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THE CASE HISTORY OF A MONTE CARLO SIMULATION: INTERPRETATION AND CALIBRATION
OF THE MODEL OF THE IMPERFECT CENTRAL PLACE PLANE*

Michael F. Dacey**

The model of the imperfect central place plane is a stochastic location
process that generates point patterns characterized by regularity in the
spacing between neighboring points. Dacey [1] briefly describes the model,
considers its application to the urban pattern formed by largest places in
lowa and provides sufficient empirical analysis to establish that the model
merits detailed investigation. This paper provides further details on two
aspects of the model.

The first part of this paper more clearly places the model in its
historical and geographical perspectives. On one hand, it is shown that the
model takes account of fundamental characteristics of the historical develop-
ment of urban patterns. On the other hand, relations are established between
this model and the more general principles of central place theory. The
relation of the model to theory has a critical role in the interpretation
of elements of the model.

The latter part of this paper considers problems reflecting that the
model identifies a sufficiently complicated stochastic process that tractable
expressions have not been obtained for properties of random varibles describing
the theoretical point patterns. While approximating expressions might be
obtained for at least some of the properties, this approach has not been
fully investigated. Instead, the location process is studied by the use of
simulation procedures to generate synthetic patterns, and measurements from
these synthetic patterns provide sample estimates of properties of the
location process. This paper considers the design of an appropriate simulation
procedure.

One reason for the detailed examination of the simulation design is that
the search for a literature that could guide the construction and use of the
synthetic pattern generator was not fruitful. While a possible explanation
is that simulation of the model of the imperfect central place plane presents
problems that typically do not arise in other simulations of pattern, an
examination of the geographic uses of simultation failed to sustain the
hypothesis. Instead, the interpretation and calibration of pattern simulators
appears to involve a common body of problems that include the manner of m
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specifying - a simulation space, (2) handling boundary effects and (3) scaling
the model to known units, While the way these considerations arise in various
simulations may vary in degree and context, the underiying methodological
issues seem inescapable consequences of the relatively undeveloped status of
most geographic theories. The nature of several of these fundamental problems
is clarified by the detailed investigation of procedures involved in the
simulation of a specific model.

Historical Perspective

The model of the imperfect central place plane is intended to describe the
urban pattern formed by a collection of largest cities and towns in a region.
The model is particularly suited to regions located in the eastern portion of
the trans-Mississippi area where the conditions of classical central place
theory are approximately satisfied. However, the model modifies central place
principles in order to take account of fundamental characteristics of the
historical development of the urban patterns in midwestern states. Four of
these characteristics are mentioned briefly.

One characteristic is that these states were surveyed prior to settlement
and, in particular, the boundaries of each county were designated before it
was opened to settlement. Moreover, county boundaries have been highly stable.
A second characteristic is that the seat of each county government was
designated soon after the county was opened to settlement and, commonly, a site
was selected near the geographic center of the county. A third characteristic
is the early growth of county seat places. The presence of administrative and
judicial functions in a county seat place provided an initial agglomeration of
activities, which was an impetus to early growth. Although there are conspicuous
exceptions, the general tendency was for the county seat function to remain at
the initially selected site, which was reinforced by early growth of county
seat places. A fourth characteristic is the continued advantage of early
growth so that in contemporary urban patterns the largest place in a county is
typically the county seat place. The important consequences to the model
building are that the largest places tend to be county seat places and these
places tend to be located near the centers of counties.

Modeling of County Structure

The model of the imperfect central place plane is the formulation of a
location process that recognizes the distinction between county seat places
and other, non-county seat places and utilizes county structure as an element
of the geographic environment that affects the location of county seat places.

Central place principles are incorporated into the model by interpreting
county structure as a cell structure composed of polygons that are identical
in size and shape. When the cells are regular hexagons or, possibly, squares,
county structure corresponds to the structure of market areas in a central
place system. While use of a cell structure for a system of counties is an
abstraction from geographic reality, the abstraction bears a relation to the
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geographic situation wherever the partitioning of a state into counties
resembles a tesselation of regular cells. Although county size varies from
state to state, within each of the trans-Mississippi states the shape and
arrangement of counties approximates a tesselation of regular polygons. While
it is possible to design a test that partially evaluates the adequacy of this
abstraction, a more critical test is the degree to which the theoretical
pattern generated by the model corresponds to observed urban patterns.

