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Obtaining reliable estimates of insurance premiums is a critical step in
risk sharing and risk transfer necessary to ensure solvency and continuity in
crop insurance programs. Challenges encountered in the estimation include
dealing with aggregation bias from using county level yield averages as well
as properly accounting for spatial and temporal heterogeneity. In this study,
we associate some of these challenges as classical small area estimation (SAE)
problems. We employ a hierarchical Bayes (HB) SAE to obtain design con-
sistent expected county level yields and Group Risk Plan (GRP) premiums
for corm farms in Illinois using quasi-simulated data.

Preliminary results show little bias (< 10%) in estimated expected county
yields in several counties investigated. We found wide variation in GRP, APH
and basis risk across counties for similar level of coverage and scale. Results
show that farmers could lower their GRP premiums by as much as 30% by
carefully choosing a coverage level and scale combination.

Keywords: Crop Insurance, Small area estimation, Hierarchical Bayes
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1. Introduction

Crop Insurance is one of the most important tool for managing agricul-
tural risk in the US and developed nations at large. Obtaining and using
reliable estimates of insurance premiums is a critical step in risk sharing and
risk transfer necessary to ensure solvency and continuity in crop insurance
programs(Ramirez,1997; Ramirez et al, 2003; Ker and Coble 2003; Pope and
Just 1999; Sherrick et al, 2004). Farm-level based and area-level based in-
surance policies are the two categories of policies offered by the Federal crop
insurance program (FCIP) for selected crops in different regions of the coun-
try. Farm-level policies such as the traditional Actual Production History
(APH) insure farmers against unpreventable losses and are designed for each
farm based on their production history. Indemnities for the APH are trig-
gered when the observed yield fall below the expected farm yield. On the
other hand area-based policies introduced in the early nineties such as the
Group Risk Plan (GRP) and the Group Risk Income Protection (GRIP) are
designed to insure farmers against widespread or catastrophic losses. Indem-
nities for GRP are triggered when the observed county average yield falls
below a trigger amount which is function of the expected county average
yield, the coverage level and a scale. The expected farm and county yields
are estimated by the national Agricultural statistical service (NASS) from
historical farm yields and historical county-level averages respectively.

Major problems still exist in reliably estimating crop distributions and in-
surance premiums for both farm-level and area-level policies. Common prob-
lems encountered in their estimation include properly accounting for spatial
and temporal effects (Kardner and Kramer, 1986; Ozaki et al, 2008;Claassen
and Just,2009) as well as uncertainty in the parameter estimates. The ab-
sence of long historical yields on farms is the most common problem encoun-
tered in the estimation of farm-level policies potentially leading to highly bi-
ased estimates. Results from an empirically grounded simulation by Ramirez
and Carpio (2011) showed that the high level of subsidy needed to keep the
APH solvent can mostly be explained by the use of biased premium estimates
and not adverse selection by farmers presumed to have a better knowledge
about their risk exposure than the insurer. They also showed that actuarially
fair premiums could be obtained by using improved estimation methods and
large sample size.

On the other hand, estimation of area-level policies is generally plagued
by aggregation bias resulting from the use of county-level averages. Aggre-
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gated county level data fails to explicitly represent systemic and random
variation inherent with farm-level data. Claassen and Just (2009) found that
using county-level averages in risk estimation understates farm-level yield
variation by 50% and that 61% of systemic variation and 42% of random
variation is lost by aggregating yields.This indicates strong need for alter-
native approaches to estimate risk premiums directly from farm-level data
with minimum loss of information. Aggregation bias is likely to increase
as yield data from fewer farms is used to construct county averages. Since
the number of farms from which data is collected could vary from county
to county and in some cases likely to be far smaller than the actual total
number of farms within the county, the observed and hence expected county
means derived using the county averages could be unreliable. This situation
give rise to classic small area estimation (SAE) problems requiring the use
of SAE methods to obtain more efficient parameter and premium estimates
(Fay and Herriot, 1979; Datta and Ghosh, 1991; Datta et al,1999; Ghosh and
Rao, 1994; Rao, 2003).

