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Productivity and Efficiency Analysis of Maize under Conservation Agriculture in 
Zimbabwe 

Kizito Mazvimavi1, Patrick V Ndlovu2,  Henry An3 and Conrad Murendo4  

 

Abstract 

This study sought to evaluate the performance of conservation agriculture (CA) technology-
essentially comparing productivity and efficiency levels in maize production in CA and conventional 
farming. The analysis is based on a three year panel sample of smallholder farming households and 
employing a stochastic production frontier model compare productivity and technical efficiency 
between CA and conventional farming. Study results indicate that CA technology is implemented in 
relatively smaller plots than conventional farming (0.36ha compared to 0.85ha) but has a significant 
contribution to total maize production, on average 50% of output share. Output elasticities indicate 
positive responses for labor and seed in CA, and negative responses in conventional farming. On the 
other hand, there are negative responses to land and draft in CA. Fertilizer has a greater positive 
response in CA than in conventional farming. Overall returns to scale are similar for CA and 
conventional farming (0.84 and0.89 respectively). There is evidence of technical progress in CA for the 
three year panel period. Technical progress has been land-saving but seed and fertilizer-using in CA, 
while land-using and seed-saving in conventional farming. Joint frontier estimates indicate that 
farmers will produce 39% more in CA compared to conventional farming. Technical efficiency levels 
are generally the same (about 68%) for both technologies. Two-thirds of farmers achieve efficiency 
scores in the 60-80% range both CA and conventional farming technologies. These results show 
significant yield gains in CA practices and significant contributions to food production. CA is land-
saving, and this is an important issue for land constrained farmers because they can still have viable 
food production on smaller area. But high labor demands in CA present some problems in adoption, 
particularly for the poorer farmers. 

Key words: Conservation agriculture, productivity, efficiency, technical change 

 

I. Introduction 

Maize production is an important component of food security and livelihood for 
smallholder farming communities of Zimbabwe. The majority of smallholder 
farmers grow maize primarily for subsistence using conventional farming 
technology based on ox-drawn plow for tillage purposes. The challenge in 
Zimbabwe´s smallholder agricultural sector is to raise the productivity of the staple 
cereal as a way of solving food insecurity problems. The per capita maize production 
is steadily declining, and this has been attributed to significant decline in yields over 
the years from 1500 kg/ha in the early 1990s to 500kg/ha after 2000 (Government of 
Zimbabwe, 2002). Similar to most parts of sub-Saharan Africa, agricultural 
productivity levels in Zimbabwe have fallen due to land degradation as a result of  
many years of erosive cultivation, declining soil fertility as farmers fail to replenish  
soil fertility (Mano, 2006). 
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The response to this food crisis in Zimbabwe has been the wide scale relief 
distribution of food aid and direct agricultural input assistance without an exit 
strategy for sustaining some of the new technologies promoted within the context of 
relief aid (Rohrbach et al, 2005; DFID, 2009). As part of these relief and recovery 
programs, research and development initiatives have seen the introduction of a 
specific set of technology options that aim to improve and stabilize crop yields while 
preserving soil and water, while using precision methods to apply inputs. These set 
of technology options is defined as conservation agriculture (Thierfelder and Wall, 
2010; Twomlow et al., 2008). But, the key to a prolonged increase in agricultural 
production is to improve productivity, which can be achieved through better 
technology and efficiency.  

In Zimbabwe there has been major investments and policy drive towards CA as a 
way of improving productivity through efficient use of production inputs, improved 
management, timeliness of operations and conserving the soil. However, in the past 
increase in land productivity has come from intensification of agricultural 
production and the adoption of yield enhancing technologies especially modern 
high yielding varieties and fertilisers. Higher efficiency gives subsistence farmers the 
opportunity to produce more output using the current level of inputs especially land 
which is limited in supply. Gains in output through productivity growth have 
become increasingly important in Zimbabwe as opportunities to bring additional 
virgin land into cultivation have significantly diminished in recent years.  

So far there is no empirical evidence to show that CA can indeed lead to efficiency 
gains which can increase productivity that is crucial for improving livelihoods of 
smallholder farmers in Zimbabwe. The few studies that have assessed the effect of 
CA adoption on production efficiency (Solis, 2005, Oduol et al., 2011, Musara et al., 
2012) have used cross sectional data. The studies have concluded that adoption of 
CA practices push smallholder farmers closer to their production frontier and an 
improvement of human capital variables such as access to extension and education 
can significantly reduce inefficiencies.  

Given the nature of CA and the fact that agronomic benefits from soil improvement 
are only realised in the long term, the use of panel data is more appropriate for a 
realistic assessment of impact. Through monitoring farmers who have adopted CA 
over time, the International Crops Research Institute for the Semi-Arid Tropics 
(ICRISAT) has created a database upon which this study will be based.  