The model that is developed in this paper replaces county structure by
regular hexagons or by squares. The type of interdependence that is assumed
to hold between county structure and central place principles is exemplified
by the answer given to the following question. |If the division of midwestern
states into counties produced a pattern having no resemblance to a regular
lattice structure, would central place principles underlie the urban location
process? The model of the imperfect central place piane is predicated upon
the universal validity of central place principles.

The Model

The model of the imperfect central place plane takes into account the
county structure of a region and the distinction between county seat and
non-county seat places. The basic elements of the model are cell, CS-place
and O-place and in the interpretation and subsequent application of the model
these elements are interpreted, respectively, as county, county seat place
and non-county seat (or other) place. These elements are defined in terms of
a point lattice L embedded in the euclidean plane E and a collection P of places
that are treated as points located on the plane. Each place is a CS-place
or an O-place and the locations of these places are realizations of a stochastic
process which is identified with respect to points of the lattice.

A cartesian coordinate system is assumed, and the lattice is defined by
translation periods 7} and T2 whose'orientations differ by the angle y. The
collection of lattice points is L = {2{u, v) |u, v integers} where, in vector
notation

> >
2{u, v) = .uty * vra.

and, in cartesian coordinates, 2(u, v) = (ury = vty cos vy, vty sin vy). The
lattice point &(u, v) is called the ligeographic center'' of the cell clu, v)
that consists of all points of the plane closer to the lattice point 2(u, v)
than to any other lattice point. Hence, the cells form Dirichlet regions of
the ptlane, and put C = {c(u, V) |u, v integers}. Let n represent the area of
each cell, and n is determined by the lattice parameters T, T9 and Y.

The entities of the model of the imperfect central place plane are the
collection P of places that are divided into CS-places and O-places and the
collection C of cells that are defined with respect to a point lattice L.
The lattice has infinite extent so that it is not meaningful to enumerate
the numbers of cells, CS-places and 0-places. The relative numbers of such
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places may, however, be quantified by use of a measure such as the average
number of places per cell. Letp denote the average number of CS-places

per cell and letp denote the average number of O-places per cell. It is
specified that 0 < p< 1 and 1 >0, but the reasons for the variation ofp
between 0 and 1 may require clarification. When the application of the model
is to the pattern formed by the m largest places in a region having n counties,
it Is not necessary that these m places include all n county seat places.
This is clearly the case if m<n. Moreover, since the n largest places in an
n-county region will frequently include non-county seat places, m>n does not
necessarily imply that the set of m largest places in a region includes all
county seat places.

Three assumptions relate the location of places in P to the cell structure

A-1. The locations of O-places form a Poisson point process on the
plane with density u.

A-2. Each cell genérates one CS-place with fixed probability pand
generates no CS-place with probability I - p.

A-3. Given that the cell ¢ (u, v) generates a CS-place, the location

of this place in cartesian coordinates is (uty ~ vz, cosy
+ Xy, V1, siny+ X ), where X, and X_, are random varTables
] 2 2 1 2
defined by
X] = X cos 6, X2 =X sin 8

where 6 is uniformly distributed on (0, 2w ) and X has the half-normal
distribution with

5t 2,52
PIX <t} = (2/m6d)f e X729 ax, t> 0,05 0.
0
Notice that the locations of places are treated as independent events

and that the CS-place associated with origin £ (u, v) is not necessarily
located in ¢ (u, v).

The three kinds of parameters of the model of the imperfect central
place plane are

(a) the parameters T T, and ydefining the regular point lattice L,
(b) the density parametersp and u, and
(c) the parameter gassociated with the random variable X.
The pattern of places generated by this model is described as random
variables that represent spacing measures between entities located within

a convex region 8 of the imperfect central place plane, and 8 may or may not
coincide with the euclidean plane. The random variables are of two different

kinds.
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One kind represents distances from sample points located in g8 to
neighboring places located in 8, where the locations of these sample points
are realizations of a Poisson point process on the (imperfect central place)
plane. Letwrepresent a sample point located in B and three random variables
are

th

Ui represents distance from wto the i nearest CS-place in g,

th

Vi represents distance from wto the i nearest O-place in B, and

Ti represents distance from wto the 1th nearest place of either
type inB.

The other kind of random variables correspond to order distances from place
to neighboring places, and these random variables are

*

U, represents distance from a CS-place in B to the jth
I (other) CS-place in B,

nearest

*

V, represents distance from an O-place in B to the i
{other) O-place in B, and

T  represents distance from a place in B to the jth
' place of either type in B.

th nearest

nearest {other)

Each of the six order distances is defined for i =1, 2, ...,k so that the
pattern of places in a region B is described by the probability distributions
and moment properties of korders of these six random variables.