Small area estimation is an active area of research which involves obtain-
ing reliable estimates from subpopulations (district, county, state, country,
sex, race, sex-race combination, etc) when the survey data involves few ob-
servations at least in some subpopulation (commonly referred to as area).
The methods developed circumvent this limitation by ”borrowing strength”
or making use of information from sample variables outside the area of in-
terest. Typically sources from which strength is borrowed include data from
neighboring or similar areas in which case we refer to as ’borrowing strength’
across space and data from earlier time periods referred to as ’borrowing
strength’ across time. This process increases the ’effective sample’ size use
in the study (Datta and Ghosh, 1991;Rao, 2003) and thus the efficiency of
estimated parameters.

Aggregation bias decreases the correlation between county-level and farm-
level yield, thus increasing basis risk making area level insurance policies
unreliable to farmers. This is because a farmer could incur significant yield
losses and still not receives an indemnity. Likewise, a farmer could also be
compensated for yield losses due to significant county-wide loss without ac-
tually experiencing significant yield loss on his farm. The difference between
observed losses at the farm level and that at the county level is known as
basis risk and constitute the main drawback in implementing and expanding
area-based crop insurance programs despite the advantages it has over farm-
level policies; area-based policies cost considerably less to administer with
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potential of reducing adverse selection and moral hazard. This is because
claim agents are not required to carry out a damage assessment before issu-
ing payments, and farmers are less likely not to know the true distribution
of the county average yield thus preventing them from self-selecting into spe-
cific plans. In addition, incentives for farmers to engage in negligent behavior
after obtaining coverage is significantly reduced since a poor yield on one or
few farms may not be sufficient enough to lower the observed county average
yield down to the trigger level. These advantages associated with area-based
policies are translated into lower premiums compared to traditional farm
level policy premiums.

In 2011, the risk management agency (RMA) responsible for administer-
ing the FCIP covered over 265 million acres, assuming over $80 million in
liability. However, despite significantly lower GRP premiums, farmers over-
whelmingly adhered to APH policy, with GRP contributing only 6% of the
total FCIP liability (RMA, 2011). It is not clear how much of the adherence
in APH is due to basis risk, inaccurate APH premiums and or individual risk
behavior. To properly investigate the degree to which each of these factors
contributes to the status-quo bias requires insight knowledge of the true dis-
tribution of the area and farm level premiums,basis risk as well as farmers’
risk preferences. This study takes important steps towards achieving this
goal by proposing alternative methods for estimating yield distributions and
premium rates that minimizes bias from using aggregated data, accounts for
uncertainty in parameter estimates while representing spatial and temporal
heterogeneity.

We employ a two-step hierarchical Bayes (HB) estimator for SAE (Fay
and Herriot, 1979;Datta and Ghosh, 1991; Datta et al,1999; Ghosh and Rao,
1994; Rao, 2003, You and Rao, 2003 )to estimate yield distributions and
actuarially fair premiums for GRP and APH policies for corn farms in 18
counties in Illinois. Hierarchical Bayes estimators directly accounts for un-
certainty in parameter estimates and provide a convenient way of properly
representing both spatial and temporal heterogeniety in the model. More-
over, significant progress in empirical Bayes and HB modeling together with
advances in computational power facilitates obtaining stable HB estimators
(Gelman and Rubin, 1992; Gelfand and Smith, 1990; Banerjee et al,2004).

Accounting for sample design in the estimation is necessary to obtain
design consistent parameter and premium estimates. No risk analysis study
that we know of has attempted to obtain design consistent estimates even-
though farm level data collected by NASS-USDA are likely to be design based
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or at least weighted to make sure large farms are more likely to be included in
the sample. Our data generation and estimation accounts for sample design
to ensure design consistent estimates. We circumvent dealing with limitation
of obtaining farm level yields and covariates by harnessing the advantages
offered by geospatial data and land observatory satellites (LANDSAT)to gen-
erate quasi-population and sample for corn yield. This approaches also offers
the advantage that it allows us to compare estimates with true values and
thus directly evaluate the efficiency gains of the model. Also our analysis
could easily be extended to investigates the potential impact of catastrophic
weather (in and out of sample) on yield losses and solvency of the FCIP based
on model predictions as well as impact of alternative sampling approaches
and estimation methods on efficiency of parameter estimates which we deal
with in a separate paper.

The rest of the paper is organized as follows. We present our model use for
estimation in section two. Section three handles the data generation process
while section four presents results and discussions. Finally, we conclude with
a summary of major findings.

