially identified parameters take

some form of stochastic dominance. For instance, in a missing treatments environ-

ment, Molinari (2005) shows that one can extract information from the observations

14Bickel et al (1997) discuss a number of resampling schemes under which the size of the sample
replication is smaller than the original sample size. They argue than the k out of n sampling scheme
works very well in all known realistic examples of bootstrap failure.
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for which treatment data are missing using monotonicity assumptions. Specifically,

one could assume that the effect of a social program on the outcome of interest cannot

be negative. This is equivalent to assume that for each j in J we have

τj = max{yj(1)− yj(0), 0} (27)

Given the design of Progresa, this seems to be a reasonable assumption. One can

expect a positive effect on the outcome of interest, in our case consumption, for

treated individuals. Moreover, this type of assumption implies first order stochastic

dominance (FSD) of distribution P (y(1)) over distribution P (y(0)): i.e. P (y1 ≤ x) ≤
P (y0 ≤ x) for all x ∈ R. Actually, this assumption is stronger than FSD. It implies

that, for all t ∈ R, we have

P (y(1) ≥ t | y(0) = t) = 1 (28)

Notice that the converse is not always true, that is to say, stochastic dominance does

not necessarily imply monotonicity.15

From section 3.3, we know that if human capital is a normal good, a policy-

maker implementing a CCTS faces a dilemma: on the one hand, it may represent

a very helpful policy tool for achieving an efficient level of human capital. On the

other hand, this policy instrument may be at odds with a more equal distribution

of effective benefits. In particular, it was argued that when the conditioned-on good

is normal, better-off households tend to receive larger ”effective” benefits, once the

opportunity cost of foregone earnings from child labor is deducted. Unfortunately,

because of the evaluation problem, we cannot test this hypothesis without imposing

more assumptions. We circumvent this problem by establishing a different type of

15To see that, just observe the random vector (y(0), y(1)) whose support consists of two points:
(1,3) and (2,1). Clearly y(1) stochastically dominates y(0), but the monotonicity assumption is
violated.
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monotonicity assumption, one that will allow us to test the hypothesis of regressivity

in program impacts.

We assume the existence of a non-decreasing real valued function φ(·) : R → R

such that

yj(1) = φ(yj(0)) (29)

Notice that function φ(·) is not indexed, and in consequence this assumption implies

rank preservation among the members of population J . More precisely, in the contest

of program evaluation, rank preservation means that, for some outcome of interest Y ,

the rank of a particular unit of observation i with respect to any other observation j

is the same in both treatment and control states. More formally, rank preservation

implies that, for any two members i and j of population J , the following relation

holds:

(yi(0), yi(1)) ≥ (yj(0), yj(1))

This untestable assumption is also a necessary condition for the existence of regressive

program impacts16.

Let τ(y(0)) = φ(y(0))−y(0). We say that there is regressivity in program impacts

whenever τ(y(0)) is a non-decreasing and non-trivial function of y(0), that is, for any

i, j ∈ J , such that yi(0) > yj(0), we have17

φ(yi(0))− φ(yj(0))

yi(0)− yj(0)
≥ 1 (30)

In order to make this result operational, and to test the hypothesis of regressivity in

program impacts, we will use quantile treatment effects18(QTE), which are a natural

16Let (yi(0), yi(1)) and (yi(0), yi(1)) be the outcomes in both states for i, j ∈ J . Without loss
of generality, let yi(0) > yj(0). Regressivity in program impacts is equivalent to yi(1) − yi(0) >
yi(1)− yi(0), which implies yi(1) > yj(1)

17More precisely, there is regressivity in program impacts if τ(y(0)) is a non-decreasing and non-
trivial function almost everywhere.

18See Koenker and Bassett (1978) for an application of quantile estimation to a regression setting.
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extension of rank preservation to the analysis of distribution of treatment effects.