Description of the Theoretical Pattern

The basic hypothesis of the model building is that there exists a region
B of the imperfect central place plane such that spacing attributes of an
observed pattern of m largest places correspond to, or may be approximated
by, a realization of the model of the imperfect central place plane in the
region B. However, several critical problems arise in the specification of B.

First, suppose B is specified as the euclidean plane. For this region
properties of V. and V? are known, but | am not able to derive useful properties
of the other random variables. While it might be possible to generalize results
given in Dacey [2] to obtain integral expressions for U; and U, these
expressions would undoubtedly be intractable and of little use in numerical
analysis. While approximating expressions might be obtained for some properties
of these random variables, this approach has not been fully investigated because
the use of a simulation procedure appears more productive.

A simulation procedure involves the construction of synthetic point
patterns having properties that approximate those of the theoretical pattern
of places on the imperfect central place plane. Properties of the six random
variables describing the theoretical pattern are estimated from measurements
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taken from the synthetic patterns. Synthetic patterns are necessarily
generated on a bounded region.

If the size and shape of the region 8is specified, the model is such
that it is easy to design a simulation procedure that generates acceptable
synthetic point patterns. The difficult aspect is the specification of a
simulation space B that contains a synthetic pattern having properties that
are comparable with properties obtained from an observed urban pattern.
Most of the difficulties are attributable to the effects of boundaries on
distance measures from both synthetic and observed urban patterns.

Before considering specific problems, it may be useful to comment first
on the general problem of edge effects. The patterns involved in geographic
research are composed of a collection of objects (which are common Ty
abstracted to point, line or area symbols) located on a portion of the earth's
surface (which is commonly represented by a two dimensional map area that
contains the symbols corresponding to the locations of objects). The
description and analysis of point patterns uses procedures that take account
of the arrangement of objects--the location of objects with respect to each
other--and the dispersion of objects--the location of objects with respect
to the map area containing the objects. Suppose the arrangement of objects
is expressed as a functiog of the distance between pairs of objects (as the
random variables U] and V%) and dispersion of objects is expressed as a function
of the distances bdtween uniformly located sample points and objects (as the
random variables Ui and V.). Then it may be shown that arrangement and
dispersion can be varied independently and independent of the size and shape
of the map region. However, it is unlikely that the size or shape of the map
region can be changed without also changing the dispersion of a pattern. When
a change in the map area alters dispersion, pattern description is intimately
dependent upon the specification of the region containing the pattern. As a
consequence, the comparison of synthetics and empirical patterns requires
calibration of the model so that comparable measurements are obtained from

the two pattern types.

One approach to edge effects is to construct the simulation spaceB so
that it has exactly the same dimensions as the region containing the observed
pattern that is being compared with the model of the imperfect central place
plane. Such a simulation space cannot in general be constructed, but to
verify this conclusion it is first necessary to identify properties of the
observed patterns that will be compared with the model.

Selection of the Study Region

Interpretation and analysis of the model imposes constraint upon the
specification of patterns that are comparable with the theoretical pattern
of places in the imperfect central place plane. First, observed data are
not obtained from an urban pattern but from its map representation. Because
county structure varies from state to state it is assumed that the map region
roughly corresponds to the map area of a state in the trans-Mississippi area
where the underlying conditions of central place theory are approximated.
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The map is at a scale that depicts the locations of towns and most cities

by point symbols. Because the model does not take urban agglomerations into
account, it is necessary to combine suburbs and other spatially contiguous
cities so that the universe of places consists only of areally distinct cities
and towns. The study region is defined with respect to an urban system
defined by the m. largest, areally distinct places in a state, though other
criteria may be used to delimit an urban system.

The map region is a large rectangle containing the centers of n counties
such that the area of the rectangle equals the area of these n counties.
Though it may require some shifting of boundaries to satisfy this criterion,
the criterion on area is critical because it will be used in calibrating
the modei. The urban pattern is defined by the map representation of the
point locations of the largest places within this map region. LetB denote
this region and m denote the number of places in B.

