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I.  Introduction 

 
 For several reasons, reducing automobile-based gasoline consumption is a major U.S. 

public policy issue.  Gasoline use generates environmental externalities.  In 2004, 

approximately 22 percent of U.S. emissions of carbon dioxide – the principal 

anthropogenically sourced “greenhouse gas” contributing to global climate change -- derived 

from gasoline use.  Other environmental externalities from gasoline combustion include the 

impacts from emissions of several “local” air pollutants such as carbon monoxide, nitrogen 

oxides, and volatile organic compounds.  Reduced gasoline use could lead to improved air 

quality and associated benefits to health.1, 2  In addition, gasoline consumption accounts for 44 

percent of the U.S. demand for crude oil, and the nation’s dependence on crude oil makes the 

U.S. vulnerable to changes in world oil prices emanating from disruptions in the world oil 

market.  Some analyses claim that this vulnerability is not accounted for in individual 

consumption decisions and thus represents another externality from gasoline consumption.3  

The various externalities provide a potential rationale for public policy oriented toward 

gasoline consumption. 

 Recently, analysts and policy makers have called for new or more stringent policies to 

curb gasoline consumption.  The U.S. Senate recently passed a bill that would raise corporate 

average fuel economy (CAFE) standards for passenger vehicles for the first time since 1985.  

The standards would be increased from the current 27.5 miles per gallon to 35 miles per gallon 

by 2020.  The 2005 Energy Bill includes tax-credits for households purchasing high-mileage 

vehicles such as hybrid cars.  The California State Assembly recently enacted AB 1493, which 

mandates carbon dioxide emissions that would require significant improvements in automobile 
                                                 
1 Parry and Small (2005) and the National Research Council (2002) examine the various externalities from 
gasoline use and offer estimates of the overall marginal damages.  The former study estimates the overall external 
cost from U.S. gasoline consumption (including effects relating to local pollution, climate change, congestion, and 
accidents) to be about 75 cents per gallon.  This suggests that U.S. taxes on gasoline are below the efficiency-
maximizing level, since the federal tax plus average state tax totals 41 cents. 
   
2 The extent of the health improvement from improved air quality depends on both the reduction in gasoline use 
and possible changes in pollution per gallon of gasoline used.  Air districts currently in compliance with air 
pollution regulations under the 1990 Clean Air Act amendments might well respond to reductions in gasoline use 
by relaxing “tailpipe” emissions requirements, that is, on the allowable emissions per unit of fuel combusted.  This 
would offset the air-quality and health improvements from reduced gasoline consumption. 
 
3 See, for example, National Research Council (2002). 
 



fuel economy.  Other proposals include subsidies to retirements of older (gas-guzzling) 

vehicles and increments to the federal gasoline tax.4

 This paper examines the gas tax option, employing an econometrically-based multi-

market simulation model to evaluate the policy’s efficiency and distributional implications.  

We investigate the impacts of increased U.S. gasoline taxes on fuel consumption, relating these 

impacts to changes in fleet composition (shifts to higher mileage automobiles) and vehicle 

miles traveled (VMT).  We also evaluate the economy-wide costs of higher gasoline taxes, and 

explore how the costs are distributed across households that differ by income, region of 

residence, race, and other characteristics.  We consider how the distribution of impacts depends 

on the ways revenues from the tax are returned to the private sector. 

 Some prior studies have examined the impact of gasoline taxes by estimating the 

demand for gasoline as a function of gasoline price and household income.  For example, 

Hausman and Newey (1995) and West and Williams (2005) use household-level data on 

gasoline consumption to estimate deadweight loss and the optimal gasoline tax, respectively. 

 Other studies obtain the demand for gasoline indirectly by deriving it from estimates of 

the demand for VMT.  For example, Berkovec (1985), Mannering and Winston (1985), Train 

(1986), and West (2004) sequentially estimate households’ automobile ownership and VMT 

decisions.5  The ownership decision is based on discrete choice of a range of automobile types, 

while the VMT decision is a continuous choice.  Feng, Fullerton, and Gan (2005) estimate 

jointly households’ ownership and VMT decisions. 

 A third set of studies focuses on supply-side phenomena – in particular, the impacts of 

policies on new-car production and the composition of the automobile fleet, and the associated 

effect on gasoline consumption.  In contrast with the previously mentioned studies, this third 

set considers explicitly the imperfectly competitive nature of the new car market and the 

pricing behavior of new-car producers.  For example, Berry !"#$%&#(1995), Goldberg (1998) and 

Austin and Dinan (2005) develop models of new car market that combine supply decisions by 

imperfectly competitive producers with discrete demand choices by households.  The latter two 
                                                 
4 The general public appears to be growing increasingly supportive of stronger measures to curb gasoline use.  A 
February 2006 New York Times / CBS News Poll found that a majority of Americans would support a higher 
gasoline tax if it reduced global warming or made the U.S. less dependent on foreign oil. 
 
5 Poterba (1991) generates elasticities of demand for gasoline use by transforming Train’s (1986) estimated 
elasticities for VMT. 
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studies explore impacts of automobile policies on the new car market.  Goldberg (1998) and 

Kleit (2004) analyze tighter CAFE standards; Austin and Dinan (2005) examine CAFE 

standards and a gasoline tax increase. 

 The present study differs from earlier work in several ways.  First, in contrast with 

nearly all prior work,6  this analysis considers supply and equilibrium not only in the new car 

market but in the used car and scrap markets as well.  The wider scope helps provide a more 

complete picture of the impact of a gasoline tax.  In addition, addressing the equilibrium in all 

three car markets enables us to capture important dynamic effects.  Higher gasoline taxes are 

likely to cause an increase in the share of relatively fuel-efficient cars among new cars sold.  

The extent to which the fuel-efficiency of the '(!)$%% (new and used car) fleet improves will 

depend on the rate at which the newer, more efficient cars replace older cars.  This depends on 

the relative size of the stocks of new and used cars and the rate at which older cars are taken 

out of operation (scrapped).  By considering the new, used, and scrapped car markets, the 

model is able to consider the dynamics of changes in fleet composition and related short- and 

long-run impacts on gasoline consumption.  As in Goldberg (1995), Berry, Levinsohn, and 

Pakes (1995), Petrin (2002), and Austin and Dinan (2005), we consider the imperfectly 

competitive nature of the new car market.  However, in contrast with these studies, we connect 

this market to the used and scrap markets.  This allows us to consider how policies affect the 

entire fleet of cars and associated demands for gasoline. 

 A second major difference from earlier work is the model’s ability to capture 

distributional effects.  The model considers over 20,000 households that differ in terms of 

income, family size, employment status (working or retired), region of residence, and ethnic 

background.  This enables us to trace distributional impacts in several important dimensions. 

All household demands stem from a consistent, utility maximization framework, enabling us to 

measure distributional impacts in terms of theoretically sound welfare indexes.  Prior studies 

have examined distributional effects by focusing on how gasoline expenditure shares differ 

across income groups7.  In contrast, the present model considers not only the expenditure-side 

                                                 
6 One exception is Berkovec (1985), who develops a model with interactions among these markets.  His model 
assumes pure competition among auto producers, however. 
 
7 See Poterba (1989, 1991) for expenditure-based estimates of the incidence of gasoline taxes.  
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impacts but also the ways that the government’s disposition of gas tax revenue influences the 

distribution of policy impacts.   

 Finally, the model differs in its econometric approach to estimating consumer demand 

for automobiles, trips (VMT), or gasoline.  Some prior studies have examined the demand for 

automobiles separately from the demand for gasoline and VMT.8  Yet these demands are 

interconnected.  Some earlier studies have accounted for these connections by exploiting 

reduced-form, two-step estimators.9  In contrast, we adopt a one-step (i.e., full-information) 

estimation strategy that integrates each household’s automobile and VMT decisions within a 

utility-theoretic framework and permits us to recover sound welfare estimates.10  In addition, 

we assume that all parameters entering preferences vary randomly across households.  Random 

coefficients allow us to account for correlations in the unobservable factors influencing a 

household’s discrete car choice and continuous VMT demand while simultaneously allowing 

for more plausible substitution patterns among automobiles (McFadden and Train, 2000; 

Bunch !"#$%&, 2000).   

 The rest of the paper is organized as follows.  Section 2 describes the equilibrium 

simulation model.  Section 3 outlines the model’s data sources, with emphasis on the data 

employed to estimate household demands for vehicles and travel.  Section 4 presents our 

approach for estimating households’ automobile purchase and driving decisions.  Section 5 

presents and interprets results from simulations of a range of gasoline tax policies.  Section 6 

offers conclusions. 

 

 

2.  Structure of the Simulation Model 

 

                                                 
8 Berry, Levinsohn, and Pakes (2004), Goldberg (1995), and Petrin (2003) focus on the demand for automobiles; 
Goldberg (1998) and West (2004) estimate the demand for VMT; Hausman and Newey (1995), Schmalensee and 
Stoker (1999), and West and Williams (2005) concentrate on the demand for gasoline.  Austin and Dinan (2005) 
obtain demand functions for cars by calibrating the parameters of their simulation model to be consistent with 
internal estimates by General Motors. 
 
9 Examples are Berkovec (1986), Mannering and Winston (1986), Goldberg (1998), and West (2004). 
 
10 A difficulty with welfare measurement from two-step estimators is that each step generates a different set of 
estimates for the same parameters.  Each set may have different welfare implications for the same policy.  One-
step estimators generate a single set of parameter estimates and therefore avoid this difficulty.  To our knowledge, 
the only other automobile study to incorporate a one-step procedure is that of Feng, Fullerton, and Gan (2005). 
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a.  Overview 

 

 The economic agents in the model are households, producers of new cars, used car 

suppliers, and scrap firms.  The model considers the car-ownership and vehicle-miles-traveled 

(VMT) decisions of 20,429 households.  The ownership and VMT decisions are made 

simultaneously in accordance with utility maximization. 

 The model distinguishes cars according to age, class, and manufacturer.  Table 2-1 

displays the different car categories, which imply 350 distinct cars of which 284 appear in our 

dataset and simulation.11

 The used-car market equates the supply of used cars remaining after scrapping with the 

demand for ownership of those cars.  Producers of new cars decide on new-car prices in 

accordance with Bertrand (price) competition.  These producers consider households’ demand 

functions in determining optimal pricing.  Price-markups reflect the various price elasticities of 

demand for cars as well as the regulatory constraints posed by existing CAFE standards. 

 The model solves for a sequence of market equilibria at one-year intervals.  Car 

vintages are updated each year, so that last year’s new cars become one-year-old cars, last 

year’s one-year-old cars become two-year-old cars, etc.  Once a car is scrapped, it cannot re-

enter the used car market.  Characteristics of given models of new cars change through time 

based on specified growth rates of horsepower and fuel economy, as described in Section 5. 