Let us introduce this concept more formally. The qth quantile of distribution Fi(y),

i = 0, 1 is defined as:

yi(q) = inf{y : Fi(y) ≥ q}

The following result will be proved to be useful for the empirical application. It shows

the existence of the function φ(·) under some mild continuity assumption:

Lemma 3 If y0(q) is a continuity point of F0, then there exists a non-decreasing

function φ(q) : (0, 1)→ R such that y1(q) = φ(y0(q)); moreover, there exists a unique

function τ(q) satisfying τ(q) = y1(q)− y0(q).

PROOF: See Appendix.

The QTE for quantile q can be defined as the difference in treatment status

between quantile q of treatment group and quantile q of control group. Formally,

QTE for quantile q is given by

τ(q) = y1(q)− y0(q)

Therefore, QTE represent an alternative way for testing for regressivity in program

impacts. A non decreasing and non-trivial QTE function is strong evidence for re-

gressive program impacts under the assumption of rank preservation, where for rank

preservation we mean rank preservation in terms of quantiles of the distributions F1

and F0.

Tables 3.8 and 3.9 introduce the QTE estimator for per capita total expenditures

and per capita food purchase, respectively, for several quantiles. These quantiles

were estimated simultaneously, so statistical comparisons can be made among them.

Empirical variance of QTE was calculated by means of 200 bootstrap replications of

the quantile treatment effect.
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We plot these QTE in figures 3.1 and 3.2. For comparison purposes, we plot the

average treatment effect as a horizontal dashed line. Dotted lines surrounding the

ATE line represent a 95% confidence interval. Clearly, the variation of the treatment

effects across the different quantiles is both economically and statistically significant,

particularly at the extremes of the QTE plot, although for a broad band treatment

effects are statistically homogeneous.
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Figure 1: Quantile Treatment Effects: Total Expenditure

The QTE estimators are consistent with the predictions of the theoretical model:

better off households tend to receive larger positive impacts from the program which

generates the monotonically increasing shape of the QTE. This characteristic of the

QTE for PROGRESA is more remarkable when one contrast que treatment effect

between the lower 20 and the upper 20 centiles. For instance, in the case of total

expenditure, the treatment effect for the 95th centile is about five times the treatment

effect estimated for the 5th centile. This gap is about 10 times between the same

Abadie, Angrist, and Imbens (2002) extend their idea to the estimation of quantile treatment effects.
See Appendix C for a description of the QTE estimator.
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Figure 2: Quantile Treatment Effects: Food Purchase

quantiles in the case of food purchase.

QTE estimation also represents an alternative method to test for homogeneity in

program impacts under some mild regularity conditions. This assertion is formalized

in the following Lemma:

Lemma 4 If treatment effects are homogeneous across the population, then τ(q) = τ

for all q ∈ [0, 1] such that y0(q) is a continuity point of F0.

PROOF: See Appendix.

From tables 3.7 and 3.8, we can conclude that the hypothesis of homogeneity in

program impacts can be rejected under the conditions of Lemma 3.4.

7 Conclusions

Conditional cash transfers represent an important policy tool for fighting poverty,

particularly when there is some type of externality that prevents the poor from reach-

ing more efficient equilibria. Human capital investment is just one example of an
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activity generating positive externalities. Correcting for these externalities is then an

important step to break the circle of intergenerational poverty.

There are some issues, however, that should be considered by policymakers imple-

menting this type of programs. If the conditioned-on good is normal, then it is very

likely that the distributional effects of the program will be far from being distribu-

tionally neutral. In fact, as we saw in the empirical analysis, heterogeneous treatment

effects are pervasive, at least in the case of the Progresa evaluation sample.

Under the assumption of rank preservation, program impacts tend to be distri-

butionally regressive for the population participating in Progresa. As it was argued

in the text, this finding is also consistent with the fact that the conditioned-on good

is normal. Therefore, if the assumption of rank preservation is correct, the poorest

of the poor may not be receiving as much benefits as policymakers believe they are.