2. Model specification and estimation

We propose a two-step hierarchical bayes estimator for small area means
for unit level NER model. We begin by specifying the estimator for unit level
NER model with cross sectional data following Prasad and Rao (1999) You
and Rao(2003) and then proceed with extension for longitudinal data.

2.1. N.E.R model with cross-sectional data

The basic unit level NER model as specified by Batesse et al (1988) takes
the form below.

yij = xT
ijβ + ui + eij, j = 1, ..., ni, i = 1, ...,m (2.1)

Where yij is the response of unit j in area i, xij is the vector of auxiliary
variables, β is the vector of fixed parameters, ui is the random effect of area i
and eij the random individual error term. The county effects ui are assumed
independent with zero mean and variance σ2

u. Similarly, the errors eij are
independent with mean zero and variance σ2

e , ui’s and the eij’s are assumed
mutually independent.We can approximate the mean yield for county i at
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time t by (θi)
1.

θi = X̄T
i β + ui (2.2)

Lets suppose that data was collected from ni corn plots where each sample
(ni) is weighted by the area of the plots with weights w̆ij. We can combine
equation 2.1 with the direct small area estimator (ȳiw) to produce an area-
level NER model (2.3)2.

ȳiw = x̄T
iwβ + ui + ēiw, i = 1, ...,m (2.3)

To develop an HB estimator based on equation 3.1, we consider that (i)
yij|β, ui, σ

2
e ∼ N(xT

ijβ + ui, σ
2
e), j = 1, ..., ni, j = 1, ...,m;(ii)ui|σ2

u ∼ N(0,σ2
u),

and (iii) β ∼ N(0,H) where H is the variance covariance matrix of β. The
precision parameter of each of the variance components is assumed to follow
an inverse gamma distribution with different parameters; σ2

e ∼ IG(λ1, τ1)
and σ2

u ∼ IG(λ2, τ2). The joint posterior distribution function is then given
by 2.5

f(yij, j = 1, ..., ni, i = 1, ...,m, β, σ2
u, σ

2
e) =

m∏
i=1

[

Ni∏
j=1

(
1

σ2
e

)
1
2 e

− 1

2σ2
e
(yij−xT

ijβ−ui)
2

(
1

σ2
u

)
1
2 e

− 1

2σ2
u
u2
i

X

p∏
l=1

(
1

h2
l

)
1
2 e

− 1

2h2
l

β2
l
(
1

σ2
e

)λ1+1e
− τ1

σ2
e (

1

σ2
u

)λ2+1e
− τ2

σ2
u (2.4)

Solving for the marginal posterior distributions from 2.4 gives the follow-
ing full conditionals.

β|yij, ui, σ
2
e , σ

2
u ∼ N(Λσ2

eΣ
m
i=1Σ

ni
j=1(yij − ui)xij,Λ) (2.5)

Where Λ = (σ2
eΣ

m
i=1Σ

ni
j=1xijx

T
ij +H−1)−1.

ui|yij, β, σ2
e , σ

2
u ∼ N((ni +

σ2
e

σ2
u

)−1Σni
j=1(yij − xT

ijβ), (
ni

σ2
e

+
1

σ2
u

)−1) (2.6)

1where X̄T
i and xij are vectors both with dimensions kX1 and X̄T

i = ΣNi
j=1

xij

Ni

2Where ȳiw =
Σ

ni
j=1w̆ijyij

Σ
ni
j=1w̆ij

= Σni
j=1wijyij ;wij =

w̆ij

Σ
ni
j=1w̆ij

=
w̆ij

w̆i
and Σni

j=1wij = 1. Simi-

larly x̄iw = Σni
j=1wijxij ēiw = Σni

j=1wijeij with E(ēiw) = 0 and Var(ēiw) = σ2
eTΣ

ni
j=1w

2
ij ≡

ϱ2i
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σ2
e |yij, β, ui, σ

2
u ∼ IG(λ1 +

1

2
Σm

i=1ni, τ1 +
1

2
Σm

i=1Σ
ni
j=1(yij − xT

ijβ − ui)
2) (2.7)

σ2
u|yij, β, ui, σ

2
e ∼ IG(λ2 +

m

2
, τ2 +

1

2
Σm

i=1u
2
i ) (2.8)

However, we are interested in finding the expected county yield (θi) based
on yiw. Following the same HB framework using the area level model in equa-
tion 2.3 gives a similar conditional marginal posterior of ui|yij, β, σ2

e , σ
2
u ∼

N(qiwȳiw − x̄T
iwβ), qiwϱ

2
i ) where qiw = σ2

u

σ2
u+ϱ2i

Combining the mean and vari-

ance of the posterior of ui with equation 3.2 gives the conditional posterior
mean of (θi) as follows.