Interpretation of the Model

The interpretation of elements of the model utilizes the well-developed
structure of central place theory and the assumed relation between county
structure of states and the cell structure of central place theory. The
model is interpreted for the collection of m largest places in a map region B.
This region covers part or all of a state having the following characteristics:
it is partitioned into non-overlapping counties, state law requires that each
county has exactly one urban place that is the seat of county government, and
the county seat place is located within the county it governs. When applied
to a map pattern formed by the urban places in a region B, the elements of the
model are given the following interpretations:

lattice cell - county
CS-place - county seat place
(a) 0-place - non-county seat place
lattice point - geographic center of county

Y = (X2 + XZ)% - distance from geographic center of county to
! 2 county seat place

The pertinent parameters of the collection of m largest places in a
map region Bare

n - number of counties in the region
x - number of county seat places
(b)

y - number of non-county seat places

a - area of region
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The pattern formed by the m largest places is described by sample
estimates of the six random variables describing the theoretical pattern
of places on the imperfect central place plane. Sample estimates of
Uj, V; and T; are obtained from observed distances from sample points that
are uniformly and independently located on the map region B to, respectively,
ith nearest county seat place, ith nearest non-county seat place and it
nearest place of any type. Estimates of Uy, Vi and T; are obtained from
observed ith order distances between pairs of county seat places, non-
county seat places and places of any type. The pattern of m largest places
in a map region B is described by « orders of distances for each of the six
types of spacing measures. Though these spacing measures may be expressed
in an arbitrary metric, it is convenient to select the metric such that
a=n.

Specification of Parameters

The six parameters of the model are T}, T3, Y, ¢, 4 and o. In addition
there is need to set the number k of order distances. Combining the inter-
pretation of the model (a) with the values (b) for parameters of an urban
pattern suggest that p is estimated by x/n and, when a = n, u is estimated
by y/n. The interpretation (a) does not, by itself or in conjunction with
the parameter values (b), yield properties of the lattice structure. The
three lattice parameters are specified by placing the interpretation (a)
in a central place context. For a central place structure, L is a hexagonal
or, possibly, a square point lattice. For these lattices, 11 = 12 = T,
say, and vy has the value 2n/3 for the hexagonal and n/h4 for the square lattice.

To obtain a numerical value for the parameter o, the ideal circumstance
would use a theory that relates the dispersion of county seat places around
the geographic centers of counties. Lacking this theory, the parameter ¢ of
the half-normal distribution is estimated from empirical data that give the
distance from the center of each county in the map region B to its county seat
place. The estimate of o is expressed in the same unit of measurement as the
statistics describing the map pattern. This unit sets the metric for the

model.

The postulated relation between the cell structure of the central place
lattice and the county structure of a region suggests that the lattice L is
constructed so that the area n of each primitive lattice cell is estimated by
a/n, the mean area of counties. Given this value and the type (hexagonal or
square) of lattice, the translation period t is obtained by simple algebra.
The unit of measurement for T is the same as used for o.

The remaining problems are to identify a simulation space g of the central
place plane that is described by random variables having properties that are
comparable with the statistics describing the urban pattern in the region B and

to set a value for .
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Specification of a Simulation Space

It is given that the map region Bis a rectangle with sides of lengths a,
and a, and area a = a,a, that contains the centers of n counties having total
area a. The preceding Tnterpretations of the model seem to suggest that the
simulation space Bis constructed as a rectangle with sides of lengths a, and
a. that contains n lattice points of L. However, in general there does not
exist on the imperfect central place plane a region having these properties--
for example, when L is a square point lattice and n is odd. This verifies
the earlier assertion that calibration of the mode! cannot be handled by the
simple expedient of constructing a region Bthat has exactly the same dimensions
as the map region B.

Before constructing the regions Band B the obstacles that confront
specification of these regions are summarized. Because of inability to derive
properties for random variables, the model of the imperfect central place
plane is studied by simulation of the theoretical pattern. This synthetic
pattern necessarily occupies a bounded region. Boundary effects cannot be
ignored because estimates of properties of the location model are based on
measurements from synthetic patterns and these estimates are affected by the
shape and size of the simulation space. While this would not bias the
comparison of theoretical and observed patterns when the simulation space
has the same areal dimensions as the map region, a simulation space that
has properties of the map region cannot in general be constructed. Hence, the
present need is to construct a simulation space and a map region that control
or minimize the bias attributable to boundary effects.

This type of calibration problem probably arises in nearly all geographic
simulations of pattern. While | cannot identify a literature that comments
on procedures for controlling boundary effects, the problem should not be
ignored. If boundary effects are not taken into account, it may not be
possible to identify properties of the model being simulated. Calibration is
imperative because it is not clear what conclusions can be obtained from
uncalibrated models.