This has important implications for the design of antipoverty policies: policymak-

ers should consider the existent tradeoff between equity and efficiency of outcomes

in order to better understand the consequences and limitations of CCTS like Pro-

gresa. The final answer will much depend on the benefits and costs of improving the

targeting efficiency of a program.
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Appendix A: Proofs and Derivations

Proof of Proposition 3.1: The household bargaining model is solved through

the program

L = (xα1fx
α
2f (φ(1− l) + b)1−α)γ(xβ1mx

β
2m(h(1− l) + b)1−β)1−γ +

λ1(a+ l − s− x1f − x1m) +

λ2(a+ s+ (1− π)φ(1− l)− πb− x2f − x2m) +

λ3s+ λ4b

from where we can obtain the following first order conditions:

z1

x1f

= λ1

z1

x2f

= λ2

z3

x1m

= λ1

z4

x2m

= λ2

−z2φ
′(1− l)

φ(1− l) + b
+ λ1 − λ2(1− π)φ′(1− l) = 0

z2

φ(1− l) + b
− λ2π + λ4 = 0

−λ1 + λ2 + λ3 = 0

where z1 = αγ, z2 = (1 − α)γ + (1 − β)(1 − γ), and z3 = β(1 − γ). From the first

order conditions we have

x1m =
z3

z1

x1f

x2m =
z3

z1

x2f

z2φ
′(h)

φ(h) + b
=

z1

x1f
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and

φ′(h) ≥ 1

with the last condition holding with equality if (b, s) ∈ R2
++.

For the second part, assume the household is both savings and bequest con-

strained, so b = s = 0. Assume also that it receives an exogenous transfer of income

ω > 0 in period 1. From the first order conditions

φ′(1− l)
φ(1− l) =

z1

z2x1f

=
z3

z2x1m

Since the household is both bequest an savings constrained, we have l∗ < lo and

x1f + x1m = a + ω + l. Assume, towards a contradiction, that child labor does not

decrease: i.e. ∆l ≥ 0. Hence, either x1f or x1m increases. This fact and the condition

above together imply an increase in child labor, a contradiction. Therefore, human

capital is a normal good. �

Proof of Proposition 3.2: The proof for the first part of the proposition is

along the lines of the case with one-sided altruism. To prove that human capital is a

normal good, assume the household receives an exogenous positive transfer in period

1, say ∆ω > 0. If the household is both saving and bequest constrained, then the

budget constraint in period 1 is given by x1m + x1f = a + ∆ω + l. Assume, towards

a contradiction, that child labor increases. From the first order conditions, both x1m

and x1m increase in equilibrium. From the first order conditions, we also have:

z3

x1f

=


z2 +

[
z4

(
z4+z1
z1

)]
(1− π)

a+ (1− π)


 φ′(1− l)
φ(1− l)

This is clearly a contradiction since the left-hand side of the equation strictly de-

creases, while the right-hand side increases or remains constant.�

Lemma 5 Sharp bounds on the correlation coefficient ρY0,Y1 are given by
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[ρY0,Y1

H+
, ρY0,Y1

H− ]

PROOF:

ρY0,Y1 =
V ar(Y1 − Y0)− V ar(Y1)− V ar(Y0)

2
√
V ar(Y0)V ar(Y1)

=
E(Y1 − Y0)2 − (E(Y1)− E(Y0))2 − V ar(Y1)− V ar(Y0)

2
√
V ar(Y0)V ar(Y1)

Since ϕ(x) = x2 is a convex function, the result follows from Lemma 3.1. Sharpness

follows from the fact that H− and H+ are sharp bounds on the Fréchet Space.�

Proof of Lemma 3.2 : Notice that the absolute value of the program impact

can be decomposed as follows

| y(1)− y(0) |= y(1)− y(0)− 2 min(y(1)− y(0), 0)

Taking expectations at both sides of the equality, we have

m = E(y(1)− y(0))− 2L

From where

L =
E(y(1)− y(0))−m

2
(31)

Since m is positive, the result follows from Lemma 3.1. Alternatively, we can apply