 

b.  Household Demands 

 

 Households obtain utility from car ownership and use, as well as from consumption of 

other commodities.  The utility from driving depends on characteristics of the automobile as 

well as VMT.  Each household has exogenous income; most households also are endowed with 

cars.  If a household has a car endowment, it chooses whether to hold or relinquish (sell or 

scrap) that car; if it relinquishes the car it also decides whether to purchase a different car (new 

or used).  If a household does not have a car endowment, it chooses whether to purchase a car. 

 If household *#owns car +, its utility can be expressed by:   

                                                 
11 The number of distinct cars increases over time as some unique new models become old and enter the used car 
fleet.  
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(2.1)   ( , , )* * + * *, , - .! z

 

where z+  is a vector of characteristics of car +, and -* and .* respectively refer to household */0#

vehicle miles traveled and its consumption of the outside good.  The household’s utility 

conditional on choosing car + can be expressed through the following indirect utility function: 

 

(2.2)   
 #
1*+ !1*+

' " #*$ *+

with  

(2.3)  ' ' ( , , , , ,-
*+ *+ * *+ *+ *. + * *+1 1 2 ) 3 3! % )z z z  

where 
 
 #  = income to household *# *2

 # 4# rental price of car +#to household *#)*+
# # = per-mile operating cost 3*+

-

  = price of the outside good, .#3*.
# # = vector of characteristics of household * 5*
 # = vector of characteristics of household *, interacted with characteristics 5*+
   of car + 
#

Household income 2* is devoted toward purchasing a car (or cars12), car operation, and the 

purchase of the outside good.  We treat car purchases as rentals, so that payments are spread 

over many years.  The household budget constraint can then be written as: 

 

(2.4)   2* ! )*+ " 3*+
- -* " 3*..*

 

If a household owns a vehicle, the stream of rental income from that vehicle is included in its 

income.  A household that chooses to retain its existing car effectively makes a rental payment 

equal to its implicit rental income from that car.  Income also includes the household’s share of 

                                                 
12 In Section 4 we discuss how we allow for multiple car ownership. 
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profits to new car producers, government transfers, and capital gains or losses resulting from 

changes in automobile prices.13  The government transfer component of income includes 

revenue from the gasoline tax and adjusts as policy changes.  

 The operating cost -
*+3  includes the fuel cost (including gasoline taxes) as well as 

maintenance and insurance costs.  The rental price  )*+  accounts for depreciation, registration 

fees, and insurance.  As indicated in expression (2.2) above, indirect utility includes the 

random component #*$*+, where $  has a type I extreme-value distribution (following the 

econometric model) and # is a scale parameter.  We assume the household chooses the vehicle 

(or vehicles) yielding the highest conditional utility, given 1/ and the random error.  The 

probability that a given car +#maximizes utility for household *#is: 

(2.5)  
 #
exp(

1*+
'

#*
) exp(

1*+
'

#*
)

+
&  

 The indirect utility function  can be differentiated following Roy’s identity to yield 

the optimal choice of miles traveled, -*+, conditional on the purchase of car +.  Aggregate 

automobile and VMT demand are the sum of these micro decisions.  In specifying aggregate 

demand for automobiles, we treat each individual in our sample as a representative of a 

subpopulation of like individuals and sum up the probabilities.  Similarly for aggregate VMT 

demand, we sum up each individual’s probability-weighted VMT demand for each car. 

*+1

 

 

c.  Supply of New Cars 

 

 Each of the seven producers in the model sets prices for its fleet of automobiles to 

maximize profits, given the prices set by its competitors and subject to fleet fuel economy 

constraints.  Thus we assume Bertrand competition.  Producers face less than perfectly elastic 

                                                 
13 If a household is endowed one vehicle of type + entering the period, its gain is computed as: 

 1' '

2
( ) (1 ) ( )(
+ + + + + + +
) ) ) ) ' )' ' '% ( % " % %  

where )+  and )+’ respectively denote the rental price of car + in the reference and policy-change cases, and '+  and 
'+’  represent the probability of the car’s being scrapped in the two cases.  The first term represents the gain in 
value of cars supplied in the baseline, while the second is a triangle approximating the increase or decrease in 
surplus associated with changes in the number of vehicles scrapped. 
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demands for their cars:  that is, two new cars of the same class can sell at different prices if 

produced by different firms. 

 The producer problem accounts for the presence of CAFE standards.  These standards 

require that each manufacturer’s fleet-wide average fuel economy be above a certain level in 

each of two general categories of cars: “light trucks” and “passenger cars.”  The classes in the 

passenger car category are non-luxury compact, non-luxury midsize, non-luxury fullsize, 

luxury compact, and luxury midsize/fullsize.  Those in the light truck category are small truck, 

large truck, small SUV, large SUV/van, and minivan.14   

 In the following, the subscript 6 refers to the cars made by a particular manufacturer.  

The boldface vector  p includes prices of the cars made by all seven manufacturers.15  7 and 8 

denote the sets of cars (for a given manufacturer) in the light truck and passenger car categories, 

respectively.  7!  and 8!  refer to the efficiency requirements for light trucks and passenger 

cars and !6 is the fuel economy of car 6.  The profit-maximization problem solved by a given 

producer is: 

 
(2.6)  max

{36 ,!6 }
36 % 96 (!6 )) *(:6 ( p,e)

6
&

   
subject to: 
 

6
6 8

8
6

6 8 6

:
!:

!

+

+

&
,

&
  and  

6
6 7

7
6

6 7 6

:
!:

!

+

+

&
,

&
 

 
where 36 and 96 refer to the purchase price and marginal cost, respectively, of a particular car 

and :6 is the demand as a function of all prices.16  For any given model 6, marginal cost is a 

function of !6, the chosen level of fuel economy for that car.  To identify the cost function 

                                                 
14 We remove a small (fixed) fraction of the largest vehicles from CAFE in order to incorporate the fact that the 
very largest trucks and SUV's are exempt from CAFE standards. 
 
15 The purchase price is the same as the present value of rental prices over the life of the car. 
 
16 Our treatment ignores some complexities of the CAFE regulations.  The actual regulations allow for 
intertemporal banking and borrowing:  the standard can be exceeded in one year if the firm overcomplies in 
another.  In addition, some manufacturers can and do elect to pay a fine rather than meet the standards, and others 
are not in fact constrained by the standards.  Work in progress (Jacobsen, 2006) addresses these issues.    
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parameters, we employ data on automobile markups, prices, and quantities sold, along with our 

estimated household demand elasticities for different automobiles.  The relationship between 

production cost and fuel economy is taken from engineering estimates of the incremental costs 

of fuel economy from the National Research Council (2002).  Details are provided in the 

appendix, available online at <xxx>. 

 We must solve the constrained optimization problem for all of the firms simultaneously 

since the residual demand curve faced by a given firm depends on the prices set by the others.  

The solution method is discussed in subsection e below.   

 
 
d.   Used Car and Scrap Markets 

 

i.  The Used Car Market 

 In the model, “used car” refers to all cars that are neither new nor scrapped.  Let !"  refer 

to a given manufacturer and class of vehicle.  For each manufacture-class category!  , the 

quantity of used cars evolves according to:  

"

 

 (2.7)  ! #:",""1
, ! (1%'" ):","

, " :","
;

 

where  and  refer to the quantity of used and new cars of the manufacturer-class 

combination !  available in year ", and 
! #:","
,

! #:","
;

" !'"  represents the average probability that used cars of 

type !  are scrapped.  We discuss the specification of  " !'"  in the next section. 

In general, each car type, or age-manufacturer-class combination, will have a different 

price.  The model determines the set of prices for all car types that allows market-clearing in 

the used-car market, that is, that causes every car to be sold.  Since the demand for a given car 

will depend on the prices of other used cars (and on new car prices), all used car prices need to 

be solved simultaneously.   

 
 
ii.  The Scrap Market 
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 We assume that households will scrap a car when the scrap value exceeds the resale 

value.  However, each car (age-manufacturer-class combination) in our model actually 

represents a group of cars of varying quality and value, some of which may fall under the 

cutoff for scrapping even if the average car in the group does not.  To allow for scrapping of 

some cars of a given type, we assign a scrap probability#to each car.  The scrap decision 

depends on 3+, the purchase price or resale value of a used car.  This is computed as the 

discounted sum of future rental prices, adjusted for the possibility that a car will be scrapped 

before reaching each progressively older age.  The household is assumed to have myopic 

expectations regarding future rental values; that is, it assumes that future rental values will be 

the same as the current-period rental values.   

 Once we have arrived at resale values for each used car, the scrap probability ' +  is 

modeled simply as: 

 

(2.8) ' + ! <+ ( (3 + )
- +  

 

where <  is a scale parameter used for calibration and + - +  is the elasticity controlling the 

change in scrap probability as the price of the car changes.  Scrap rates increase with car age. 

 
 
e.  Solution Method 

 

 To solve the model, we must obtain the full vector of new and used car prices satisfying 

the following conditions:   (1) every available (not scrapped) used car has a buyer (or retainer) 

and (2) for every new car producer, the first-order conditions for constrained profit-

maximization are satisfied.  Note that the second requirement is a function of all prices, not just 

new-car prices.  Since each household demands a range of vehicles with varying probabilities, 

we determine demands for a given car by aggregating across households the probability-

weighted demands for that car.   

 The solution method embeds the used-car problem within the broader problem of 

solving for both used- and new-car prices.  Specifically, we solve for the used-car prices that 

satisfy requirement (1), conditional on a set of posited prices for the new cars.  We then adjust 
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the new car prices in an attempt to meet condition (2), and solve again for used-car prices that 

meet requirement (1) conditional on the adjusted new-car prices.  We repeat this procedure 

until conditions (1) and (2) are met within a desired level of accuracy. 

 The government’s revenue from gasoline taxes is returned to households according to 

the various “recycling” methods described in Section 5.  Government revenues and transfers 

are mutually dependent:  the level of transfers affects household demands and government 

revenues, while the level of revenues determines the transfer level consistent with the 

government’s budget constraint.  Thus, solving the model also requires that we determine the 

equilibrium level of government revenue and transfers.  The overall solution is a set of prices 

for each car that simultaneously clears all markets, and an aggregate transfer level that equals 

the government’s revenues from the gasoline tax.  To solve the multidimensional system we 

use Broyden’s method, a derivative-based quasi-Newton search algorithm. 

 

 

3.  Data 

 

 Our dataset has two main components:  (1) a random sample of U.S. households’ 

automobile ownership choices from the 2001 National Household Travel Survey (NHTS) and 

(2) new and used automobile price and non-price characteristics from =$)>0#?@"'A'"*(!#

B!$)<''6, The National Automobile Dealer’s Association (NADA) ,0!>#8$)#C@*>!, and the 

Department of Energy (DOE) fueleconomy.org website.  By merging these two types of 

information, we obtain an unusually rich data set, one that allows us to consider household 

choices among a wide range of new and used cars and that permits us to distinguish households 

along many important dimensions.  In the appendix, we offer details on how we merged the 

data sets and constructed needed variables.   