The paper is structured as follows: Section II is a review of the literature on 
productivity measurement and section III develops the theoretical and econometric 
model for estimating productivity impacts. Section IV describes the data used in the 
study including sample selection issues. Section V is a discussion of diagnostic and 
model specification issues in the econometric model. Section VI reports the major 
empirical findings. The summary follows in the last section. 
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Section II. Literature review 

 

CA practices in Africa 

A comprehensive review of conservation CA practices in Zimbabwe, and other 
Southern African countries is given by Mazvimavi (2011). CA in Zimbabwe is largely 
practiced by smallholder farmers using small farm implements such as the hand hoe 
to create planting basins.  Though specifications may vary, CA technologies typically 
involve agricultural management practices that prevent degradation of soil and 
water resources and thereby permit sustainable farm productivity without 
environmental degradation (Haggblade et al., 2004; Wysocki, 1990; ECAF, 2002). 

Farmers and agencies working to improve farm productivity have experimented 
with a broad range of these soil and water conservation technologies that are 
collectively known as CA. Tsegaye  et al., (2008) assess the impacts of conservation 
agriculture on land and labor productivity in Ethiopia. Their study analyzes the 
adoption of the different components of CA and finds that the initial decision to 
adopt CA is influenced by regional location, family size, access to extension, and 
formal education. They also find a positive relationship between land productivity 
and use of CA components such as herbicide application.  

Hassane et al., (2000) evaluate the impact of planting basin, and use of fertilizer and 
manure on millet crops in Niger. Their study finds that over a five year period from 
1991 to 1996, farmers experienced yield gains of up to 511%.  Similarly, significant 
yield gains are also noted in a study in Zambia by Haggblade and Tembo (2003) who 
note that farmers who dug planting basins and applied crop residues and fertilizer 
achieved 56% yield gains in their cotton fields and 100% yield gains in their maize 
fields.   

Gowing and Palmer (2008) examine evidence of CA benefits amongst small-scale 
farmers in Africa and conclude that CA does not overcome constraints on low-
external-input systems. They note that CA will deliver the productivity gains that 
are required to achieve food security and poverty targets only if farmers have access 
to fertilizers and herbicides. They further asset that adoption of CA by small-scale 
farmers is likely going to be partial as opposed to full adoption.   

While there is evidence of CA gains in the literature, there are also studies that 
present a sharply contrasting assessment of CA impacts. Giller et al. (2009) suggests 
that empirical evidence is not clear and consistent on CA contributions to yield 
gains. Their study notes concerns that include decreasing yield in CA, increased 
labor requirements when herbicides are not used, a shift of the labor burden to 
women, and problems with mulching requirements due to its shortage or competing 
use as livestock feed. They also note that there are many cases where adoption of CA 
was temporary and only lasted for the course of active promotion of the technology 
by NGOs and research but was not sustained beyond that.   
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Technical Efficiency and Productivity Growth 

The measurement of technical efficiency and productivity growth is an area of study 
that has attracted the interest of a number of researchers since the work of Farrell in 
1957 (Farrell, 1957). Technical efficiency is just one component of overall economic 
efficiency, i.e. producing maximum output given the level of inputs employed 
(Kumbhakar and Lovell 2000). Efficiency change essentially contributes to 
productivity growth. Efficiency can be considered in terms of the optimal 
combination of inputs to achieve a given level of output, that is input-orientation 
efficiency, or the optimal output that could be produced given a set of inputs, that is 
output-orientation efficiency.  

Productivity assessment is often associated with measurement of technical change. 
The work of Battese and Coelli (1988, 1992, 1995) has made notable contributions on 
measurement of production efficiency using stochastic production frontier approach. 
Khumbakar and Lovell  (2000) proposes an econometric method that is based on a 
primal approach where shifts in the production frontier are due to technical change.  
It is often important to interpret results of efficiency and productivity analysis in the 
context of the time period analyzed, and also consider issues such as the degree of 
sample homogeneity, output aggregation, and use of different methodologies in the 
analytical process.  

Total factor productivity growth is defined as growth in output that is not explained 
by change in inputs. Following this definition and assuming that production is not 
always on the frontier, change in productivity can be decomposed into two separate 
components: a) movements towards or away from the frontier due to changes in 
technical efficiency; and b) shifts in the frontier due to the effect of technological 
innovations or progress. Effects of scale changes can also be incorporated in this 
measure (Coeli et al.,2005) 

 

Parametric and non parametric approaches 

A non-parametric approach to frontier, the Data Envelopment Approach (DEA) was 
developed by Charnes, Coopers and Rhodes (1978).  The parametric approach was 
developed simultaneously by Aigner, Lovell and Schmidt (1977) and Meeusen and 
van den Broek (1977) who proposed the stochastic frontier production function. Both 
approaches are used in empirical work. However, a weakness associated with the 
DEA approach is that all deviations from the frontier are associated with 
inefficiency.  In agriculture this assumption is restrictive considering that production 
is variable due to factors such as weather, pests and diseases. The stochastic 
production frontier on the other hand allows for error in measurement.   
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Section III: Development of theoretical and econometric model 

 

This study uses a stochastic production frontier to estimate productivity and 
technical efficiency. To estimate technical efficiency, a joint frontier is used since this 
is a comparative analysis of two technologies. Data for the two technologies is 
pooled so that technical efficiency predictions are derived from the same data. This 
is based on discussions by Battese et al., (2004) on comparing different groups in 
technical efficiency estimation. 