Lemma 3.1 directly by noticing that

min(y(1)− y(0), 0) = −max(y(0)− y(1), 0)

and ϕ(x) = max(x, 0) is a convex function.�

Proof of Proposition 3.3: By Lemma 3.1 and the Frechet bounds, we have

∫
ψ(y1 − y0)dH − ψ(

∫
y1dF1 −

∫
y0dF0) ≥ Φ(F0, F1)
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for all H ∈ H(F1, F0). Define a random variable Z = Y1− Y0. By Jensen’s inequality

∫
ψ(z)dH+ ≥ ψ(

∫
zdH+)

= ψ(

∫
y1dH+ −

∫
y0dH+)

= ψ(

∫
y1dF1 −

∫
y0dF0)

which is equivalent to Φ(F0, F1) ≥ 0. The result follows by using the fact that Jensen’s

inequality holds with equality for the case of strictly convex functions if and only if

Y1 − Y0 is a constant with probability 1.�

Proof of Corollary 3.1: Notice that

Φ2 = V arH+(Y (1)− Y (0))

= σ2
1 + σ2

0 − 2ρH+σ1σ0

≥ σ2
1 + σ2

0 − 2σ1σ0

= (σ1 − σ0)2

where ρH+ is the correlation coefficient evaluated at H+. Hence σ1 6= σ0 implies

Φ2 > 0, and the result follows from Proposition 3.3.�

Proof of Corollary 3.1 when y(1) and y(0) are members of the same

location-scale family. Since y0 and y1 are members of the same location-scale

family, we have

yi = σiZ + µi

for i = 0, 1, where Z ∼ f(z). Because for any location-scale family it is possible

to choose f(z) such that EZ = 0 and EZ2=1, without loss of generality, we choose

these values for the first and second moment of Z. Notice that the extreme joint

distribution H+ is obtained when there is maximum correlation between y1 and y0.
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This occurs when high values of y1 are ”matched” with high values of y0. This is

equivalent to form the pairs (σ0z + µ0, σ1z + µ1) for all z in the support of Z. Hence

∫
(y(1)− y(0))2dH+ =

∫
[(σ1 − σ0)z + (µ1 − µ0)]2df(z)

= EZ [((σ1 − σ0)2Z2 + 2(σ1 − σ0)(µ1 − µ0)Z + (µ1 − µ0)2]

= (σ1 − σ0)2 + (µ1 − µ0)2

The result follows from Proposition 3.3.�

Proof of Proposition 3.4: Notice that to test the hypothesis H0 : Φ = 0 is

equivalent to test Hϕ
0 : ϕ(Φ) = ϕ(0). A level β ∈ (0, 1/2) for the latter hypothesis is

given by

Reject Hϕ
0 : ϕ(Φ) = ϕ(0) if V1−β − γ < ϕ̂− ϕ(0)

where Vβ = F−1(β). This a straightforward result since under the null we have

P (V1−β − γ < ϕ̂− ϕ(0)) = β

I will refer to this test as T1 for the rest of the proof. Let G(s) = P (ϕ∗ < s) be the

bootstrap cdf of ϕ∗. Since ϕ∗ = ϕ̂− γ + V , we have

G(s) = P (V < s− ϕ̂+ γ)

= FV (s− ϕ̂+ γ)

with inverse G−1(β) = F−1
V (β) + ϕ̂− γ. I claim that the test T2 defined as

Reject Hϕ
0 if ϕ(0) < G−1(FV (2γ + Vβ))

is equivalent to T1. This is true since

G−1(FV (2γ + Vβ)) = 2γ + Vβ + ϕ̂− γ

= γ − V1−β + ϕ
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It follows that the test T3

Reject Hϕ
0 if ϕ(0) < minϕ(Φ̂∗)

is a level β test since, for some β ∈ (0, 1/2)

ϕ(0) < minϕ(Φ̂∗)

≤ G−1(FV (2γ + Vβ))

Finally, let H(s) = P (Ψ̂∗ < s) be the bootstrap cdf of Ψ̂∗. Since ϕ(·) is a strictly

increasing transformation, the quantiles of ϕ(Ψ̂∗) coincide with those of Ψ̂∗. Hence,