 

a. The NHTS Sample 

#

 The 2001 NHTS consists of 26,038 households living in urban and rural areas of the 

United States.  With the help of Department of Transportation staff, we obtained the 

confidential NHTS data files containing relevant data for our analysis.  For each household we 
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have information on income, automobile holdings (by make, model, and year), and vehicle 

miles traveled.  In addition, we have data on the household’s demographic characteristics 

(including household size, composition, gender, education, and employment status) and 

geographical identifiers (including the state, metropolitan statistical area, and zip code of the 

residence). 

After cleaning the data our final sample consists of 20,429 households from the original 

26,038.  Table 3-1 presents major demographic statistics of our final sample.  

 

 

b.  The Automobile Sample 

 

 The 1983- 2002 =$)>0#?@"'A'<*%!#B!$)<''6#provided most of the car and truck 

characteristics used in our analysis.  Automobile characteristics include horsepower, weight, 

length, height, width, wheelbase, and city and highway miles per gallon (MPG) by make, 

model, and year for all cars and trucks sold during this period.  We obtained information on car 

and truck prices from the National Automobile Dealer’s Association (;?D?), which publishes 

this information in the monthly ;?D?#,0!>#8$)#C@*>!.  We used price information from the 

April 2001 and 2002 editions of the 8$)#C@*>!, which we obtained in electronic format.  Each 

edition contained the manufacturer’s suggested retail price and current resale price (a weighted 

average of recent transaction prices) for all new and used cars and trucks dating back to 1983.  

As indicated in the appendix, we calculated depreciation based on changes in prices for a given 

car over the 2001-2002 period.   

  Combining information from the Wards and NADA data sets yielded a vector of prices 

and various automobile characteristics for roughly 4,500 automobiles distinguished by 

manufacturer, model, and year.  We aggregated these data into the seven manufacturer 

categories, ten class categories, and five age categories in Table 2-1.  We used a weighted 

geometric mean formula to aggregate price and non-price characteristics within each make, 

class, and age category, where the weights were proportional to the holdings frequencies in the 

;E7F.   

 Table 3-2 displays statistics on miles per gallon, horsepower, and rental price from our 

data.  The data show significant MPG differences across classes and age categories.  A new 
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compact, for example, is 1.48 times more efficient than a large SUV.  The newest compacts 

yield 1.47 more miles per gallon than those in the oldest age category.  In contrast, the newest 

midsize and large SUVs are less fuel-efficient than the older models.  As for horsepower, we 

note that most of the increases apply to compacts and full size cars.  Average horsepower of 

compacts increased 60 percent, and average horsepower of full size cars rose 75 percent.  

Differences in rental price are most substantial for new cars, due to the particularly rapid 

depreciation of new luxury vehicles.  Older cars have much lower rental prices, and these 

prices are more similar across classes. 

 

c.  Calculation of Rental Prices and Per-Mile Operating Costs 

 

Two important variables we must construct from our data are the automobile rental 

prices and per-mile operating costs (the “price per mile” variable in Section 2) for all 284 autos.  

The underlying inputs into these prices and costs differ by region as well as automobile type.  

For household *#owning car +,  the rental price is given by: 

 
)*+ ! D+ " 0.85G*+

? " H*+ " I ( 3+  
where 

#
D+ # 4# depreciation in the real value of car +#

#
G*+
? # 4# household#*’s annual insurance costs for car +#

#
H*+ # 4# household#*’s automotive registration fees for car +#

#I # 4# real interest rate 
#

Thus, the one-year rental price of a car is the sum of depreciation, insurance, and registration 

costs, plus the forgone real return on the principal value of the car.17  For the real interest rate, 

I, we use a value of 3.89 percent, the 2001 average daily real rate on 30-year T-bills.  We 

include insurance costs in both the rental price (associated with the choice of car) and the per-

mile operating cost (associated with VMT).  Representatives from State Farm Insurance 

suggested to us that roughly 85 percent of auto insurance premiums are fixed and independent 

                                                 
17 If the household has purchased the car using a loan, this term can be equivalently interpreted as the interest 
payment on that loan. 
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of VMT.  Hence, 85 percent of insurance costs appear in the rental price formula, while the 

remaining 15 is allocated to operating costs. 

 The rental prices are included in the household utility function relative to the price of 

the outside good (cost of living) faced by each household.  We incorporate a cost of living 

index for 363 distinct regions that, together with differences in insurance and registration fees, 

reflects variation across households in the effective rental price of vehicles.18

 The per-mile operating cost, -
*+3 ,  is expressed by: 

* 0.15
J$0

- -*
*+ + *+

+

33 ; G
-KC

! " "  

where 
J$0
*3 # = household#*’s per gallon price of gasoline 
-KC+# =  miles per gallon for car +#LM

+; # = per-mile maintenance and repair costs for car +##
-
*+G # = household *’s per-mile insurance costs for car + 

 
The price of gasoline (and therefore operating cost) varies among households based on 

differences across 363 distinct regions of residence.  The average after tax gasoline price faced 

by households in 2001 ranged from $1.19 to $1.86 per gallon. 

 

 

 

4.  Estimation of Household Ownership and Utilization Decisions 
 
 
a.  The Econometric Model 
 
 
(i) Challenges 
 
 Two overarching concerns influenced our approach to estimating household automobile 

demand.  The first was our desire to integrate consistently the car ownership and utilization 

                                                 
18 Further details about the cost of living index are provided in the appendix; It varies by a factor of 1.77 across 
households. 
 
19 For -KC#we use a weighted harmonic mean of the city and highway EPA mileage rating.  
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decisions.  Such integration is crucial for generating consistent estimates of welfare costs from 

gasoline taxes.  The second concern arose from an important feature of the data:  households 

frequently own more than one car.  In the 2001 ;E7F, 41.5 percent of households own zero or 

one car, another 43.6 percent own two cars, and the remaining 14.9 percent own three or more 

autos.  This implies that many households have a potentially enormous number of auto bundles 

from which to choose.  If, for example, there are N#different cars and trucks and we consider 

only bundles consisting of two or fewer than two cars, there are 1+N+N(N+1)/2 bundles that 

households can potentially choose.  With our automobile data set consisting of 284 composite 

cars and trucks, there are 40,755 distinct bundles that households might choose (and this large 

number ignores all bundles with three or more autos). 

Nearly all past efforts to integrate automobile ownership and utilization decisions have 

relied on reduced-form, sequentially-estimated models.20  Our approach exploits Roy’s identity 

to estimate simultaneously the decisions on both margins.  To account for different households 

owning different quantities of cars, we adopt a variation of Hendel (1999) and Dube’s (2004) 

repeated discrete-continuous framework.  In the context of automobile choice, the framework 

assumes that a household’s ownership and utilization choices arise from separable choice 

occasions.  On each choice occasion, the household makes a discrete choice of whether to own 

one of N#automobiles.  If an#auto is chosen, the household conditionally decides how much to 

drive it during the year.  To account for ownership of multiple automobiles, households have 

multiple choice occasions on which different automobile services may be demanded.  

Intuitively, different choice occasions in our framework correspond to different primary tasks 

or purposes for which households might demand automobile services (e.g., commuting to work, 

family travel, shopping excursions, or any combination thereof).  We assume their number 

depends on the number of adults in a given household.21

                                                 
20 Berkovec, 1985; Mannering and Winston, 1985; Train, 1986; Goldberg, 1998; West, 2004; Bento !"#$%&, 2005 
adopt the sequential approach.  As mentioned in the introduction, Feng, Fullerton, and Gan (2005) employ a one-
step approach.  
 
21 There is some evidence in the non-market valuation literature that the specification of the number of choice 
occasions, as long as it is larger than the chosen number of goods, does not have significant effects on estimated 
welfare measures (von Haefen, Massey, and Adamowicz, 2005).  Moreover, we do not expect that it has much if 
any effect on the relative efficiency rankings of policies. 
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Our approach to modeling automobile demand has advantages and drawbacks.  Its main 

advantages are that it consistently links ownership and utilization decisions and reduces the 

dimension of the households’ choice set on a given choice occasion to N+1 alternatives (N#autos 

and the no auto alternative).   The latter feature makes our approach econometrically tractable 

with our 284 composite auto data set.  It also has the virtue of allowing for households to own 

several cars.  A main drawback is that it does not allow for interaction effects among the fleet 

of autos held by households.  For example, a four-person household’s utility from holding a 

second minivan being less than holding a single minivan.  To account for such interactions, one 

would need to regard bundles of automobiles, rather than individual cars, as the objects of 

choice.  However, as suggested above, such an approach would require 0@<0"$O"*$%%2#more 

aggregation of cars beyond what we have pursued.22  This would rule out significant product 

differentiation and thus severely limit our ability to account for the imperfectly competitive 

nature of the automobile industry.  In addition, it would compel us to put a limit of two on the 

number of cars owned by any household, which would eliminate from our sample those 

individuals likely to be most affected by changes in gasoline taxes. 

 

(ii) Specifics 

#

Our repeated discrete-continuous model of automobile demand works as follows.  

Household *#(* = 1,…,;) is assumed to have a fixed number of choice occasions, 7*&   We let 7*  

equal the number of adults in each household plus one.23  On choice occasion ", household * is 

assumed to have preferences for car +#(+41,…,N) that can be represented by the following 

conditional indirect utility function: 

                                                 
22 Feng, Fullerton, and Gan’s (2005) bundling approach aggregates all automobiles into one of two composites – 
cars and trucks. 
 
23 The 2001 ;E7F#suggests that a significant percentage of households hold an additional automobile relative to 
the number of adults.  For the 1.84 percent of household with more autos than the one plus the number of adults, 
we set the number of choice occasions equal to the number of held autos.   
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where ( ,  are household */0#income, rental price for the +th auto, utilization (or 

1-7) price for the +th car, and the Hicksian composite commodity price, respectively, 

, , )-
* *+ *+ *.2 ) 3 3

( , , )*+ *+ *+
. / 1z z z  are alternative automobile characteristics (including make, age, and class dummies 

that control for unobserved attributes24) interacted with household demographics, *
0z  contains 

just household characteristics, ( *, , , ,* * * * *. / 0 1 ## ## # ) are parameters that vary randomly across 

households, and *+"$  contains additional unobserved heterogeneity that varies randomly across 

households, automobiles, and choice occasions.  If the household instead decides not to rent a 

car (i.e., automobile 0), its conditional indirect utility function is: 

(4.2) 0 0
1 /exp * *

*" * * * * * "
* *.
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80 8 # $
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where *
8z  and *8  are individual characteristics and parameters, respectively.  The rational 

household is assumed to choose the alternative that maximizes its utility on each choice 

occasion.  Assuming each *+"$  ( ) can be treated as independent draws from the 

normalized type I extreme value distribution, the probability that individual *#chooses 

alternative +#on choice occasion "#condition on the model’s structural parameters is: 

0,...,+ ! N
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24 Berry, Levinsohn, and Pakes (1995, 2004) use alternative specific constants for every automobile to control for 
unobserved characteristics.  Given the highly nonlinear-in-parameters structure of our conditional indirect utility 
functions, we could not estimate a model with a full set of alternative specific constants and instead adopted a 
more parsimonious specification with make, age, and class dummies as in Goldberg (1995). 
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 Assuming the household chooses automobile +, Roy’s identity implies that the 

household’s conditional 1-7#demand is: 

(4.4) 
/

exp
-
*+ * * *+

*"+ *+ *+ *
*. *.