 

OLS regressions and Stochastic frontier models 

The study will use OLS regressions to model maize production and retrieve output 
elasticities and returns to scale associated with CA and conventional farming. Two 
separate models are estimated (for CA and non CA) using a structural form 
indicated in the translog production function in equation 1. 
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where yit is the log of the output produced, the subscript i = 1, 2, …, N denotes 
households in the panel data, t = 1, 2, …, T are time periods, and j, k = 1, 2, …, J are 
the inputs used, represented by vector x in farm production. Technical change is 

neutral with respect to inputs if, and only if, jt = 0 j, and absent if, and only if, 

t=tt=jt=0 j.  

The panel stochastic frontier model to predict technical efficiency is given in 
equation 2, with the same specification as equation 1 except that the error term is 

composed of two independent elements:  vit ~ iid N(0, v2) is the random noise error 

component and uit  0 is the technical inefficiency error component. In the 
econometric estimation, a joint panel is used, pooling observations for CA and 
conventional farming, and incorporating a dummy variable to control for these 
technologies.  
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The inefficiency effects model provides some explanations for the variations in 
efficiency levels among farmers.  Following the stochastic production frontier model 
in Equation 2, it is assumed that the inefficiency effects are independently 
distributed and uit arises by truncation at zero of the normal distribution with mean, 

t, and variance, 2

u , where t is defined by  


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where z is a vector of farm specific inefficiency related variables (m=1, …, M), at time 

period t, and  coefficient are unknown parameters to be estimated. Since the 
dependent variable in the inefficiency model is a measure of inefficiency, a positive 
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sign on a parameter indicates a negative efficiency effect. A one stage approach that 
uses a maximum likelihood estimator is used to estimate the production and 
inefficiency effects simultaneously.  

Variables for the direct factors of production are land (A), labor (L), draft animals 
(K), fertilizer (F), and seed (S). The output (Y) for the production function is maize 
produced in kgs. Land is total cultivated area in hectares. Labor is total farm labor 
available in the household, expressed in male adult equivalent units. Variables 
hypothesized to be explanatory factors of technical efficiency include ; gender 
(dummy variable taking the value of 1 if male headed household, zero if female 
headed), age and education  of household head, asset endowments, and access to 
draft power. A time variable is included to estimate the effect of time on technical 
efficiency. Land and labor are also included in the efficiency model. The model used 
in the study assumes time varying technical efficiency, using a truncated frontier 
model. 

 

Section IV: Data  

 

This study makes use of ICRISAT panel data from household surveys collected since 
2008 in Zimbabwe. The panel study aimed to examine CA adoption practices 
including labor allocation, technology adoption determinants, and productivity 
impacts observing the same farmers in successive seasons of real CA practice in non 
experimental setting. The study makes comparison of CA technology with 
alternative conventional farming practices for the same households (i.e. a household 
practices both technologies). 

The data was collected in 15 rural districts in Zimbabwe. Table 1 shows the average 
number of households interviewed in the full survey sample and the selected sample 
(used for this particular study). During the panel period, there were incidences of 
attrition as some households could not be re-interviewed in successive seasons of the 
surveys.  As a consequence, the panel data used in this study is un-balanced. This 
may open doors to some econometric problems associated with attrition bias. A 
possible solution to attrition bias is to use dynamic panel data models. However, this 
study does not tests for attrition bias nor make use of dynamic panel data models.  

There were instances where some farmers did not produce maize in particular 
seasons, or where the maize crop was completely wiped out by drought. As a result, 
this study makes use of a sub sample of the original panel household sample. This 
sub sample considers maize producing households and excludes observations where 
no maize was produced. Further details on sample selection are discussed in the 
proceeding sub-section.    
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Table 1. Survey sample and selected sample for study 

Technology Survey sample Selected sample 

 CA Conventional Combined CA Conventional Combined 

2008 322 176 498 265 155 420 

2009 306 286 592 291 270 561 

2010 287 258 545 200 229 429 

2008-10 305 240 545 252 218 470 

Total observation  1635   1410 

Source: ICRISAT Conservation Agriculture panel data 2008-2010. 

 

Table 2 gives some descriptive statistics of the production variables and factors 
hypothesized to explain technical efficiency in maize production. Output refers to 
total maize produced in kilograms. In this study, aggregation of output from 
different plots, as well as aggregation of inputs is done. Aggregation is used in this 
case by making implicit assumptions on seperability.   

 

Table 2. Summary Statistics for factors of production and efficiency factors 

  Production variables Efficiency variables 

 Year Output Area Labor Draft Seed Fertilizer Gender  Age  School  Experience  Ill Assets 