T3 is equivalent to

Reject H0 : Ψ = 0 if 0 < min Ψ̂∗

since minϕ(Ψ̂∗) = ϕ(min Ψ̂∗). This completes the proof. �

Lemma 6 ψ(x) =| x |α is a strictly convex function for α ≥ 2

PROOF: For α = 2, the result is immediate since ψ(x) = x2, and ψ′′ > 0. For

α > 2, we make use of Pecaric and Dragomir’s inequality, which indicates that if

pq(q + p) > 0, z1, z2 ∈ R, and α ≥ 1, then

| z1 + z2 |α
p+ q

≤ | z1 |α
p

+
| z2 |α
q

w.l.g. define z1 = λx, z2 = (1− λ)y, x, y ∈ R, p = λ, q = 1− λ, and λ ∈ (0, 1). Then

we have λ(1− λ) > 0, and hence

| λx+ (1− λ)y |α ≤ | λx |α
λ

+
| (1− λ)y |α

1− λ
= λα−1 | x |α +(1− λ)α−1 | y |α

< λ | x |α +(1− λ) | y |α
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Where I have used the fact that λα−1 < λ and (1− λ)α−1 < (1− λ), for α > 2.�

Proof of Lemma 3.3: Let τ(y0(q)) and φ(·) be defined, respectively, by

τ(y0(q)) = inf{ξ : q ≤ F1(y0(q) + ξ)}

and

φ(y0(q)) = F−1
1 (F0(y0(q)))

From the quantile function, we have

y1(q) = F−1
1 (q) = inf{x : F (y(1) ≤ x) > q}

Hence,

y1(q) = φ(y0(q)) = F−1
1 (q) = τ(y0(q)) + y0(q)

The result follows by noticing that φ(y0(q)) is a non-decreasing function of y0(q). For

a proof of uniqueness see Doksum (1974).�

Proof of Lemma 3.4: Doksum (1974) shows that if τ(x)) = τ for x in the

support of y(0), then F0(x) = F1(x+ τ) for all x. Therefore

F0(y0(q)) = F1(y0(q) + τ)

From the proof of Lemma 3.3, we have

y1(q) = F−1
1 (F0(y0(q))) = y0(q) + τ

The result follows.�
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Appendix B: Estimation and Bootstrap Algorithm

using the Empirical Quantiles

The objective is to estimate bootstrap confidence intervals for the parameters

θ− = EH− [φ(y1 − y0)] and θ+ = EH+ [φ(y1 − y0)], for some measurable function

φ(·). The data in this problem consists of two independent random samples drawn

Yi(1) ∼ F1 and Yj(0) ∼ F0, i = 1, . . . , n, j = 1, . . . ,m. Let F̂1 and F̂0 denote the

empirical distribution functions implied by these samples.

1. Estimation of θ− and θ+

1) Estimate b = [γmin{n,m}] empirical quantiles for F1 and F0, where γ ∈ (0, 1)

and [·] is the integer function. More precisely, for each t ∈ {t1, . . . , tb}, i = 1, 2, we

estimate

q
tj
i = inf{x : F̂i(y(i) ≤ x) ≥ tj} (32)

2) Let Q̂1 and Q̂0 be the empirical distribution function of the quantiles estimated

above, that is to say, a distribution placing a probability mass 1
b

to each of these

quantiles:

Q̂i(x) =
1

b

b∑
j=1

1(q
tj
i ≤ x) (33)

3) For all x = (x1, x2) ∈ R2, define

Ĥ−(x1, x2) = max{Q̂0(x1) + Q̂1(x2)− 1, 0} (34)

Ĥ+(x1, x2) = min{Q̂0(x1), Q̂1(x2)} (35)

4) Estimate θ using plug-in estimators: θ̂− = θ(Ĥ−) and θ̂+ = θ(Ĥ+).