3 2 7 )
-

3 3
. / 0
2 32 3 %2 3

! " "4 54 5 4 54 56 76 76 7
. 

We assume the analyst imperfectly observes *"+-  due to measurement error in our data.25,26    

The analyst observes $ *"+ *"+ *"+- - -! " , where *"+-  is an independent draw from the normal 

distribution with mean zero and standard deviation *exp( )* *9 9! .27  The likelihood of 

observing $ *"+-  conditional on the model parameters is: 

(4.5) $
$ 2

1/ 2
1 1( |  chosen, 0)= exp

(2 ) 2
*"+ *"+

*"+

* *

- -
% - + +

: 9 9

2 32 3%4 5; % 4 54 54 56 76 7
. 

Given our assumed structure, the full likelihood of household *’s automobile demand 

conditional on * *( , , , , , , )* * * * * * *< . / 0 1 8 # 9! # ## #  is then: 

(4.6)  $1 1

1 0 1
Pr ( ) ( |  chosen)

*
*"+ *"+

7 N N
*"+* *"

" + +
P + % - +

! ! !

= >! ? ? ?@ AB C

where 1  is an indicator function equal to one if car +#is chosen on individual *’s "th choice 

occasion and zero otherwise. 

*"+

 
b.  Estimation Strategy 

 

 Past econometric efforts to model vehicle ownership and derived VMT#demand 

decisions have used variations of Dubin and McFadden’s (1984) sequential estimation strategy 

that accounts for the induced selectivity bias in derived VMT demand with a Heckman-like 

                                                 
25 Because the 2001 ;E7F survey elicited VMT in part by asking respondents to recall their past driving behavior, 
we believe it is appropriate to account explicitly for measurement error in reported VMT. 
 
26 Our assumption that some disturbances capture preference heterogeneity while others pick up measurement 
error makes our model conceptually similar to the Burtless and Hausman (1978) two-error discrete-continuous 
model that is frequently used in nonlinear budget constraint applications. 
 
27 Following Dubin and McFadden (1984), past automobile applications assume some degree of correlation 
between !*"+ and the type I extreme value errors in the discrete choice model.  Similar to King (1980), we instead 
assume that these disturbances are independent and introduce correlations between the discrete and continuous 
choices through random parameters as described below. 
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(1979) correction factor.  We employ a full-information estimation approach that accounts for 

correlations in the unobserved determinants of choice across discrete and continuous 

dimensions through random parameters (McFadden and Train, 2000).  Intuitively, random 

parameters allow unobserved variations in taste to influence automobile ownership decisions 

and VMT demand decisions.  We allow all parameters, * *( , , , , , , )* * * * * * *< . / 0 1 8 # 9! # ## # , to be 

distributed multivariate normal with mean <  and variance-covariance matrix <D .  This 

approach is more general than earlier random coefficient discrete-continuous applications (e.g., 

King, 1980; Feng, Fullerton, and Gan, 2005) that include only one random parameter.  The 

more general specification offers a far richer degree of unobserved preference heterogeneity to 

influence household’s ownership and use decisions than previous applications. 

Given the nonlinear nature of our likelihood function, the large number of households 

and sites in our data set, and the potentially large number of parameters on which we wish to 

draw inference, classical estimation procedures such as maximum simulated likelihood 

(Gourieroux and Monfort, 1996) would be exceptionally difficult, if not impossible, to 

implement.  In light of these computational constraints, we adopt a Bayesian statistical 

perspective and employ a variation of Allenby and Lenk’s (1994) Gibbs sampler estimation 

procedure that is less burdensome to implement in our application.28  

 The Bayesian framework assumes that the analyst has initial beliefs about the unknown 

parameters ( , << D ) that can be summarized by a prior probability distribution, ( , )Q << D .  

When the analyst observes a set of choices x, she combines this choice information with the 

assumed data generating process to form the likelihood of x conditional on alternative values 

of ( , << D ), ( | , )P << Dx .  The analyst then updates her prior beliefs about the distribution of 

( , << D ) to form a posterior distribution for ( , << D ) conditional on the data, ( , | )Q << D x .  By 

Bayes’ rule, ( , | )Q << D x  is proportional to the product of the prior distribution and likelihood, 

i.e., ( , | ) ( , ) ( | , ) /Q Q P< << < <D ! D Dx x 8<  where 8#is a constant.   In general, ( , | )Q << D x  will 

                                                 
28 Although the Bayesian paradigm implies a very different interpretation for the estimated parameters relative to 
classical approaches, the Bernstein-von Mises theorem suggests that the posterior mean of Bayesian parameter 
estimates, interpreted within the classical framework, are asymptotically equivalent to their classical maximum 
likelihood counterparts assuming a correctly specified data generating process.  Following Train (2003), we 
interpret this result as suggesting that both approaches should generate qualitatively similar inference, and thus the 
analyst’s choice of which to use in practice can be driven by computational convenience. 
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not have an analytical solution, and thus deriving inference about the moments and other 

relevant properties of ( , << D ) conditional on the data is difficult.  However, Bayesian 

econometricians have developed a number of Markov Chain Monte Carlo (MCMC) procedures 

to simulate random samples from ( , | )Q << D x  and in the process draw inference about the 

posterior distribution of ( , << D ). 

 Following Allenby and Lenk (1994), we specify diffuse priors for ( , << D ) and use a 

Gibbs sampler with an adaptive Metropolis-Hastings component to simulate from ( , | )Q << D x .  

By decomposing the parameter space into disjoint sets and iteratively simulating from each set 

conditionally on the others, the Gibbs sampler generates simulations from the unconditional 

posterior distribution after a sufficiently long burn-in.  The implementation details of the 

algorithm are described in the appendix. 

One further dimension of our estimation approach is worth noting.  Because of the large 

number of households in our data set (; = 20,429) and our desire to account for differences in 

automobile demand across different household types (e.g., single males, two-adult households 

with and without children, retired couples), we stratified the sample into 12 groups based on 

demographic characteristics and estimated separate models within each strata.  In addition to 

decomposing a computationally burdensome estimation problem on a large data set into a 

series of more manageable estimation problems on smaller data sets, stratification allows us to 

better account for observable and unobservable differences among households. 

 

c.  Empirical Results 

 

For all 12 strata, we obtain precisely estimated posterior mean values for ( , << D ).29  

Many of the parameters that are common across the 12 strata vary in magnitude considerably, 

suggesting that there is significant preference heterogeneity across the different subpopulations.  

We also find that the diagonal elements of <D  are generally large, suggesting considerable 

preference heterogeneity within each stratum as well.  The latter preference heterogeneity and 

the highly nonlinear structure of our preference function mean that the estimated parameters do 
                                                 
29 Parameter estimates for each of the 12 strata are reported in the appendix.   
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not have a simple economic interpretation.  Thus instead of focusing on the estimated 

parameters, we examine the various elasticities that they imply.  We display these elasticities in 

Table 4-1, broken down by household and automobile types.   Our cross-section estimation 

implies that these should be interpreted as long-run elasticities. 

The first column of Table 4-1 reports the elasticity of gasoline use with respect to 

gasoline price.  In the “All” and “by Household” panels, the elasticities allow for responses in 

both VMT and car choice (and associated fuel-economy).  In the “By Auto” panel, the 

elasticities are conditional on car choice.  Across all households and cars, we obtain a mean 

estimate of -0.35.  The estimated elasticities are larger for families with children and owners of 

trucks and SUVs.  Graham and Glaister’s (2002) survey of past studies indicates long-run 

elasticities in the U.S. ranging from -0.23 to -0.80."The authors note that prior estimates are 

quite sensitive to the data and modeling assumptions employed. 

The second column of the table shows the elasticity of gasoline use with respect to 

income.  On average, we find estimates of around 0.76.  The elasticity is highest for families 

with children and owners of new vehicles.  Graham and Glaister report long-run estimates in 

the range of 1.1 to 1.3.30   

 The third column reports car ownership elasticities with respect to the own rental 

price.  For new cars, rental price elasticities should track purchase price elasticities if rental and 

purchase prices vary proportionally.  Our results imply mean rental price elasticities of -0.88 

for all vehicles and -1.97 for new vehicles only.  Luxury cars, large SUVs, and large trucks, 

which have the highest rental prices, have the highest rental price elasticities among 

automobile classes.  Much of the work estimating these elasticities has focused exclusively on 

new vehicles (e.g. Berry, Levinsohn and Pakes, 1995, Petrin, 2002, Berry, Levinsohn and 

Pakes, 2004, and Train and Winston, forthcoming).  Train and Winston use a cross-section of 

household level data involving 200 new cars and find average elasticities for new cars ranging 

from -1.7 to -3.2, so that estimates tend to be somewhat larger than our average of -1.97.  Other 

                                                 
30 Although our estimated income elasticities are lower than in much of the previous literature, we note that our 
stratification  of the sample allows parameters controlling income effects to vary among types of households, 
which may yield a more accurate estimation of income effects than in prior (mainly time-series) work. 
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estimates from the industrial organization literature use aggregate time-series data, and find 

elasticities ranging from -3 to -4.5 (e.g., Berry, Levinsohn and Pakes, 1995; Petrin, 2002).31

 The final column of the table reports long-run VMT elasticities with respect to 

operating costs.  Across all households and cars, the average elasticity is -0.74.  This elasticity 

is lower for new cars than for older vehicles.  Older cars are disproportionately owned by lower 

income households, who exhibit higher VMT elasticities.  Because gasoline makes up slightly 

less than half of per mile operating costs, our average estimate implies an average VMT 

elasticity with respect to the price of gasoline of -0.34.  In their survey, Graham and Glaister 

report that from prior studies the average estimate for this long-run elasticity is -0.30.  

 

 

 
 
5.  Simulation Results 

 

a.  Assumptions Underlying the Simulation Dynamics 

 

 The simulation model generates a time path of economic outcomes over 10 years at 

one-year intervals.  As mentioned, the model solves in each period for the market-clearing new 

and used car prices.  We assume that household incomes grow at an annual rate of one percent.  

In all simulations, the pre-tax price of gasoline is $1.04 and is taken as exogenous and 

unchanging over time.32

 

b.  Baseline Simulation 

  

                                                 
31 We explored the sensitivity of estimates to several alternative specifications and estimation strategies.  For 
example, we experimented with allowing the income coefficient to vary across car classes and age groups, 
restricting a subset of parameters to be fixed across the sample, including alternative specific constants to account 
for unobserved automobile characteristics, and jointly estimating our model with five years of aggregate new car 
data on prices and quantities.  None of these alternatives generated elasticities significantly different from those in 
Table 4.1. 
 