The procedures used to calibrate the present model and to control boundary
effects are not universally applicable. They do, however, provide one basic
strategy for controlling boundary effects when the simulation space and the
map region are defined as rectangles. While there are several other reasons
for using a rectangular shaped region, the primary one is that a relatively
simple transformation, frequently used in theoretical physics, removes boundary
effects. Opposite boundaries of this region are joined to form a helical torus
(anchor ring). The resulting surface has no edges and hence, no edge effects.
Though other types of biases accompany the use of the torus, they are easier

to control.

When a region is mapped onto a torus, distance between points in the
region is defined as distance on the surface of the torus. To define this
distance, consider a rectangle b with vertices at (0, 0), (0, y), (x, y) and
{x, 0). If py= (xi’yi) and py = (xz,yz) are points of b, the toroidal distance
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d(p],p ) between p, and p, (i.e., the distance on the surface of the helical
torus &btained by Joining“opposite edges of b) may be obtained in the following

way. Let x_ denote the minimum of (x, - x,)%, (x, = Xy = X} and (xg - Xy + x})2,
and let y, denote the miqgmum of (yy = v3)?2, (yy - Yy - v)? and byp vy #+ y)2:
Then d(p],pz) = (xrn + ym) .

The map region B is a rectangle. For the purpose of comparing the pattern
of places in the map region with the theoretical patterns defined by the model
of the imperfect central place plane, the map region is mapped onto a helical
torus so that spacing measures taken from the region B are toroidal distances.
The next task is to construct a simulation space B that yields measurements
that are comparable with the toroidal spacing measure describing the pattern
of places in the map region B.

Construction of the Simulation Space

The locations of places on the imperfect central place plane are described
by a two dimensional probability density surface. When L is a regular point
lattice this surface may be generated by rotation and translation of the
probability density surface on any unit cell, Figure 1, of the lattice. So
that the simulation space Bretains this property of the model, 8 is constructed
as a rectangle with sides parallel to rows and columns of lattice points in
L and lengths of sides satisfying the property that the number of lattice
points of L that are in Bis not changed by any translation of B. Figure 1
illustrates typical constructions of g for hexagonal and square point lattices;
the region B for the hexagonal lattice must contain even numbers of rows and
columns of lattice points.

Opposite edges of the region gare joined to form a helical torus.
Simulations of the model generate synthetic patterns on the surface of this
torus. Properties of the six random variables describing the model are
estimated from measurements on these synthetic patterns and these measurements
are ordered, toroidal distances. Properties of the torus are used to sét the
lengths of sides of Band the number x of order distances used to describe the

theoretical pattern of places.

The size of Bis considered first. The specification of size makes use of
the toroidal property that any point x on the surface of a torus can, by
judicious cutting of the torus, be a point located at the center of a rectangle.
Because of this property, if 8has sides of lengths 2A; and Ay > 2A; and if all
random variables describing the theoretical pattern o% places on the imperfect
central place plane are less than A} with probability 1, then it may be shown
that these random variables are identical in probability with the corresponding
random variables defined on the toroidal mapping of the spaceB . In this case,
the use of a torus does not produce bias estimates of properties of the random
variables. However, none of the six random variables are less than A, with
probability 1 for any finite Ay so that the toroidal construction yields bias
estimates of properties of each of the six random variables.
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Though bias is always present, it is possible to construct a spacef that
is Usufficiently large'' that the degree of bias is within a prescribed limit.
To see this, let X, represent the ith order of one of the six random variables.
For fixed positive'g <1 there is a sufficiently large region g such that X;

is Tess than A, with probability 1 - g5 . The quantity eSis a measure of the
effect that the size of a specified region g exerts on estimates of properties
of the random variables. By puttingeg= .01, .0Cl or some other small value,

a region Bcan be constructed for which the toroidal mapping introduces only a
negligible bias on estimates of properties of each of the six random variables.

Suppose Bhas sides of lengths 2A; and A2 3_2A]. Given the allowable error
£g, the following procedure defines the dimensions of a region B that is

Ysufficiently large'' for K orders of distance measures.