2. Estimation of the Extreme distributions H− and H+

Define the sequences of quantiles of F1 and F0, respectively, by {qtj1 } and {qtj0 }.
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Let µi = EQi [q
t
i ] denote the expected value of the chosen quantiles under probability

measure Qi. The correlation coefficient between qt1 and qt0 is given by

ρ(qt0, q
t
1) =

1

b

∑
(q
tj
1 − µ1)(q

tj
0 − µ0) (36)

By Lemma 3.5, we know that this coefficient is at its minimum when it is evaluated

at H+, and is at its maximum when evaluated at H−. We can estimate the extreme

distributions H− and H+ by applying the following result:

Lemma 7 (Hardy, Littlewood, and Polya 1952) The sum of products
∑

i xiyi is

a maximum when both {xi} and {yi} are increasing, and a minimum when one is

increasing and the other is decreasing.

Therefore. by defining xj = (q
tj
1 − µ1) and yj = (q

tj
1 − µ0), it follows that H+ is

obtained by pairing the largest quantile of F1 with the largest quantile of F0, the

second largest quantile of F1 with the second largest quantile of F0, and so on. To

construct H−, we just need to pair the largest quantile of F1 with the smallest quantile

of F0, the second largest quantile of F1, with the second smallest quantile of F0, and

so on.

3. Bootstrap

5) Generate bootstrap random samples from F̂1 and F̂0: Y ∗i (1) ∼ F1 and Y ∗j (0) ∼
F0, i = 1, . . . , n, j = 1, . . . ,m.

Let F ∗1 and F ∗0 denote the empirical distributions implied by the bootstrap random

samples. That is

F ∗i (x) =
1

b

∑
j

1(yij ≤ x) (37)

6) Replicate steps 1)-4) above for the bootstrap distributions F ∗1 and F ∗0 . That is:

6a) Estimate b empirical quantiles for F ∗1 and F ∗0

q
tj∗
i = inf{x : F ∗i (y∗(i) ≤ x) ≥ tj} (38)
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6b) Let Q∗1 and Q∗0 be the empirical distribution of the quantiles estimated above,

that is to say, a distribution placing a probability mass 1
b

to each of these quantiles.

Q∗i (x) =
1

b

b∑
j=1

1(q
tj∗
i ≤ x) (39)

6c) Define

H∗−(x1, x2) = max{Q∗0(x1) +Q∗1(x2)− 1, 0} (40)

H∗+(x1, x2) = min{Q∗0(x1), Q∗1(x2)} (41)

6d) Estimate θ∗− and θ∗+, respectively, by θ∗− = θ(H∗−) and θ∗+ = θ(Ĥ∗+).

7) Repeated independent generation of F ∗1 and F ∗0 yields a sequence of independent

realizations of θ∗+ and θ∗−, which can be used to approximate their actual bootstrap

distribution.
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Appendix C: Quantile Treatment Effects

Let Qq(Y | T ) be the conditional quantile function of the conditional distribution

F (Y | T ), where T ∈ {0, 1} is the binary variable indicating treatment status: it

takes the value of 1 if treated, and 0 otherwise. Assume F (Y | T ) is continuous and

strictly increasing, and that Qq(Y | T ) is linear:

Qq(Y | T ) = αq + βqT

It can be shown that the parameters αq and βq can be characterized as follows (Koenker

1978)

(αq, βq) = arg min(α,β)∈R2 E[ρq(Y − α− βT )]

where ρq(u) = u(q − I(u < 0)) is the check function. Let α∗ and β∗ be the solution

to this problem. Then it is easy to show that the QTE can be recovered from here

since

τ(q) = y1(q)− y0(q) = Qq(Y | T = 1)−Qq(Y | T = 0) = β∗q

For the estimation, let (yi, Ti)
n
i=1 be a sample from the population. Then we can

apply the analog principle and follow Koenker and Bassett (1978) to estimate α and

β:

(α̂q, β̂q) = arg min(α,β)∈R2 n−1
∑n

i=1 ρq(Yi − α− βTi)
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