E(θi|ȳiw, β, σ2
e , σ

2
u) = qiwȳiw + (X̄i + qiwx̄iw)

Tβ (2.9)

and variance qiwϱ
2
i where β, σ2

e and σ2
u are drawn from the posterior distri-

butions from the unit level model (2.1).

2.2. Estimation

We re-estimate the model in order to obtain consistent parameters. In
the first stage of our estimation,equation 2.5 to 2.8 is use in Gibbs sampling
(Gelfand and Smith, 1990) to simulate the marginal posterior distributions of
β, ui, σ

2
e and σ2

u. We assume non-informative priors on β, vi, σ
2
e , σ

2
v given as

βp ∼ N(0, 104), p = 1, ..., 13., vi ∼, σ2
e ∼ IG(10−3, 10−3), i = 1, ...,m., σ2

v ∼
IG(10−3, 10−3).

To estimate expected county yields we draw s samples, s=1,...,k of the
parameters (β(s);σ

2(s)
e ;σ

2(s)
v ) from the simulated joint posterior distribution

and use them in equation 2.9. Expected county yield is then obtained by
averaging over the θ

′
is:

θ̂HB
i =

1

s
Σk

s=1[qiwȳiw + (X̄i + qiwx̄iw)
Tβ] (2.10)

Likewise, posterior variance of the expected county yield is obtained by draw-
ing s samples from the joint posterior distributiona and using them in the
variance formula (qiwϱ

2
i ) and then taking the average. The indemnity for

GRP for each county is then calculated as follows:

IiGRP = max([
θ̆i − (θ̂HB

i )COV

θ̂HB
i COV

]θ̂HB
i (scale), 0) (2.11)
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Where θ̆i is the observed county average, COV and scale is the coverage level
and scale chosen by the farmer. In this study we take COV from 70% to
95% in increment of 5% while scale is from 0.9 to 1.5 in increment of 0.1. We
evaluate all(42) GRP policy coverage-scale combination in each county.

3. Data

Farm level data that allows for estimation of unit level models and con-
duct indepth analysis of this nature are rare to find. We circumvent this
limitation by using quasi-simulated farm level yield data from 18 counties in
Illinois. This data has the advantage that it is generated from true covariates
attributed to specific corn farm plots from a known population. Moreover,
the data generation and thus analysis accounts for sampling design which
is important to obtain design consistent yield and premium estimates (Rao
and You, 1999). No risk analysis study that we know of has attempted to
obtain design consistent estimates eventhough farm level data collected by
NASS-USDA are likely to be design based or at least weighted to make sure
large farms are more likely to be included in the sample.

We use geospatial climate data from corn farms in Illinois with guided
parameter estimates from previous studies to simulate empirically sound farm
yields. First we use 2011 cropland data maps from NASS-USDA obtained
from NASA LANDSAT to extract corn farm polygons within 18 counties
in Illinois which make up Agricultural district 40 and 50. Note that the
satellite uses a 250 meter resolution 16-day composite Normalized Difference
Vegetation Index (NDVI) to classify crops with a statistical classification
accuracy of up to 97% for heavily monocultivated areas like Illinois (NASS-
USDA,2010). Figure 1 below illustrates classified corn farm polygons in a
few neighboring counties within the districts. Using the coordinates of each
plot, we obtained plot specific climate data from the PRISM website.