32 Pre-existing federal taxes are $0.185 and average state taxes are $0.225. 
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 The baseline simulation offers a reference scenario with which we compare the 

outcomes from various gasoline tax policies.  Consistent with historical trends, we assume in 

this simulation that automobile horsepower and weight increase at an annual rate of five 

percent.  In our central case we adopt the “Path 1” assumptions of the National Research 

Council (2002) regarding improvements in fuel economy:  over a 10-year period, such 

improvements range from 11 percent for compacts to 20 percent for large SUVs.  As part of a 

sensitivity analysis below, we adopt in the baseline the more optimistic NAS “Path 3” 

assumptions regarding growth in fuel economy. 

 Table 5-1 displays the equilibrium quantities of new and used cars under the baseline 

simulation.  Our reference case overpredicts the size of the vehicle fleet by about 8 percent, 

ranging from 5 percent for midsize cars to 14 percent for small trucks. 

 

c.  Impacts of Gasoline Tax Increases under Alternative Recycling Methods 

 

 Here we present results from simulations of permanent increases in gasoline taxes.  We 

start by focusing on the impacts of a tax increase of 25 cents per gallon (other tax increases are 

considered below) under the following alternative ways of recycling the additional revenues 

from the tax increase: 

 

-- RQ%$"S#)!929%*OJT  revenues are returned in equal amounts to every household 
 
-- R*O9'A!U<$0!>S#)!929%*OJT  revenues are allocated to households according to each 

household’s share of aggregate income 
 
-- R(A"U<$0!>S#)!929%*OJT  revenues are allocated according to each household’s share of 

aggregate vehicle miles traveled 
 

Recycling could be accomplished by the government’s mailing rebate checks to households on 

an annual basis.  The shares of total revenues going to different households depend on baseline 

values and thus do not depend on behavioral responses to the gasoline tax. 

 

i.  Aggregate Impacts 
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 Table 5-2 presents the impacts of this policy on gasoline consumption.  In the short run 

(year 1), the percentage reduction is about 5.1 percent under flat and income-based recycling, 

and about 4.5 percent under VMT-based recycling.  Compared with other recycling methods, 

VMT-based recycling gives a larger share of gasoline tax revenue to car owners, who tend to 

have larger income elasticities of gasoline use.  As a result, there is a larger offsetting income 

effect on gasoline use under VMT-based recycling than under other recycling methods, and the 

overall reduction in gasoline consumption is smaller. 

 The percentage change in gasoline use is approximately equal to the percentage change 

in miles traveled (VMT) minus the percentage improvement in fuel economy (miles per gallon).  

The table shows the contributions of these two components.  Most of the reduction in gasoline 

use comes from the reduction in VMT:  the improvements in fleetwide fuel economy are fairly 

small. 

 In the short run, the major channel for improved aggregate fuel economy is an increase 

in the scrapping rate for vehicles with unusually low fuel economy.  The augmented gasoline 

tax raises per-mile operating costs, which makes vehicles with low fuel economy relatively less 

desirable, causing their demand and prices to fall and their scrap rates to rise.  In the first year 

of the policy, an additional 160,000 used large trucks and large SUVs are scrapped.   Over the 

longer term, average fuel economy is influenced by changes in fleet-composition attributable to 

increased relative sales of new cars that are more fuel-efficient, and by price-induced increases 

in fuel economy of given models.  The percent increase in fuel economy is larger in the long 

run, although fuel economy improvements still account for a small share of the overall 

reduction in gasoline consumption.      

 Table 5-3 summarizes the changes in fleet composition.  On impact, the higher gasoline 

tax occasions a shift away from cars (more cars are scrapped) and, among cars that remain in 

operation, a shift toward used cars (which, on average, are more fuel-efficient).  In the long run, 

the percentage reduction in new cars is smaller.  This is the case because new cars become 
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increasingly efficient relative to older cars as time passes, and the gasoline tax increase gives 

greater importance to fuel-economy.33   

 Several prior studies34 suggest that the overall reduction in gasoline consumption 

should be larger in the long run than in the short run, since the fleet-composition (fuel 

economy) channel requires considerable time to take effect.  In fact our simulations indicate 

that, in percentage terms, the long-run reduction is smaller than the short-run reduction.  This 

occurs because VMT per household falls by a smaller percentage in the long run than in the 

short run (see Table 5-2).  This in turn stems from the fact that although in the long run there is 

a larger percentage reduction in the number of cars owned by the average household, there is a 

smaller percentage reduction in miles traveled.35

   Table 5-2 shows that the 25 cent-per-gallon increase in the gasoline price leads to a 

reduction of 4 ½ to 5 percent in the !:@*%*<)*@A#demand for gasoline in the long run, or about 

a .2 percent reduction for each penny increase in the gasoline price.  It is difficult to compare 

this result with other studies, since other studies do not consider market equilibrium for both 

new and used cars, and do not consider time explicitly.  However, it may be noted that Austin 

and Dinan (2005) report that a 30 cent per gallon increase in the gasoline tax would reduce 

gasoline consumption (by new cars) by 10 percent (cumulatively) over a 14-year period, or .3 

percent reduction (cumulatively) for each penny increase.  

 

# VQQ*9*!O92#8'0"0#

#

 Table 5-4 displays the efficiency cost of gasoline tax increases of 10, 25, and 75 cents 

per gallon.  This cost is the weighted sum of the negative of each household’s equivalent 

variation, where a household’s weight is proportional to its share of the total population.  Here 

                                                 
33 This increasing relative efficiency of new cars applies both under the baseline price path and under the policy 
change.  The baseline path is based on the National Research Council’s (2002) “Path 1” assumptions on new car 
fuel economy. 
 
34 Examples are Agras and Chapman (1999), Glaister and Graham (2002), and Johansson and Schipper (1997). 
 
35 In the long run, the cost of gasoline represents a smaller fraction of per-mile operating cost, a reflection of both 
exogenous and endogenous improvements in fleet fuel economy. 
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“cost” should be interpreted as a gross measure, since it does not net out the environmental or 

national security benefits stemming from the policy change. 

 Under flat recycling, the (gross) cost per dollar raised is $.16, $.18, and $.24, for 

gasoline tax increases of 10, 25, and 75 cents per gallon, respectively.  The costs under the 

alternative recycling cases are not much different from those in the flat recycling case:  the 

nature of recycling, though very important distributionally (as indicated below), does not much 

affect the aggregate costs.  This result requires careful interpretation.  Another choice in the 

recycling decision is whether to return revenues in lump-sum form or instead by way of cuts in 

the marginal rates of prior taxes such as income or sales taxes.  Prior studies have shown that 

returning revenues through marginal rate reductions can significantly reduce policy costs, 

relative to lump-sum recycling.36  Because our simulation model does not include prior taxes 

(except for taxes on gasoline), we can only consider recycling through lump-sum transfers, and 

cannot contrast other aspects of recycling.37

   

ii.  Distributional Impacts 

 

 VQQ!9"0#$9)'00#GO9'A!#C)'@30#

#

 Figures 5-1a and 5-1b display the impacts of a 25-cent gasoline tax increase on 

household income groups.38  The distribution of impacts depends crucially on the nature of 

recycling.  Under flat recycling, lower income groups experience a welfare improvement from 

the policy change, while higher income groups suffer a welfare loss.  Here the lower income 

groups receive a share of the tax revenues that is considerably larger than their share of 
                                                 
36 See, for example, Goulder !"#$%&#(1999) and Parry and Oates (2000). 
 
37 The absence of prior taxes can also affect policy costs.  The direction of the bias from this omission depends on 
the extent to which the commodity receiving the tax increase (gasoline) is a complement or substitute for taxed 
factors of production such as labor and capital.  Previous studies indicate, in particular, that if gasoline is an 
average substitute for leisure, the presence of prior taxes raises the costs of a gasoline tax (or of an increase in this 
tax).  See, for example, Goulder and Williams (2003).  On the other hand, if gasoline is a sufficiently weak 
substitute (or relatively strong complement) for these factors, then the pre-existing taxes imply lower costs from a 
gasoline tax.  West and Williams’ (2007) empirical estimates suggest that gasoline and leisure may be 
complements, which imply an upward bias in our model’s estimate of the cost of a gasoline tax increase.  Their  
study calculates the cost of an incremental increase in the gasoline tax to be about 26 cents, somewhat higher than 
the cost in our simulations. 
 
38 The pattern of impacts across households is similar for the 10-cent and 75-cent gasoline tax increases. 
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gasoline tax payments.  While policy discussions often refer to the potential regressivity of a 

gasoline tax, these simulations indicate that flat recycling more than fully offsets this potential 

regressivity.   

 Under income-based recycling the pattern of impacts is U-shaped.  In this case the 

middle-income households experience the largest welfare loss.  As indicated in Table 5-5, for 

these households the ratio of miles driven (or gasoline taxes paid) to income is highest; hence 

recycling based on income benefits these households less than other households.  Only the very 

rich experience welfare gains under income-based recycling; these households have the lowest 

ratio of miles traveled (or gasoline tax paid) to income. 

 VMT-based recycling implies a fairly flat pattern of impacts across the income 

distribution, although the welfare losses are greater for higher-income households.  In 

comparison with lower-income households, rich households drive more luxury cars, which are 

relatively less fuel-efficient.  As a result, the ratio of gasoline taxes paid to VMT is especially 

large for richer households, and these households benefit least from VMT-based recycling. 

 Table 5-6 decomposes the welfare impacts into the various contributing factors:  the 

change in gasoline price, the transfer (rebate) of gasoline tax revenue, the net capital gain or 

loss associated with policy-induced changes in car prices, and changes in profit to new-car 

producers.  We have assumed that households own shares of new-car profits in proportion to 

their share of benchmark aggregate income. The table makes clear that changes in the gasoline 

price and the transfer are by far the most important sources of the household welfare impact.  It 

also confirms that, depending on the type of recycling involved, the transfer may or may not 

offset the gasoline price impact to a particular household. 

 

# VQQ!9"0#$%'OJ#W"X!)#D!A'J)$3X*9#D*A!O0*'O0#

 

 Figures 5-2a and 5-2b show VMT and policy impacts by race and income.    The 

figures reveal two main results.  First, income seems to be a more important determinant of 

welfare impact than race:  there is greater variation in welfare impacts across income groups 

than across racial categories.  This reflects the fact that much of the welfare impact is 

determined by VMT, and the differences in VMT across income groups are much larger than 

the VMT differences across racial groups, after controlling for income (Figure 5-2a).  Second, 
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low-income African-American households enjoy the largest gains from flat recycling, while 

high-income African-Americans experience the smallest losses.  This is in keeping with the 

relatively small differences in VMT between low-income and higher-income African-

American households.39

 Figures 5-3a and 5-3b display differences in welfare impacts across states.40   The top 

map displays average VMT per household from the data.  The bottom map exhibits the 

differences in average household welfare impact.  The top and bottom maps are nearly 

identical, indicating that benchmark VMT is a strong predictor of the welfare impact.  