CA 

2008 362.40 0.36 3.69 0.74 8.05 35.46 0.63 50.48 6.50 24.86 0.24 72.98 

2009 484.25 0.36 3.66 0.62 9.19 33.84 0.68 55.79 6.53 30.83 0.22 97.04 

2010 501.69 0.37 2.54 1.24 9.13 53.53 0.59 54.03 6.91 97.71 0.19 287.95 

average 449.45 0.36 3.30 0.87 8.79 40.94 0.63 53.43 6.65 51.13 0.22 152.66 

Conventional 

2008 325.09 0.94 3.84 0.90 19.27 38.68 0.63 50.75 6.57 25.37 0.25 84.00 

2009 575.07 0.75 2.93 0.64 17.20 33.52 0.69 54.53 6.79 29.90 0.18 91.74 

2010 649.29 0.85 2.63 1.39 19.03 62.64 0.65 54.21 6.81 26.72 0.21 356.20 

average 516.48 0.85 3.14 0.98 18.50 44.95 0.66 53.16 6.73 27.33 0.21 177.31 

Average 

2008 348.63 0.57 3.74 0.80 12.19 36.65 0.63 50.58 6.53 25.05 0.25 77.05 

2009 527.96 0.55 3.31 0.63 13.05 33.69 0.69 55.20 6.65 30.39 0.20 94.49 

2010 580.48 0.63 2.59 1.32 14.42 58.39 0.62 54.13 6.86 59.81 0.20 324.38 

average 485.69 0.58 3.21 0.92 13.22 42.91 0.65 53.30 6.68 38.42 0.21 165.31 

Source: ICRISAT Conservation Agriculture panel data 2008-2010. 

 

The efficiency variables include gender, age, education level, farming experience of 
the household head, and presence of chronically ill persons in the household 
(dummy variable proxy for impact of HIV/AIDS, named Ill). Gender and illness are 
proportion of households (multiply by 100 to express as percentage). Asset 
endowments are expressed as an index which captures information on the 
availability of farming implements e.g. plows, cultivators, hoes, in a household. In 
general there is not a lot of variation in input use for the three year period. Further 
discussion of input allocation is covered in a later section. Averages values for the 
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efficiency variables are generally the same for both technologies because these 
averages are based on the same farmers practicing both technologies.  

 

Sample selection 

There are instances in the survey data set were households did not produce maize in 
a particular year. These observations were excluded from the analysis carried out in 
the study. This raises the concern of sample selection bias as also 13.8% of 
observations were excluded from the analysis. If the excluded farmers had particular 
characteristics specific to them and not observed in the included sample (e.g. non 
beneficiaries are likely to be less vulnerable households), then the sample used for 
analysis would not be random but rather biased. Households that did not receive 
input subsidies were more likely to be excluded from the sample. The full sample 
consisted of 1635 observations and the proportion of households that were non 
beneficiaries (of input subsidies) in this sample is 20.6%. Beneficiary households are 
households that received input support mainly through NGOs. In many instances 
these were free gifts of seed and fertilizer targeted at vulnerable households. In the 
selected sample, about 20% of non beneficiaries were excluded, compared to 11% of 
beneficiaries being excluded.  

To explore the potential problem of sample selection bias, a Heckman’s sample 
selection model is implemented. In the model the probability of being a maize 
producer for a particular year is modeled as a function of whether or not a 
household received input subsidies (dummy variable taking the value 1 if 
beneficiary and 0 otherwise). An assumption is made that receiving input subsidies 
will have an effect on whether a household produced or not, but will not have a 
direct effect on levels of production. Within reason, this assumption seems plausible. 
The results of the model are presented in Table 3. Draft access is incorporated as a 
dummy variable as a strategy to deal with zero values in computing the log for 
number of draft animals. This is further discussed in section V. 

The probit model for participation in the sample indicates that there is a greater 
probability for participation if a household is a beneficiary (coefficient on beneficiary 
is positive and statistically significant). To evaluate if there is sample selection bias, 
we look at the RHO(1,2) coefficient in the corrected model. The Rho(1,2) coefficient is 
not statistically significant at 10% level, which suggests that there is no sample 
selection bias.  The translog specification of  the sample selection model yields even 
stronger results for non bias in the selected sample i.e. RHO  coefficient =0.185 and 
it’s p value =0.675 
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Table 3. Heckman’s sample selection model 

Probit model of participation in sample OLS Corrected Regression for the selected sample 

Variable  Coefficient   Standard Error   Variable  Coefficient   Standard  Error 

Constant -1.332 0.631*** Constant 2.528 0.321*** 

Area 0.458 0.062*** Area 0.313 0.050*** 

Labor 0.061 0.117 Labor  0.059 0.041 

Daft access 0.124 0.130 Draft 0.137 0.054 

Time 3.391 0.779*** Seed 0.327 0.042*** 

Time*Time -0.864 0.194*** Fertilizer 0.146 0.013*** 

Region 0.201 0.129 Draft access 0.140 0.057** 

Benefit 0.228 0.139* Time 2.085 0.311*** 

   Time*Time -0.486 0.079*** 

   Region 0.040 0.048 

   Technology 0.336 0.052*** 

   σ (1) 0.797 0.023*** 

   RHO(1,2) 0.249 0.351 

   Log likelihood -2206.438  

   N total sample 1635  

   N selected sample 1410  

Stars indicate statistical significance: * for the 10 % significance level, ** for the 5 % significance level, 
and ***for the 1 % significance level.  

 

Section V: Model specification and diagnostic issues 

 

Dealing with zero values for input use 

A challenge that had to be dealt with in the data is the presence of zero values for 
inputs, in particular in constructing the variable for number of draft animals where 
some households had no draft animals.  Battese (1997) devises a method to get 
around this problem, where all zero values for an input are assigned a value of one 
to enable computation of the log, then an dummy variable is added to the regression 
capturing whether the input was applied or not. This method ensures that efficient 
estimators are obtained using the full data set but no bias is introduced. 