Data on each corn farm polygon include minimum and maximum monthly
temperature and cumulative monthly precipitation from 1950 to 2011, eleva-
tion and area of polygon. To proceed we dropped all plots less than 40470
m2 (10 acres). After creating weights for each plot by dividing each plot’s
area by the total area within the county it is located, we then carried out a
weighted random sample of ni corn farm plots by county where ni is drawn
from a uniform distribution with range 0 to 15. We simulated yields for corn
plots using the regression model below.

yij = b0−.346P5+10.463P6+6.849P7−0.523P8−0.087P 2
5 −0.903P 2

6 −0.304P 2
7
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Figure 1: Corn plot polygons
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+0.035P 2
8 + 1.232T5 + 1.854T6 − 2.013T7 − 3.036T8 + ui + eij (3.1)

Where yij is in bu/ha, P5 to P8 are cumulative precipitation (in) for May
to August and P 2

5 to P 2
5 are their corresponding squares, T5 to T8 are tem-

peratures (F ) for May to August; b0 is varied by county from 250 to 305;
ui is county random effect assumed to be normally distributed with mean
0 and variance 5 while eij is the error assumed to be normally distributed
with mean 0 and variance 10. Our range of the two component variance is
based on the range of aggregated variance estimated by Ramirez et al(2010)
using farm level yields from endowment farms of the University of Illinois
Urbana-Champaign. Also, our coefficient estimates are based on estimating
the same model using detrended county level data. County level yields were
obtained from NASS 3. A similar regression model was used by Thompson
(1988), Wolfram and Roberts (2006) and Tannura et al (2008) in investigat-
ing climate effect on yield variability.

3.1. Data summary

Table 1 and 2 shows summary of population and sample respectively
based on data for 2011. ’A’ represents area of plot in acres while Y represents
yield per acre. Farm level yields range from 72 bu/ha in Mason to 222 bu/ha
in Menard and Woodford. According to table 1, Stark county has the least
total number of corn farm plots (507) while Livingstone has the most (2022).
On the other hand summary of sample shows that as few as 1 corn farm is
sampled in Livingstone while the largest samples are observed in Marshall,
Logan and Kankakee. The sample shows variation in sample size across
county with only few samples in some counties (such as 1 in Livingstone and
2 in Menard out of 2022 and 581 respectively). A direct county level average
is likely to be unreliable especially in counties with very few observations.
SAE methods borrows strength from similar areas with larger sample sizes
to produce more reliable estimates. The sample yield range from 96 bu/ha
in Mason to 206 bu/ha in Woodford. Sample county average yield is least for
Mason (112) and highest for Menard (193) while the average plot size is least
for Tazewell (299 acres) and highest for Marshall (547 acres)4 . The range

3We thank Dr. Schlenker Wolfram for providing us with county level climate data
4The total number of corn plots within counties is different from the total number of

corn farms from the same counties as given by 2007/2002 agricultural census. This is
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Table 1: Data summary-population

County Ni mean(Y) min(Y) max(Y) mean(A) min(A) max(A)

De Witt 706.00 164.31 131.94 200.62 159.93 10.01 1157.34
Logan 1023.00 169.31 132.21 204.97 208.07 10.01 1601.47
Macon 917.00 170.41 122.83 208.27 183.51 10.01 1233.40
Marshall 708.00 175.92 139.69 215.63 159.04 10.01 1188.26
Mason 871.00 111.98 72.35 148.92 151.91 10.01 2360.05
Mclean 1937.00 166.22 128.06 198.06 183.57 10.01 2040.70
Menard 581.00 179.79 149.37 222.20 141.78 10.01 2199.71
Peoria 1098.00 168.10 130.43 208.62 101.36 10.01 1095.96
Stark 507.00 169.25 126.39 203.13 194.47 10.01 1496.49
Tazewell 1245.00 165.80 128.00 200.63 131.43 10.01 1512.28
Woodford 999.00 186.10 153.38 222.19 143.10 10.01 1377.51
Champaign 1921.00 171.28 138.48 208.79 151.06 10.01 1149.11
Ford 873.00 124.27 78.39 156.27 172.85 10.01 1678.41
Iroquois 2041.00 135.44 87.46 179.53 171.02 10.01 2361.83
Kankakee 1112.00 146.02 110.28 187.58 181.51 10.01 1700.34
Livingstone 2022.00 168.97 125.36 210.89 155.76 10.01 1047.92
Piatt 733.00 163.35 124.91 192.67 191.18 10.01 1508.28
Vermillion 1608.00 122.29 84.77 158.82 140.34 10.01 1175.53

of the simulated yields and the differences in average yield across counties
are comparable to the observed average yields published by NASS in the
respective Illinois counties.