Benchmark VMT seems to be strongly correlated with population density.  Several relatively 

densely populated states – New York, Pennsylvania, New Jersey, and Florida – experience the 

smallest average welfare impact, while many of the relatively sparsely populated states – 

Montana, Idaho, Utah, Oklahoma, Texas, Alabama, Georgia, and South Carolina – suffer the 

largest adverse impacts.  However, population density does not perfectly correlate with 

benchmark VMT or the magnitude of the impact:  some sparsely populated states – Wyoming 

and Nevada – nevertheless have low benchmark VMT and relatively small welfare impacts. 

 Table 5-7 shows how impacts differ depending on the employment status of the 

household.  Retirees fare better than younger individuals, as they tend to drive less.  

Households with no children also do better, for the same reason. 

 

 

D.  Sensitivity Analysis 

 

                                                 
39 Although not displayed, the same pattern emerges under other forms of recycling:  differences in income 
account for more of the variation of welfare impacts than racial differences do, and the variation in impacts 
between high-income and low-income African-American households is relatively small compared to the variation 
for other households. 
 
40 To generate the results in these figures, we first regressed the household welfare impacts (EVs) from the 
simulation on household characteristics and on the predicted baseline VMT and predicted baseline VMT squared.  
Next we used the coefficients from the regression, the same set of household characteristics, and household 
baseline VMT from the data (as opposed to predicted VMT) to get a new fitted value of EV for each household.  
We then aggregated this information by state. 
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 Here we consider the sensitivity of results to parameters affecting changes in fuel 

economy and scrapping.  In addition, we explore the extent to which responses to gasoline tax 

increases depend on the existence of the CAFE standard. 

 The impacts of gasoline tax increases could well be affected by the rate of technology 

change in automobiles over the next decade.  One aspect of faster technological improvement 

would be speedier growth in the fuel economy of given car models in successive years.41  To 

explore this possibility, we perform an additional simulation allowing for faster improvements 

in fuel economy.  Here we adopt the “Path 3” assumptions from the National Research Council 

(2002) study.  In contrast with the central case, in which individual model fuel economy 

improves between 11 percent (compacts) and 20 percent (large SUVs), under this alternative 

scenario the improvements are more than twice as large (see note 2 to Table 5-8).  The NRC 

study interprets the scenario involving faster fuel economy growth as due to technological 

advances that reduce producers’ costs of supplying more fuel-efficient cars.  Our simulations 

also express such a scenario.  However, it should be noted that changes in the baseline time-

profile of fuel economy could also reflect changes in household preferences.  Our model 

cannot capture such demand-side changes, since we assume a stable utility function in our 

econometric estimation.   

 Table 5-8 shows the different implications of the two technology paths.  In the baseline, 

by year 10 average household gasoline consumption is 751.6 gallons in the fast technology 

improvement case.  This is about 3 percent lower than in the central case baseline.  Fuel 

economy (miles per gallon) is about 22 percent higher in the fast-improvement case.  Average 

VMT is also higher (by 18 percent), reflecting the lower per-mile cost of driving associated 

with higher fuel economy. 

 In the case with faster baseline fuel economy improvements, the gasoline tax increase 

induces a smaller long-run percentage reduction in consumption than it does in the central case.  

This is because gasoline occupies a smaller share of the household budget in this alternative 

scenario, implying a smaller income effect from the tax increase.  The average long-run 

                                                 
41 Growth in fleetwide fuel economy has been promoted by the increased production and sale of hybrid vehicles.  
In our model, hybrid vehicles are merged with conventional cars within given manufacturer-class combinations 
(e.g., Toyota compacts).  We are considering splitting out hybrids in future work.  To estimate demands for 
hybrids, we may need to supplement our revealed-preference data with stated-preference information, since 
hybrids were introduced in the automobile fleet in 2001, the year corresponding to our benchmark data.  Today 
they represent about four percent of the compact car fleet. 
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welfare impact (EV) is 18 percent smaller under the fast technology growth scenario, which is 

also consistent with gasoline’s smaller budget share.  Thus, the baseline time-profile of fuel 

economy significantly influences the welfare consequences of a gasoline tax.  However, the 

differences across the two scenarios in baseline welfare are greater than the welfare impact, 

within either of the two scenarios of introducing a 25 cent gasoline tax increase. 

 The third main row heading in the table reports results from a simulation in which we 

double increase the scrap elasticity  -+# to  -6.0 from its central value of -3.0.  With this change, 

the gasoline tax causes a somewhat larger reduction in gasoline use in the short run, reflecting 

a higher scrapping rate:  with the higher scrap elasticity, the policy change causes 22 percent 

more cars to be scrapped compared with the policy under the central case.  While the higher 

scrap elasticity implies a larger policy impact on gasoline consumption in the short run, it has 

little influence on the policy impact in later years. 

  

 The final panel of Table 5-8 displays results in the counterfactual case where there is no 

existing CAFE standard.  In the absence of this standard, the increase in gasoline taxes yields a 

significantly larger short- and long-run improvement in fuel economy compared with the case 

of a pre-existing CAFE standard.  Correspondingly, there is a larger reduction in gasoline 

consumption.  After 10 years, gasoline consumption is reduced by about 6.2 percent, as 

compared with 5.0 percent in the central case.  When firms are not constrained by the CAFE 

standard, producers have greater incentives to change the composition of their car or truck 

fleets to meet the increased consumer demands for fuel economy that stem from higher fuel 

costs.  In contrast, when firms are constrained by the CAFE standard, the increase in the 

gasoline tax leads to smaller changes in the composition and average fuel economy of their 

fleets of cars and trucks.  The composition of a producer’s car or truck fleet is largely 

determined by the CAFE standard.  In the presence of the CAFE standard, an increase in the 

gasoline tax affects a car producer’s fleet composition mainly by altering the relative sales of 

cars versus trucks. 
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6.  Conclusions 

  

 This paper has examined the impacts of gasoline tax increases with a model that 

considers jointly supply- and demand-side responses to policy changes.  The model links the 

markets for new, used, and scrapped vehicles, and accounts for the imperfectly competitive 

nature of the automobile industry.  Linking the three markets enables us to account for the 

penetration of the car fleet by new cars and thereby assess how the impacts of policy 

interventions evolve through time.  We also address the considerable range of car choices in a 

high-dimensional discrete-continuous choice model.  Parameters for the household demand 

side of the model stem from a one-step estimation procedure that integrates individual choices 

for car ownership and miles traveled, thereby yielding consistent welfare measures.  Finally, 

we allow for the considerable heterogeneity among car owners, which enables us to explore the 

distributional impacts of policy changes along many important dimensions. 

 We find that each cent-per-gallon increase in the price of gasoline reduces the 

equilibrium gasoline consumption by about .2 percent.  The reduction in demand mainly 

reflects reduced miles traveled by car owners; shifts in demand from low to high miles-per-

gallon vehicles appear much less important.   Under a 25-cent gasoline tax increase the size of 

the vehicle fleet falls about .5 percent.  The impacts on new and used car ownership differ 

substantially over time.  In the first year of the policy, the reduction in vehicle ownership 

comes largely by way of a decline in new car purchases.  However, ratio of fuel economy of 

new to old vehicles increases over time, and the increased gasoline tax gives greater 

importance to fuel economy.  As a result, the decline in new-car ownership is attenuated over 

time, and by year 10 the reduction in car ownership applies nearly uniformly to new and used 

vehicles.  

 The gasoline tax’s marginal excess burden (excluding external benefits) per dollar of 

revenue raised ranges from about $.15 for a 10-cent tax-increase to $.25 for a 75-cent increase.  

This efficiency cost is considerably lower than the estimates of the marginal external benefits 

from higher gasoline taxes,42 suggesting that increases in the gasoline tax would be efficiency-

improving.  Taking account of revenue-recycling (and disregarding external benefits), the 

                                                 
42 See, for example, Parry and Small (2005). 
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impact of a 25-cent gasoline tax increase on the average household is about $30 per year (2001 

dollars). 

 The distributional impacts of the gasoline tax differ dramatically under the three 

revenue-recycling approaches we considered.  Under flat recycling, the average household in 

each of the bottom four income deciles experiences a welfare gain from a gasoline tax increase.  

The gain to the average household in the lowest income decile would be equivalent to about 

$125.  This suggests that a single-rebate-check approach to recycling would more than 

eliminate (for the average household within a given income group) the potential regressivity of 

a gasoline tax increase.  On the other hand, if revenues are recycled in proportion to income, 

only very poor households (those in the lowest decile) and very rich households (those in the 

highest) stand to gain.  The different impacts of the various recycling methods largely reflect 

differences across the income distribution in car use (VMT).  However, household income does 

not perfectly correlate with VMT and other important determinants of the welfare impacts:  

controlling for income, we find significant differences in impacts across racial categories and 

regions of residence. 

 The framework presented here has considerable potential to address other automobile-

related policies, including tightening of CAFE standards and subsidies to retirements of low-

mileage (or high-polluting) automobiles.  We plan to investigate these policies in future work, 

examining impacts not only on gasoline consumption but on automobile-generated pollution as 

well. 

  Two limitations in our model deserve mention.  First, although the model allows the 

fuel-economy of new cars to respond endogenously to policy or price changes, it does not 

distinguish the demands for some of the most fuel-efficient cars – namely, hybrids – from the 

demands for conventional-fuel cars in the same model category.  Only recently have sales of 

hybrids become significant, and thus the data for isolating demands for such cars are quite 

limited.  Nonetheless, in future work we hope to develop surveys that will enable us to 

consider specifically the demands for hybrid vehicles.  In addition, the model abstracts from 

transactions costs relating to car purchases and sales.  Although data limitations currently make 

it impossible to assess such costs in a rigorous manner, we believe it would be useful in the 

future to incorporate alternative assumptions about such costs within the estimation effort and 

to judge the implications of such costs for policy outcomes.  
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Table 2-1: Included Car Types

Classes Age categories Manufacturers

Compact New cars Ford

Luxury compact 1-2 years old Chrysler

Midsize 3-6 years old General Motors

Fullsize 7-11 years old Honda

Luxury mid/fullsize 12-18 years old Toyota

Small SUV Other Asian

Large SUV European

Small truck

Large truck  

Minivan



Table 3-1 
Sample Demographic Statistics from the 2001 NHTS – 20,429 Observations 

  

Variable mean (std. dev.) 
  