 

Choosing between fixed effects and random effects 

The availability of panel data makes it possible to control for individual household 
specific effects which may potentially bias or make regression estimators 
inconsistent. For example differences in plot characteristics, or any other 
unobservable or hard to measure characteristics can be controlled for with panel 
data. Alternative panel specifications to control for these farmer specific 
characteristics are fixed effects and random effects models. In this paper, panel 
specification tests are carried out to choose between fixed effects and random effects. 
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OLS regressions were run to test for the ideal panel specification for the data using a 
Huasman’s test. Table 4 shows results from the regressions and the associated p 
values form the Huasman’s test. Both the translog and Cobb Douglas models favour 
fixed effects over random effects (significant p values for Hausman’s statistic). Fixed 
effects are strongly favoured in the translog model. For the rest of the analysis, fixed 
effects models are used as the panel specification. Interpretation of model 
parameters will be done with the stochastic frontier model which will be presented 
in a later section of the paper. 

 

Choosing functional form 

The choice of functional form to model the frontier and inefficiency effects was of 
interest in this study. In the literature, the translog has commonly been preferred as 
a more flexible functional form that allows for interaction of inputs, unlike the Cobb 
Douglas which does not allow for input interactions and assumes elasticity of 
substitution between inputs equals one. To tests for functional forms a likelihood 
ratio (LR) tests is used. The LR test is only valid for nested models. The LR test 

statistic is     102 HLHL  , where  0HL  and  1HL  are the values of the log-

likelihood function under the specifications of the null and alternative hypotheses, 

0H  and 1H , respectively. If the null hypothesis is true, then   has approximately a 

Chi-square (or mixed Chi-square) distribution with degrees of freedom equal to the 
number of restrictions.  The assumption that the maize production in this sample 

follows Cobb-Douglas estimations (jk=0,  j, k and jt =0  j, t) are strongly rejected 
at 1 percent significance level (Chi calculated =63.691, with 35df). 

 

Diagnostic problems 

The chosen translog model has 30 variables and this is likely to lead to problems 
caused by correlation among the independent variables, which results in an inability 
to identify individual parameters of interest, and problems in statistical inference 
due to inflated standard errors and low t stats.  This problem is caused partly by 
multicollinearity of the independent variables (Wooldridge 2002, Greene 2003). 
However, it will be beyond the scope of this study to use alternative models that 
might limit the effects of multicollinearity of independent variables. 
Heteroskedasticity is tested for using the Breush Pagan tests in the parsimonious 
Cobb Douglas specification. This is done by running an OLS regression and using 
the residuals to run an auxiliary regression with the original model regressors. The R 
squared from the auxillary regression =0.533 (sample size is 1410). The test statistic 
(Lagrange Multiplier) is 747.72, with a Chi square distribution (10df). Given these 
values, the null hypothesis of Homoskedasticity is rejected at the 1 percent level of 
alpha. Therefore results from the Breush Pagan tests indicate that there is 
Heteroskedasticity in the data. A challenge arises in the determination of the form of 
Heteroskedasticity in order to correct for it in the frontier model. So the frontier 
model is run without making a correction for Heteroskedasticity. Autocorrelation is 
not anticipated to be a problem in the panel data where the modeling uses fixed 
effects. In this regard, neither tests nor corrections are made for autocorrelation.   
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Table 4. OLS regressions to test fixed effects versus random effects 

OLS Translog Model OLS Cobb Douglas 

Variables Coefficient Standard Error Variables Coefficient Standard Error 

Constant 0 2.200 0.583*** Constant γ0 2.682 0.208*** 

Land A -0.209 0.217 Land γ A 0.298 0.041*** 

Labor L 0.464 0.275** Labor γ L -0.012 0.054 

Draft Animal K 0.440 0.370 Draft Animal γ K -0.001 0.084 

Seed S  0.390 0.261 Seed γ S  0.273 0.049*** 

Fertilizer F 0.083 0.094 Fertilizer γ F 0.145 0.016*** 

Land*Land AA -0.010 0.057 Draft γ D 0.163 0.087** 

Labor*Labor LL 0.002 0.096 Time γ T 1.622 0.262*** 

Draft*Draft KK 0.210 0.172 Time*Time γ TT -0.377 0.066*** 

Seed*Seed  SS 0.058 0.082 Region γ R 0.074 0.056 

Fertilizer*Fertilizer FF  0.091 0.018*** Technology γ RT 0.301 0.057*** 

Land*Labor AL 0.127 0.065**     

Land*Draft AK 0.163 0.084**     

Land* Seed  AS 0.028 0.057     

Land* Fertilizer AF  0.029 0.022     

Labor*Draft LK -0.020 0.091     

Labor* Seed  LF -0.139 0.078**     

Labor* Fertilizer LS 0.010 0.024     

Draft* Seed KS -0.165 0.089**     

Draft* Fertilizer KF  0.034 0.027     

Seed* Fertilizer SF -0.058 0.026**     

Land*Time AT 0.086 0.048**     

Labor*Time LT -0.011 0.055     

Draft*Time KT -0.046 0.058     

Seed *Time ST 0.056 0.056     

Fertilizer *Time FT -0.005 0.018     

Time T 1.809 0.257***     

Time*Time TT -0.852 0.086***     

Draft access DD 0.182 0.067***     

Region R -0.012 0.047     

Technology RT 0.336 0.046***     

R2  0.427    0.634  

Huasman p value   0.000    0.098  

Observations  1410    1470  

Households  470    470  

Stars indicate statistical significance: * for the 10 % significance level, ** for the 5 % significance level, 
and ***for the 1 % significance level. 