4. Results

These results are based on the unit level NER model using data for 2011
5. The summary of posterior distribution estimated by Gibbs sampling is
shown in table 7. Table 3 compares estimated expected county level yields
with their ’true’ values. The bias(θ̂HB − θ) from the estimated expected
county level yield for all the counties except for Kankakee range between
1.7% in Mclean to 41% in Stark and Woodford. Seven counties (39%) have

partly due to that a farm could be made up of 2 or more corn plots
5Inferences from this model are still valid given that uncertainty in parameter estimates

have been appropriately accounted for through the HB model
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Table 2: Data summary-weighted sample

County ni mean(Y) min(Y) max(Y) mean(A) min(A) max(A)

De Witt 12.00 165.27 151.26 192.37 421.11 64.27 773.47
Logan 14.00 168.60 148.75 195.13 339.57 14.68 928.94
Macon 12.00 170.13 152.17 197.37 391.00 29.58 677.64
Marshall 14.00 174.69 163.92 199.56 547.55 42.48 1188.26
Mason 9.00 112.04 96.78 126.36 404.20 86.51 999.00
Mclean 7.00 166.97 155.68 178.52 321.17 64.49 713.67
Menard 2.00 193.53 193.27 193.79 626.50 550.23 702.77
Peoria 11.00 163.97 149.78 177.40 400.11 65.38 1045.70
Stark 12.00 163.76 126.39 189.76 314.78 74.28 545.98
Tazewell 11.00 168.24 153.91 185.83 299.10 81.17 548.43
Woodford 12.00 188.64 173.19 206.15 351.14 15.79 982.99
Champaign 11.00 173.58 156.56 186.93 301.28 153.90 500.31
Ford 4.00 127.22 123.00 132.18 412.60 320.92 491.94
Iroquois 9.00 135.17 119.40 146.26 445.11 17.57 2361.83
Kankakee 14.00 148.27 129.51 173.42 366.93 45.59 1104.64
Livingstone 1.00 156.18 156.18 156.18 490.79 490.79 490.79
Piatt 9.00 164.52 146.85 180.42 445.63 12.01 1207.38
Vermillion 10.00 123.90 100.12 134.92 328.50 19.57 702.99

bias about 10% or less, four counties estimated with bias between 12% and
22% while 6 others have bias between 28% and 42%. Overall, the design
based HB small area estimator appears to be efficient given the precision to
which most of the expected county level yields have been estimated given the
small sample sizes.

Livingstone and Menard which had sample sizes of 1 and 2 respectively
have bias of 2% and 15% respectively. The unexpected high bias associated
with the expected county yield for Kankakee could be due to outliers from
parameter distribution.

Results for GRP indemnity under all possible coverage-scale scenarios
are shown in table 4 for 6 of the counties. There appears to be considerable
variation in indemnity (actuarially fair premium) across counties. Iroquois
appear to have the lowest indemnities (> 100%) compared to the other coun-
ties. GRP indemnity or actuarially fair premiums range from $4/ha (for a
70% coverage and scale 0.9) to $99/ha (for a 95% coverage and 1.5 scale) in
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Table 3: Expected yield and Bias by county

County θ θ̂HB Stdv Bias(%)

De Witt 164.31 158.76 0.0009 3.38
Logan 169.31 155.24 0.0005 8.31
Macon 170.41 141.67 0.0006 16.86
Marshall 175.92 244.68 0.0014 39.09
Mason 111.98 155.75 0.0007 39.08
Mclean 166.22 163.47 0.0002 1.65
Menard 179.79 151.08 0.0007 15.96
Peoria 168.10 146.63 0.0010 12.77
Stark 169.25 238.48 0.0008 40.91
Tazewell 165.80 159.51 0.0004 3.80
Woodford 186.10 109.19 0.0007 41.33
Champaign 171.28 156.91 0.0002 8.39
Ford 124.27 162.86 0.0004 31.05
Iroquois 135.44 165.10 0.0005 21.90
Kankakee 146.02 380.92 0.0005 160.86
Livingstone 168.97 165.52 0.0001 2.04
Piatt 163.35 146.98 0.0008 10.02
Vermillion 122.29 157.24 0.0004 28.59