Household size 2.490 (1.34) 
# of adults ! 18 years old 1.861 (0.69) 
# of adults ! 65 years old 0.380 (0.67) 
# of children " 2 years old 0.096 (0.32) 
# of children 3-6 years old 0.136 (0.41) 
# of children 7-11 years old 0.185 (0.49) 
# of children 12-17 years old 0.211 (0.54) 
# of workers 1.272 (0.95) 
# of females 1.033 (0.52) 
Average age among adults (! 18) 49.56 (16.8) 
Household income (2001 $s) 56,621 (43,276) 
  

Household breakdown: percentage 
  

1 male adult, no children, not retired 5.71 
1 female adult, no children, not retired 7.88 
1 adult, no children, retired 10.3 
2+ adults w/ average age " 35, no children, not retired 7.10 
2+ adults w/ average age > 35 & " 50, no children, not retired 8.43 
2+ adults w/ average age > 50, no children, not retired 9.04 
2+ adults w/ average age " 67, no children, retired 9.29 
2+ adults w/ average age > 67, no children, retired 8.47 
1+ adults w/ youngest child < 3 years old 8.69 
1+ adults w/ youngest child 3-6 years old 7.65 
1+ adults w/ youngest child 7-11 years old 8.64 
1+ adults w/ youngest child 12-17 years old 8.85 
White household respondent b 85.6 
Black household respondent 7.62 
Hispanic household respondent 6.25 
Asian household respondent 2.17 
Adults with high school diplomas 89.4 
Adults with 4-year college degrees 30.5 
Resident of MSA < 250k 7.62 
Resident of MSA 250-500k 8.22 
Resident of MSA 500k-1m 8.30 
Resident of MSA 1-3m 22.2 
Resident of MSA > 3m 32.5 
Non-resident of MSA 21.1 
Household income "$25,000 22.8 
Household income "$50,000 & >$25,000 33.3 
Household income "$75,000 & >$50,000 19.8 
Household income >$75,000 24.1 
  
a Based on 8 level index where 1=less than high school graduate, 2= high school graduate including GED, 
3= vocational/technical training, 4=some college, but no degree, 5=Associate’s degree, 6= Bachelor’s 
degree, 7= some graduate or professional school, but no degree, 8= Graduate or professional school degree. 
b The white, black, Hispanic, and Asian percentages sum to more than 100 percent because some 
respondents have multi-cultural backgrounds. 
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Table 3.2 – Automobile Characteristics a 
            

Characteristic Compact 
Luxury 

Compact Midsize Fullsize 
Luxury 

Mid/Full Small SUV 
Large SUV 

/ Van 
Small 
Truck 

Large 
Truck Minivan Total 

            

Miles Per Gallon b             
            

   All Car Ages: 29.73  
(27.8, 35.6) 

24.18  
(22.2, 26.9) 

27.16  
(24.2, 31.0) 

25.57  
(22.6, 30.5) 

23.65  
(21.3, 25.0) 

23.75  
(17.8, 27.0) 

20.04  
(16.6, 26.8) 

23.60  
(19.1, 27.7) 

19.82  
(16.8, 23.5) 

23.45  
(19.2, 27.2) 

24.39  
(16.6, 35.6) 

            
   Model Years:            
      2001-2002 30.29  

(28.0, 32.8) 
24.47  

(22.9, 26.9) 
26.90  

(24.2, 30.5) 
25.61  

(23.0, 28.0) 
23.70  

(23.0, 24.2) 
24.17  

(21.9, 26.4) 
19.08  

(17.2, 22.5) 
22.62  

(19.2, 25.9) 
19.65  

(16.8, 23.5) 
23.25  

(20.6, 25.0) 
24.15  

(16.8, 32.8) 
      1999-2000 30.32  

(28.1, 35.6) 
24.45  

(23.1, 26.8) 
27.29  

(25.1, 29.7) 
25.79  

(22.6, 28.0) 
23.86  

(23.0, 24.4) 
23.80  

(19.8, 27.0) 
18.21  

(16.7, 19.6) 
23.29  

(19.1, 26.3) 
20.34  

(18.8, 23.4) 
22.99  

(19.2, 24.6) 
24.18  

(16.7, 35.6) 
      1995-1998 30.02  

(28.4, 32.1) 
24.24  

(22.3, 26.4) 
27.50  

(25.4, 29.8) 
25.51  

(23.0, 27.8) 
24.29  

(23.3, 25.0) 
23.44  

(19.6, 26.3) 
19.60  

(16.6, 23.7) 
23.30  

(19.6, 26.0) 
18.67  

(17.7, 19.4) 
23.65 

(21.3, 27.2) 
24.44  

(16.6, 32.1) 
      1990-1994 29.21  

(27.8, 30.4) 
23.81  

(22.2, 26.3) 
26.74  

(25.2, 30.0) 
25.37  

(23.5, 28.8) 
22.91  

(21.3, 24.0) 
22.67  

(17.8, 24.9) 
20.90  

(17.2, 26.0) 
23.10  

(20.5, 24.4) 
18.56  

(17.6, 20.0) 
23.57  

(22.2, 26.0) 
24.08  

(17.2, 30.4) 
      1983-1989 28.82  

(28.2, 29.4) 
23.94  

(22.6, 26.1) 
27.38  

(24.3, 31.0) 
25.56  

(23.8, 30.5) 
23.23  

(22.1, 24.3) 
24.84  

(23.3, 26.3) 
22.88  

(18.1, 26.8) 
25.70  

(23.7, 27.7) 
21.76  

(20.0, 23.3) 
23.97  

(21.1, 26.7) 
25.14  

(18.1, 31.0) 
            

Horsepower/100            
            

   All Car Ages: 1.286  
(0.88, 1.78) 

2.275  
(1.56, 3.63) 

1.530  
(0.98, 1.96) 

1.726  
(0.86, 2.21) 

2.177  
(1.42, 2.81) 

1.531  
(1.02, 1.95) 

1.909  
(0.88, 2.59) 

1.386  
(0.94, 1.72) 

2.011  
(1.30, 2.79) 

1.575  
(0.99, 2.18) 

1.719  
(0.86, 3.63) 

            

   Model Years:            
            
      2001-2002 1.526  

(1.34, 1.78) 
2.621  

(1.64, 3.63) 
1.787  

(1.65, 1.96) 
2.123  

(1.97, 2.21) 
2.463  

(2.13, 2.81) 
1.763  

(1.65, 1.95) 
2.391  

(2.15, 2.59) 
1.650  

(1.52, 1.72) 
2.377  

(2.20, 2.79) 
1.833  

(1.40, 2.18) 
2.036  

(1.34, 3.63) 
      1999-2000 1.454  

(1.23, 1.68) 
2.488  

(1.70, 3.45) 
1.682  

(1.58, 1.80) 
1.917  

(1.50, 2.07) 
2.376  
(2.10) 

1.648  
(1.45, 1.88) 

2.271  
(2.12, 2.52) 

1.556  
(1.34, 1.69) 

2.323  
(2.15, 2.63) 

1.765  
(1.40, 2.10) 

1.932  
(1.23, 3.45) 

      1995-1998 1.342  
(1.09, 1.47) 

2.414  
(1.75, 3.38) 

1.597  
(1.47, 1.72) 

1.835  
(1.41, 2.07) 

2.237  
(2.01, 2.53) 

1.554  
(1.35, 1.83) 

2.024  
(1.86, 2.17) 

1.430  
(1.22, 1.59) 

1.992  
(1.88, 2.06) 

1.513  
(1.09, 1.77) 

1.773  
(1.09, 3.38) 

      1990-1994 1.152  
(1.05, 1.24) 

2.075  
(1.60, 2.54) 

1.418  
(1.28, 1.54) 

1.469  
(0.90, 1.74) 

1.952  
(1.83, 2.11) 

1.467  
(1.29, 1.59) 

1.476  
(0.90, 1.77) 

1.257  
(1.07, 1.46) 

1.698  
(1.55, 1.78) 

1.378  
(1.09, 1.51) 

1.516  
(0.90, 2.54) 

      1983-1989 0.955  
(0.88, 1.03) 

1.777  
(1.56, 2.15) 

1.166  
(0.98, 1.41) 

1.212  
(0.86, 1.36) 

1.637  
(1.42, 2.01) 

1.164  
(1.02, 1.27) 

1.244  
(0.88, 1.46) 

1.038  
(0.94, 1.12) 

1.435  
(1.30, 1.50) 

1.272  
(0.99, 1.51) 

1.270  
(0.86, 2.15) 

            

Rental Price /1000            
            
   All Car Ages: 2.570 

(0.38, 6.84) 
5.959 

(0.55, 26.6) 
2.749 

(0.38, 8.55) 
3.029 

(0.39, 8.67) 
5.680 

(0.45, 21.4) 
3.141 

(0.42, 7.81) 
4.289 

(0.43, 14.4) 
2.654 

(0.37, 6.88) 
3.478 

(0.46, 8.31) 
3.336 

(0.26, 8.32) 
3.681 

(0.26, 26.6) 
            

   Model Years:            
            

      2001-2002 5.798 
(5.14, 6.84) 

15.94 
(7.23, 26.6) 

6.528 
(5.65, 8.55) 

7.463 
(6.84, 8.67) 

14.45 
(11.8, 21.4) 

6.823 
(6.12, 7.81) 

10.27 
(7.92, 14.4) 

5.686 
(4.78, 6.88) 

7.022 
(5.83, 8.31) 

7.270 
(6.21, 8.32) 

8.792 
(4.78, 26.6) 

      1999-2000 3.258 
(2.14, 4.24) 

6.819 
(3.74, 12.6) 

3.274 
(2.10, 4.72) 

3.628 
(3.13, 4.52) 

5.712 
(3.99, 8.69) 

3.724 
(3.11, 4.35) 

4.566 
(2.20, 7.69) 

3.455 
(2.91, 4.02) 

4.089 
(3.75, 4.59) 

3.888 
(2.95, 5.24) 

4.237 
(2.10, 12.6) 

      1995-1998 2.320 
(1.62, 3.27) 

4.506 
(2.59, 5.72) 

2.420 
(1.68, 3.18) 

2.521 
(2.06, 3.17) 

3.823 
(2.54, 5.61) 

2.884 
(2.20, 3.58) 

3.638 
(2.53, 5.66) 

2.548 
(2.08, 3.12) 

3.149 
(2.85, 3.63) 

2.844 
(1.94, 3.68) 

3.051 
(1.62, 5.72) 

      1990-1994 0.972 
(0.72, 1.29) 

1.679 
(1.11, 2.34) 

1.015 
(0.73, 1.33) 

1.019 
(0.75, 1.26) 

1.317 
(0.86, 1.79) 

1.259 
(0.98, 1.74) 

1.253 
(0.69, 2.04) 

1.092 
(0.87, 1.34) 

1.183 
(0.97, 1.39) 

1.081 
(0.74, 1.51) 

1.186 
(0.69, 2.34) 

      1983-1989 0.503 
(0.38, 0.67) 

0.850 
(0.55, 1.31) 

0.509 
(0.38, 0.67) 

0.491 
(0.39, 0.64) 

0.714 
(0.45, 1.21) 

0.589 
(0.42, 0.82) 

0.676 
(0.43, 1.31) 

0.489 
(0.37, 0.64) 

0.561 
(0.46, 0.69) 

0.454 
(0.26, 0.73) 

0.585 
(0.26, 1.31) 

 
a Minimums and maximums reported in parentheses. 
b Weighted harmonic mean of EPA test miles per gallon estimates. 