The estimation of an A; that is sufficiently large for estimating properties
of U; makes use of the fact that P {UK E.A]} > 1 -¢,if, and only if, any circle
on the imperfect central place plane with radius A contains at least K CS-places
with probability greater than 1 - €¢. This probability is approximated by
considering a circle centered on a %attice point having radius R + 3 0. Since
a CS-point is associated with each lattice point with probability p, the circle
with radius R + 30 contains exactly k CS-points with approximate probability

b () =(HR) k1 - LRIk

So, the probability that at least K CS-places are within distance R of a lattice
point is approximately

P(R) = 1 - 7 P (R)

If the rectangular region8 has sides with lengths 2A; and A > A,, then UK_iA]
with approximate probability Pe(A;). 1f A is speci}ied so“that P (AI) 27 -ep
then g is considered sufficiently ]arge for K orders of distances from sample
points to CS-places with negligible bias attributable to the torgidal mapping.
Also, the same approximation is usable for the random variable Ui.

An exact probability is obtained for the sample point to O-place distances
represented by the random variables Vi and Vi. On the central place plane the
distance from a sample point or from an O-place to the kth npearest O-place is

less than R with probability

R 2k-1 -mw?
g (R) = T2(m0 %70 - 1T £ TTeT™ ax
K . 0
() ( 2
= T (k, TAR?)
k-n1 Y
where y= u/n is the density of 0-places per unit area and vy(k, z) is the in-
complete gamma function. If A] is set so that qK(A]) >l -eg, thenB is considered
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sufficiently large for K orders of distances from sample points to O-places
and from 0-places to O-places with negligible bias attributable to the toroidal
mapping.

Clearly, if a region is sufficiently large for K orders of measurements to
CS-places and to O-places, then it is sufficiently large for K orders of
measurements to a place of any type.

A regionB having sides with lengths at least as large as 28, is said to
be sufficiently large for K orders of measurement when both PK(AI)z_I - eg and

qK(A]) >1 LT

Numbers of Order Distances

The evaluation of the model of the imperfect central place plane involves
comparison of properties of korders of six random variables with similar
properties of the corresponding statistics describing the observed urban pattern
in B. Since the simulation space Bmay be made arbitrarily large, properties
of the random variables may be obtained for any order of spacing measure. In
contrast, the size of the map region B has already been set and used in
calibrating the model. The maximum number of orders of toroidal distance measures
that may be obtained from this region with negligible bias attributable to the
toroidal construction is limited by its size. This number may be set by accepting
the validity of the model of the imperfect central place plane and then using
the probabitities P, and q, to establish the number of orders of statistics
that may be estimated from region B with sides of lengths 2a, and a, > 2a,. The
kth order statistics are obtained from B only if Pk(al)i_l - eg and qua])z_l -eg -

If these two inequalities are not satisfied for k = 1, then it is necessary
either to enlarge the region to which the model is applied, which necessitates
a thorough recalibration of the model, or to increase the value ofes, which
tncreases the allowable bias resulting from the use of a torus.

If this problem does not arise or suitable adjustments are made, suppose
the two inequalities hold only for Kg >I orders of measurement. Then, a possible
calibration of the model is to putk = K, and to construct the simulation space B
as the smallest rectangle that is sufficiently large forx orders of distance
measures. This completes the calibration of the model of the imperfect central

place plane.

Sampling Procedures

Calibration of the model of the imperfect central place plane does not
complete specification of the simulation procedure. Properties of the six random
variables are estimated from sample measurements on the synthetic patterns
generated by simulations of the model, and the simulation design needs to
include a description of the sampling procedure. An appropriate sample design
reflects the manner of using simulations to obtain descriptive properties of the

mode 1.
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Each simulation of the model generates a single synthetic pattern of
CS-places and O-places on the torus 8. The order distance properties of
this simulated pattern are obtained from measurements between, say, N, pairs
of these places and between N, pairs of sample points and places. This
procedure is repeated for M simulations of the model. Estimates of properties
of each of the random variables describing the model are obtained from MN,

N = N; + N, measurements of each order. The efficiency of a sample design
undoubted1y depends on the number of simulations M, the number N of measure-
ments on each simulated pattern and the size of the simulation space . The
sizes of M, N and gBneed to be set so as to obtain an efficient description
of the theoretical pattern of places on the imperfect central place plane.

Other sampling problems arise in the empirical analysis of the model.
These include specifying the number of sample observations on the urban
pattern that are to be used to estimate each order statistic and the minimum
number of orders to be used in empirical analysis of the model.

The design of sampling procedures, as well as the pertinent hypotheses
to be evaluated by empirical analysis, are left for another paper.
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