Stark.
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For the same level of coverage and scale, actuarially fair premiums for
Marshall are $0/ha and $91/ha respectively. Premium rates for 95% cover-
age and 1.5 scale are considerably lower for Mason($57/ha), Ford($43/ha),
Iroquois($34/ha) and Vermillion($40/ha). For the same coverage level, in-
creasing the scale by a constant amount (e.g. 0.1) also increases the premium
rate by a constant amount. However, increasing the coverage level while re-
ducing the scale could either decrease or increase the premium, in some cases
by considerable amounts. For example in Stark switching from a GRP pol-
icy with 70% coverage and 1.5 scale to a policy with 75% coverage and 0.9
scale results to an increase in premium by $11.31/ha (166%). On the other
hand switching from a GRP policy with a 90% coverage and 1.5 scale to
a policy with 95% coverage and 0.9 scale results to a decrease in premium
by $25.29/ha (30%). Similar trends can be seen in Marshall county. These
results shows that farmers can save significant amounts by careful selection
of coverage and scale level.

5. Conclusion

Major challenges still exist is reliably estimating crop yield distributions
and insurance premiums. These include properly accounting for uncertainty
in parameter estimates, spatial and temporal heterogeneity, and dealing with
aggregation bias stemming from using county level averages in estimation. In
this study, we also view some of the problems as potentially stemming from
the use of inadequate sample in generating county level yield averages and
estimation of parameters. We employ a HB unit and area level SAE model
to obtain more reliable expected county level yields and GRP premiums for
18 counties in Illinois using quasi-simulated data.

Preliminary results indicate little bias (< 10%) in estimated expected
county yields in several of the counties investigated. We found wide variation
in GRP, APH and basis risk across counties for similar level of coverage and
scale. GRP indemnities range from $0/ha to $100/ha. Farmers could lower
their GRP premiums by as much as 30% and save a lot of money by carefully
choosing a coverage level and scale combination.
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Table 4: GRP indemnity under different Coverage-scale combination

Cov scale Marshall Mason Stark Ford Iroquois Vermillion

0.70 0.90 0.00 0.00 4.08 0.00 0.00 0.00
0.70 1.00 0.00 0.00 4.53 0.00 0.00 0.00
0.70 1.10 0.00 0.00 4.98 0.00 0.00 0.00
0.70 1.20 0.00 0.00 5.44 0.00 0.00 0.00
0.70 1.30 0.00 0.00 5.89 0.00 0.00 0.00
0.70 1.40 0.00 0.00 6.34 0.00 0.00 0.00
0.70 1.50 0.00 0.00 6.80 0.00 0.00 0.00
0.75 0.90 10.58 5.73 18.11 0.00 0.00 0.00
0.75 1.00 11.76 6.36 20.13 0.00 0.00 0.00
0.75 1.10 12.94 7.00 22.14 0.00 0.00 0.00
0.75 1.20 14.11 7.64 24.15 0.00 0.00 0.00
0.75 1.30 15.29 8.27 26.16 0.00 0.00 0.00
0.75 1.40 16.46 8.91 28.18 0.00 0.00 0.00
0.75 1.50 17.64 9.54 30.19 0.00 0.00 0.00
0.80 0.90 23.69 14.13 30.40 3.45 0.00 2.13
0.80 1.00 26.32 15.70 33.77 3.83 0.00 2.37
0.80 1.10 28.95 17.27 37.15 4.21 0.00 2.61
0.80 1.20 31.58 18.84 40.53 4.59 0.00 2.85
0.80 1.30 34.21 20.41 43.91 4.98 0.00 3.08
0.80 1.40 36.84 21.98 47.28 5.36 0.00 3.32
0.80 1.50 39.48 23.55 50.66 5.74 0.00 3.56
0.85 0.90 35.25 21.54 41.23 11.86 5.47 10.33
0.85 1.00 39.16 23.94 45.82 13.18 6.07 11.48
0.85 1.10 43.08 26.33 50.40 14.50 6.68 12.63
0.85 1.20 46.99 28.73 54.98 15.82 7.29 13.78
0.85 1.30 50.91 31.12 59.56 17.14 7.90 14.93
0.85 1.40 54.83 33.51 64.14 18.46 8.50 16.07
0.85 1.50 58.74 35.91 68.72 19.77 9.11 17.22
0.90 0.90 45.52 28.13 50.87 19.35 13.42 17.62
0.90 1.00 50.58 31.26 56.52 21.50 14.91 19.58
0.90 1.10 55.64 34.39 62.17 23.65 16.40 21.54
0.90 1.20 60.70 37.51 67.82 25.80 17.89 23.50
0.90 1.30 65.75 40.64 73.47 27.95 19.38 25.45
0.90 1.40 70.81 43.76 79.13 30.10 20.87 27.41
0.90 1.50 75.87 46.89 84.78 32.25 22.36 29.37
0.95 0.90 54.72 34.03 59.49 26.04 20.53 24.14
0.95 1.00 60.80 37.81 66.10 28.94 22.81 26.83
0.95 1.10 66.87 41.59 72.71 31.83 25.09 29.51
0.95 1.20 72.95 45.38 79.32 34.73 27.38 32.19
0.95 1.30 79.03 49.16 85.92 37.62 29.66 34.87
0.95 1.40 85.11 52.94 92.53 40.51 31.94 37.56
0.95 1.50 91.19 56.72 99.14 43.41 34.22 40.24
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Table 5: Summary posterior distribution