 

 



12 
 

Section VI: Main results 

Factor allocation 

A look into how farmers allocate factors of production gives an idea of factor 
allocative efficiency i.e the use of the right mix of inputs in light of the relative price 
of each input. (Kumbhakar and Lovell 2000). In this study information on prices is 
not available, hence no direct interpretation of allocative efficiency is made. 
However, the analysis takes a look at physical levels of input use.  Table 5 shows 
land allocation in hectares, and on average conventional farming has a significantly 
larger area (0.85ha compared to 0.35ha for CA). Reasons for this include the fact that 
farmers are likely to allocate most of their land to the more familiar technology- 
which is also relatively easier to implement in larger tracts of land as it makes more 
use of draft animals for tillage.  CA is generally implemented in smaller tracts of 
land due to labor constraints in digging planting basins-in most instances hand hoes 
being used for tillage.   Fertilizer application rates on the other hand are significantly 
higher in CA (on average 155kgs compared to 83 kg in conventional). This is partly 
due to greater availability of fertilizer subsidies for CA plots through input relief 
programs. 

 

Table 5. Input allocations for CA and conventional farming 

 

Source: ICRISAT Conservation Agriculture panel data 2008-2010. 

The main types of fertilizer are basal and top dressing. The former is recommended 
before planting and the latter is recommended during crop growth. Farmers 
commonly substitute basal fertilizer with manure- which is readily available (from 
livestock). On the other hand, top dress fertilizers are more limiting, and it is likely 
that the big difference in yields between the two technologies is partly being driven 
by higher fertilizer application  rates in CA. Seed application rates are higher in CA, 
and this is possibly due to CA planting recommendations that generally use more 
seed per planting station. In terms of general input use, CA is not necessarily 
associated with conservative input levels. One can think of the conservation 

Technology Year Land Fertilizer(kg/ha) Seed (kg/ha) Yield (kg/ha)  

CA 2008 0.36 143.68 33.23 1474.80  

 2009 0.36 142.09 37.71 1747.56  

 2010 0.37 187.52 29.79 1607.37  

 2008-10 0.36 154.66 34.04 1614.86  

Conventional 2008 0.94 85.14 29.53 517.34  

 2009 0.75 68.94 33.44 1070.37  

 2010 0.85 97.26 25.33 857.02  

 2008-10 0.85 82.69 29.67 864.60  

Combined  2008 0.57 122.07 31.86 1121.45  

 2009 0.55 106.88 35.66 1421.64  

 2010 0.63 139.34 27.41 1206.83  

 2008-10 0.58 121.28 32.02 1266.87  
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attributes of the technology as mainly in the agronomic aspects such as conserving 
soil structure, soil moisture through use of mulch, and precision application of 
inputs.  Mulching is more rigorously done in CA as a strategy to conserve soil 
moisture and suppress weeds. This paper however does not quantify mulch input 
levels. 

 

Output shares  

A question of interest is to look at the contribution of the alternative technologies to 
total maize production in a household. The output share of each technology gives a 
reasonably good indication of its impact on production. Figure 1 shows that CA 
contribution to total output in high rainfall areas is on average 63.93%, 50.17%, and 
52.42% for the periods 2008, 2009, and 2010 respectively. In low rainfall areas CA 
average contribution to total output is 38.01%, 40.41%, and 38.96 for the respective 
time periods. These are interesting findings as they give a strong indication that CA 
technology, although implemented in relatively smaller plots, still contributes 
equally or more than conventional farming. A more complete analysis would require 
a look at the cost and revenue implications of CA technology. Tshuma et al., (2010) 
in their study note that CA technology generally has significantly higher gross 
margins and returns to input use than conventional farming. This study is based on 
a sub sample of the data used in this paper. The study primarily evaluates labor and 
time allocation in CA versus conventional farming. 
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Figure 1 Output shares for alternative technologies  

 

Partial factor productivity 

A partial productivity index that takes the ratio of a single input over output is used 
in this study. These input output (IO) ratios allow for comparison of factor 
productivity. Table 6 shows mean differences in input output ratios between 
conservation agriculture and conventional farming. Lower IO ratios indicate higher 
factor productivity. In each year, CA has higher factor productivity for all the inputs 
except draft. CA technology by design avoids the use of draft as a coping strategy 
for households with no draft animals. These households can carry out land 
preparation and plant on time without having to wait to borrow draft animals from 
neighbours.  Fertilizer productivity is however only significantly higher in 2008. 
Surprisingly, the significantly higher fertilizer regimes on CA do not yield 
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corresponding higher productivity for this factor. A common concern with 
subsidized inputs is that in some instances it is overused, hence marginal 
productivity diminishes. It is however important to note that these productivity 
measures (IO ratios) are limited in providing indications of overall productivity and 
can be misleading when considered in isolation (Kalirajan and Wu 1999). The 
subsequent sections of the paper discuss more complete measures of productivity. 