Table 4-1: Posterior Mean Elasticity Estimates

Elasticity of 

gasoline use 

wrt price1

Elasticity of 

gasoline use 

wrt income1

Car ownership 

elasticity wrt 

rental price

VMT elasticity 

wrt operating 

cost1

All -0.35 0.76 -0.82 -0.74

By Household

 Retired -0.32 0.61 -0.93 -0.69

 Not retired, no children -0.32 0.68 -0.72 -0.69

 Not retired, with children -0.39 0.96 -0.85 -0.83

By Auto

 By Class

All Cars

Compact -0.27 0.83 -0.65 -0.59

Luxury compact -0.30 0.78 -1.25 -0.64

Midsize -0.28 0.74 -0.67 -0.60

Fullsize -0.29 0.75 -0.73 -0.63

Luxury midsize/fullsize -0.30 0.79 -1.25 -0.63

Small SUV -0.29 0.93 -0.73 -0.63

Large SUV/van -0.32 0.88 -0.98 -0.69

Small truck -0.34 0.78 -0.62 -0.72

Large truck -0.31 0.79 -0.85 -0.66

Minivan -0.31 0.85 -0.77 -0.65

New Cars

Compact -0.28 1.14 -1.44 -0.60

Luxury compact -0.27 0.76 -3.14 -0.46

Midsize -0.29 0.95 -1.58 -0.60

Fullsize -0.29 1.04 -1.77 -0.61

Luxury midsize/fullsize -0.28 0.83 -3.04 -0.47

Small SUV -0.26 1.86 -1.58 -0.55

Large SUV/van -0.34 1.06 -2.30 -0.69

Small truck -0.37 0.91 -1.32 -0.75

Large truck -0.32 1.05 -1.69 -0.65

Minivan -0.31 0.98 -1.67 -0.63

 By Age

New cars -0.30 1.10 -1.97 -0.63

1-2 year old cars -0.29 0.79 -1.01 -0.63

3-6 year old cars -0.27 0.76 -0.73 -0.59

7-11 year old cars -0.30 0.75 -0.28 -0.65

12-18 year old cars -0.31 0.83 -0.13 -0.68

1 Elasticities in the By Auto panel are conditional on car choice.



Table 5-1: Baseline Fleet Composition

Year 1 Year 10

New Used

All cars in 

operation New Used

All cars in 

operation

Class

Compact 4.98 44.68 49.66 5.27 49.52 54.79

Lux compact 0.22 4.44 4.66 0.26 2.79 3.05

Midsize 2.63 27.58 30.21 2.82 27.30 30.12

Fullsize 1.32 16.32 17.64 1.49 14.64 16.13

Lux mid/full 0.32 8.30 8.62 0.39 4.67 5.06

Small SUV 1.32 10.65 11.97 1.41 12.99 14.40

Large SUV 1.10 15.93 17.02 1.30 12.92 14.23

Small truck 1.27 10.26 11.54 1.35 12.25 13.60

Large truck 2.17 19.83 22.00 2.42 22.16 24.58

Minivan 1.32 12.74 14.06 1.45 13.62 15.07

Total 16.65 170.73 187.39 18.15 172.87 191.03

Units are millions of privately owned cars in operation.



Table 5-2: Change in Gasoline Use with 25 Cent Tax Increase

Recycling Method Flat Income-based VMT-based

Year 1 Year 10 Year 1 Year 10 Year 1 Year 10

Baseline gasoline use per household (gallons) 775.18 828.89 775.18 828.89 775.18 828.89

% change in gasoline use -5.09% -4.99% -5.06% -5.07% -4.51% -4.40%

% change in VMT -5.01% -4.84% -4.98% -4.93% -4.43% -4.21%

% change in VMT per car -4.62% -4.37% -4.56% -4.38% -4.01% -3.69%

% change in cars in operation -0.41% -0.49% -0.44% -0.57% -0.44% -0.54%

% change in overall MPG 0.08% 0.16% 0.08% 0.15% 0.09% 0.20%



Table 5-3: Fleet Size and Composition

Year 1 Year 10 Year 1 Year 10 Year 1 Year 10 Year 1 Year 10

Cars in operation:

All 188.3 191.0 -0.41% -0.49% -0.44% -0.57% -0.44% -0.54%

New 16.7 18.2 -1.00% -0.08% -1.12% -0.38% -0.93% -0.07%

Used 171.6 172.8 -0.35% -0.53% -0.37% -0.59% -0.39% -0.59%

Low MPG 75.9 78.9 -0.47% -0.81% -0.50% -0.82% -0.49% -0.77%

High MPG 112.4 112.1 -0.37% -0.26% -0.40% -0.39% -0.40% -0.38%

1
Millions of cars.

2
Percent change relative to the baseline.

25-cent gasoline tax increase
2

Baseline
1

VMT-based recycling
Income-based 

recycling
Flat recycling



Table 5-4: Revenue and Costs from 25 Cent Increase in Gasoline Tax

                   (Results for Year 1)

Revenue recycling Flat Income-based VMT-based

Tax increase (cents) 10 25 75 10 25 75 10 25 75

Net tax revenue ($billion) 7.43 17.96 48.46 7.43 17.97 48.43 7.52 18.29 49.91

Efficiency cost
*

Total ($billion) 1.23 3.24 11.43 1.25 3.28 11.72 1.11 2.89 10.38

Per dollar of additional 

revenue 0.165 0.180 0.236 0.168 0.183 0.242 0.147 0.158 0.208

Per avoided gallon of 

gasoline consumed ($) 0.71 0.76 0.96 0.73 0.78 0.98 0.72 0.77 0.97

*
Negative of the weighted sum of equivalent variations of each household.



Table 5-5: Consumption, Mileage, and Car-Ownership Patterns of Household Income Groups*

Gasoline 
Consumption Miles Traveled

Avg. Fuel-
Economy of 

Owned 
Vehicles**

Share of 
Economy's 

Light Trucks 
and SUVs

Income 
Decile

Avg. Level 
(gallons)

Share of 
Total

Avg. Level 
(000's)

Share of 
Total

1 157.3 0.02 4.03 0.02 25.61 0.02
2 315.7 0.04 7.97 0.04 25.25 0.04
3 473.6 0.06 11.69 0.06 24.68 0.05
4 588.3 0.08 14.33 0.08 24.35 0.08
5 724.0 0.09 17.65 0.09 24.38 0.09
6 823.7 0.11 19.76 0.11 23.98 0.11
7 922.0 0.12 22.35 0.12 24.25 0.13
8 1060.8 0.14 25.46 0.14 24.00 0.15
9 1227.1 0.16 29.55 0.16 24.08 0.17
10 1459.8 0.19 35.28 0.19 24.17 0.17

* Predicted values from simulation model
** VMT-weighted



Table 5-6: Decomposition of Welfare Impacts of 25 Cent Gasoline Tax Increase

                  (Results for Year 1)

Gasoline 

price
Transfer

Car 

   prices

Producer 

profits
EV   

EV as a percent 

of income

Flat Recycling

Income

<25 -84.36 157.58 2.62 -3.12 74.96 0.45%

25-50 -196.36 160.22 -0.43 -7.19 -51.87 -0.14%

50-75 -284.09 158.88 -3.16 -11.88 -154.50 -0.24%

>75 -334.45 160.29 -4.62 -19.11 -213.94 -0.21%

All -176.02 159.04 0.04 -7.22 -29.73 -0.08%

Income-based Recycling

Income

<25 -83.90 68.33 2.90 -3.42 -13.75 -0.08%

25-50 -196.40 157.21 -0.40 -7.86 -55.45 -0.15%

50-75 -284.65 259.81 -3.40 -13.00 -55.33 -0.09%

>75 -336.04 417.87 -5.07 -20.90 39.99 0.04%

All -176.06 157.83 0.10 -7.90 -31.48 -0.08%

VMT-based Recycling

Income

<25 -84.26 79.40 2.86 -2.80 -2.01 -0.01%

25-50 -197.37 181.56 -0.38 -6.44 -30.56 -0.08%

50-75 -285.89 261.01 -3.31 -10.64 -52.80 -0.08%

>75 -340.00 307.48 -4.92 -17.12 -69.87 -0.07%

All -177.08 162.93 0.11 -6.46 -25.70 -0.07%

Welfare effects are expressed in price-adjusted dollars.



Table 5-7: Welfare Impact of 25 Cent Gasoline Tax Increase on Selected Household Groups

Recycling Flat

Income-

based VMT-based Flat

Income-

based VMT-based

All -29.73 -31.48 -25.70 -31.02 -32.64 -25.55

Retired 46.81 8.65 -15.02 52.78 11.98 -12.69

Not retired, no children -26.27 -33.02 -21.55 -21.52 -28.77 -15.16

Not retired, with children -88.01 -58.40 -37.81 -101.03 -68.64 -45.98

Welfare effects are expressed in price-adjusted dollars.

Year 1 Year 10



Table 5-8: Impacts of Gasoline Taxes under Alternative Parameter Assumptions

Year 1 Year 10

Baseline

25 cent tax 

increase
1

Baseline

25 cent tax 

increase
1

Central Case

Gasoline consumption (gallons/household) 775.18 -5.09% 828.89 -4.99%

Aggregate VMT (000's miles/household) 18.80 -5.01% 21.23 -4.84%

Avg. MPG (miles weighted) 24.26 0.082% 25.62 0.155%

Avg. EV (price-adjusted dollars) - -30.13 - -31.28

Faster Fuel-Economy Improvements
2

Gasoline consumption 773.66 -5.07% 751.56 -4.48%

Aggregate VMT 18.83 -4.99% 22.25 -4.23%

Avg. MPG 24.34 0.080% 29.60 0.263%

Avg. EV - -29.67 - -24.23

High Scrap Elasticity

Gasoline consumption 775.18 -5.16% 828.89 -5.00%

Aggregate VMT 18.80 -5.08% 21.23 -4.86%

Avg. MPG 24.26 0.088% 25.62 0.154%

Avg. EV - -29.75 - -30.93

No CAFE Standard

Gasoline consumption 775.18 -5.25% 828.89 -6.21%

Aggregate VMT 18.80 -4.93% 21.23 -4.90%

Avg. MPG 24.26 0.339% 25.62 1.401%

Avg. EV - -29.28 - -30.11

1
Percent change relative to the baseline under the same parameter assumptions.

2
Percent increases in fuel economy over 10 years are:

 Compact 41, Lux compact 41, Midsize 52, Fullsize 58, Lux mid/full 55, 

 Small SUV 54, Large SUV 65, Small truck 58, Large truck 59, Minivan 59



1
Welfare impacts are in average price-adjusted dollars per household.

Welfare Impacts
1
 across Household Income Groups

Under Alternative Revenue-Recycling Methods

Figure 5-1a:  Year 1, 25 Cent Tax
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Figure 5-1b:  Year 10, 25 Cent Tax
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Figure 5-2a:  Base VMT by Race and Income
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Figure 5-2b:  Household EV by Race and Income - 

25 Cent Gas Tax Increase with Flat Recycling
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Negativ e EV
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Figure 5-3a: Average Household VMT by State

Figure 5-3b: Average Household EV --25 Cents
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