Parameter mean sd MC error 2.5% median 97.5%

b0 150.6 317.9 12.08 -519.7 178.9 734.6
P5 388.9 246.3 8.246 -92.54 392.7 860.6
P6 -144.0 24.55 0.7315 -192.4 -144.3 -95.47
P7 -178.0 162.4 5.574 -479.7 -186.5 162.2
P8 -162.9 68.15 2.139 -294.1 -162.3 -34.37
P 2
5 -55.41 27.4 0.8989 -107.8 -55.66 -0.5274

P 2
6 10.19 1.793 0.05349 6.721 10.23 13.77

P 2
7 54.98 48.31 1.693 -45.53 56.86 142.5

P 2
8 80.22 32.07 0.9625 20.26 80.03 142.5

T5 -0.4338 17.02 0.54 -33.81 -0.2824 32.37
T5 7.327 25.74 0.8464 -42.1 7.666 57.76
T5 -24.06 25.35 0.9217 -72.19 -24.71 27.66
T5 19.88 20.8 0.6524 -21.48 19.68 61.89
σ2
u(1) 5.117 2.287 0.06613 1.68 4.85 10.71

σ2
u(2) 5.027 2.304 0.06342 1.601 4.721 10.43

σ2
u(3) 4.955 2.229 0.0779 1.558 4.597 10.37

σ2
u(4) 4.883 2.137 0.07026 1.638 4.58 9.998

σ2
u(5) 4.961 2.187 0.07663 1.575 4.707 9.883

σ2
u(6) 4.897 2.233 0.0653 1.642 4.476 10.14

σ2
u(7) 4.975 2.247 0.07123 1.582 4.625 10.23

σ2
u(8) 4.86 2.043 0.06438 1.687 4.563 9.841

σ2
u(9) 5.05 2.342 0.06577 1.622 4.613 10.43

σ2
u(10) 4.906 2.12 0.06426 1.629 4.617 10.04

σ2
u(11) 5.004 2.222 0.08111 1.759 4.713 10.55

σ2
u(12) 4.993 2.282 0.06329 1.592 4.651 10.3

σ2
u(13) 4.987 2.202 0.05626 1.613 4.658 9.894

σ2
u(14) 5.026 2.177 0.06072 1.501 4.765 10.06

σ2
u(15) 4.926 2.2 0.0786 1.479 4.542 9.867

σ2
u(16) 5.118 2.302 0.0686 1.6 4.821 10.33

σ2
u(17) 4.957 2.324 0.06199 1.687 4.503 10.78

σ2
u(18) 5.098 2.232 0.07657 1.692 4.756 9.974

σ2
e 0.004246 4.424E-4 1.381E-5 0.003412 0.004228 0.005163

deviance 1466.0 5.338 0.1714 1457.0 1465.0 1477.0

1=Champaign;2=DeWitt;3=Ford;4=Iroquois;5=Kankakee;6=Livingstone;7=Logan;
8=Mclean;9=Macon;10=Marshall;11=Mason;12=Menard;13=Peoria;14=Piatt;
15=Stark;16=Tazewell;17=Vermillion;18=Woodford.20