 

Table 6. Input output ratios for conservation and conventional agriculture 

Year Area Labor Draft Seed Fertilizer 

CA Conv. CA Conv. CA Conv. CA Conv. CA Conv. 

2008 0.002*** 0.005 0.023** 0.027 0.013 0.011 0.046*** 0.111 0.189*** 0.264 

2009 0.001*** 0.002  0.017*** 0.012 0.007 0.006 0.029*** 0.049 0.116 0.123 

2010 0.002*** 0.003 0.014 0.014 0.012 0.011 0.040*** 0.073 0.230 0.225 

2008-
10 

0.002*** 0.003 0.018 0.016 0.011 0.009 0.037*** 0.072 0.174 0.201 

T tests for equality of means are conducted, and the significance levels indicated by *** for 1% alpha, 
and ** for 10% alpha.  

 

Productivity in alternative technologies 

Table 7 presents results from the OLS regressions used to compare output elasticities 
and returns to scale between CA and conventional farming. A time variable is 
incorporated to measure disembodied technical change. The models also include a 
time squared variable that allows for non monotonic technical change (Coeli, et al., 
2005). Rainfall region is a dummy variable that controls for rainfall (1 if high rainfall 
and 0 if low rainfall area). There is evidence of technical progress in CA (46% on 
average) for the three year panel period. The coefficient on time squared is negative 
and statistically significant which indicates that the rate of technical change increases 
at a decreasing rate through time. The time squared coefficient is particularly large 
in the conventional farming model and as a consequence, mean technical progress in 
subsequent years rapidly declines for conventional farming. 

Time is also interacted with each (log) input variable to allow for non neutral 
technical change. The positive coefficient of time interacted with land (in CA model) 
implies that technical change has been land saving. A geometric interpretation of the 
results is that the Isoquant is shifting inwards at a faster rate over time in the land-
intensive part of the input space. This is possibly a results of less land being 
allocated for production due to input shortages in recent years. There are many 
instances where farmers leave some of their cropping land fallow due to inadequate 
access to inputs. Similarly, technical change has also been draft saving, but this is not 
statistically significant. Coefficients of time interactions with labor, seed, and 
fertilizer are negative implying factor using technical change for these inputs. These 
relationships are statistically significant for seed and fertilizer. On the other hand, for 
conventional farming, technical change has been land (significant) and draft-using, 
and seed-saving.  Direct interpretation of output responses to factors of production 
will be covered in the proceeding sub-section on elasticities.   
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Table 7. Translog production functions for CA and conventional farming 

OLS regression for CA OLS regression for non CA 

Variables Coefficient Standard Error Variables Coefficient Standard Error 

Land A -0.307 0.254 Land A 0.956 0.534* 

Labor L 0.739 0.337** Labor L -0.651 0.621 

Draft Animal K -1.023 0.488** Draft Animal K 2.292 0.741*** 

Seed S  0.008 0.305 Seed S  -0.532 0.741 

Fertilizer F 0.338 0.138** Fertilizer F -0.081 0.184 

Land*Land AA 0.068 0.084 Land*Land AA 0.097 0.114 

Labor*Labor LL -0.124 0.138 Labor*Labor LL 0.203 0.176 

Draft*Draft KK 0.205 0.348 Draft*Draft KK 0.896 0.285*** 

Seed*Seed  SS 0.294 0.091*** Seed*Seed  SS 0.169 0.227 

Fertilizer*Fertilizer FF  0.022 0.028 Fertilizer*Fertilizer FF  0.168 0.031*** 

Land*Labor AL 0.170 0.088* Land*Labor AL -0.082 0.157 

Land*Draft AK -0.131 0.097 Land*Draft AK 0.766 0.162*** 

Land* Seed  AS -0.137 0.081* Land* Seed  AS -0.171 0.131 

Land* Fertilizer AF  0.062 0.031** Land* Fertilizer AF  0.055 0.043 

Labor*Draft LK 0.127 0.109 Labor*Draft LK -0.468 0.191** 

Labor* Seed  LF -0.172 0.098 Labor* Seed  LF 0.001 0.166 

Labor* Fertilizer LS 0.026 0.036 Labor* Fertilizer LS 0.079 0.042* 

Draft* Seed KS 0.106 0.134 Draft* Seed KS -0.695 0.202 

Draft* Fertilizer KF  0.060 0.060 Draft* Fertilizer KF  -0.088 0.044** 

Seed* Fertilizer SF -0.026 0.042 Seed* Fertilizer SF -0.118 0.051** 

Land*Time AT 0.296 0.062*** Land*Time AT -0.173 0.098* 

Labor*Time LT -0.072 0.060 Labor*Time LT 0.040 0.090 

Draft*Time KT 0.096 0.067 Draft*Time KT -0.096 0.085 

Seed *Time ST -0.155 0.069** Seed *Time ST 0.259 0.105** 

Fertilizer *Time FT -0.111 0.031*** Fertilizer *Time FT 0.022 0.025 

Time T 2.312 0.321*** Time T 1.183 0.464** 

Time*Time TT -0.615 0.100*** Time*Time TT -0.927 0.129*** 

Draft access DD 0.135 0.125 Draft access DD 0.310 0.133** 

Rainfall region R -0.231 0.078*** Rainfall region R -0.211 0.093** 

Observations  756    654  

Households  392    405  

R squared  0.800    0.860  

Adj R squared  0.548    0.583  

Stars indicate statistical significance: * for the 10 % significance level, ** for the 5 % significance level, and ***for the 1 % 
significance level. 

 

Elasticities 

Elasticities of output with respect to each of the inputs are calculated as first 
derivatives of the output with respect to each input: 
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where y is output, x is vector of inputs j, k = 1,…, J inputs, j is input elasticity, t is 

time period, and  are the parameters from the estimated translog function.   
Elasticity estimates are evaluated at the mean of the data for the different panel 
periods. The indicator of returns to scale (RTSC) is calculated from the sum of the 
input elasticities 
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In table 8, output elasticity with respect to land is negative for CA and positive for 
conventional farming (but inelastic for both). The negative response to land 
expansion ceteris paribus in CA seems plausible since CA is best suited to small 
plots.  

 

Table 8. Elasticities and returns to scale estimates 

Technology Year Land Labor Draft  Fertilizer Seed RTSC  

CA 2008 -0.147 0.553 -0.830 0.735 0.518 0.829 

 2009 -0.153 0.554 -0.845 0.668 0.539 0.763 

 2010 -0.137 0.590 -0.747 0.668 0.564 0.938 

 2008-10 -0.146 0.566 -0.807 0.690 0.540 0.844 

Conventional 2008 0.422 -0.690 2.527 0.692 -1.986 0.965 

 2009 0.232 -0.670 2.439 0.448 -1.903 0.547 

 2010 0.393 -0.665 2.759 0.623 -1.967 1.144 

 2008-10 0.349 -0.675 2.575 0.588 -1.952 0.885 

 

Labor has a positive elasticity in CA, indicating greater returns to labor under CA.  
This is an interesting result within the context of discussions and debates on the 
dilemma of high labor requirements but greater returns to labor in CA.  Draft is 
expected to be more important in conventional farming as shown by the positive 
elasticities compared to negative responses in CA. Output response to fertilizer is 
positive for both technologies but greater in CA. Output elasticity with respect to 
seed is positive in CA but negative in conventional farming. Overall, returns to scale 
is similar in CA and conventional farming (0.84 and 0.89 respectively).   

 

Technical efficiency 

Results of the stochastic frontier and inefficiency effects are presented in Table 9. 
Technology is a dummy variable (1 if CA and 0 if conventional). Holding all other 
factors constant, a farmer will produce 39% more maize output in CA than in 
conventional farming (technology coefficient =0.39 and is statistically significant). 
This indicates greater productivity in CA technology. 
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Table 9. Stochastic production frontier estimates 

Translog Stochastic Frontier Model Inefficiency Effects Model 

Variables Coefficient Standard Error Variables Coefficient Standard Error 

Constant 0 2.855 0.497*** Age γAG -0.003 0.013 

Land A -0.076 0.188 Education γE 0.000 0.086 

Labor L 0.665 0.2255*** Gender γ G -0.001 0.632 

Draft Animal K 0.236 0.299 Asset value γAV -0.003 0.001** 

Seed S  0.320 0.233 Draft γ D 0.430 0.628 

Fertilizer F 0.05 0.078 Time γT -4.383 1.654*** 

Land*Land AA 0.059 0.054 Time*Time γTT 1.389 0.470*** 

Labor*Labor LL 0.055 0.093 Area γA 1.404 0.380*** 

Draft*Draft KK 0.229 0.135 Labor γL 0.263 0.571 

Seed*Seed  SS 0.078 0.079 Region γR 0.009 0.570 

Fertilizer*Fertilizer FF  0.090 0.015*** Technology γTC 0.416 0.730 

Land*Labor AL 0.185 0.062***     

Land*Draft AK 0.143 0.079**     

Land* Seed  AS 0.023 0.056     

Land* Fertilizer AF  0.003 0.021     

Labor*Draft LK -0.028 0.069     

Labor* Seed  LF -0.196 0.069***     

Labor* Fertilizer LS 0.005 0.021     

Draft* Seed KS -0.112 0.081     

Draft* Fertilizer KF  0.049 0.021**     

Seed* Fertilizer SF -0.057 0.023**     

Land*Time AT 0.132 0.038***     

Labor*Time LT -0.017 0.047     

Draft*Time KT -0.043 0.050     

Seed *Time ST 0.073 0.045     

Fertilizer *Time FT -0.011 0.014     

Time T 1.394 0.231***     

Time*Time TT -0.573 0.091***     

Draft access DD 0.244 0.057***     

Rainfall region R 0.001 0.040     

Technology RT 0.394 0.048***     

λ  1.916 0.735     

Sigma u  1.232 0.337     

σ2 v  0.413      

σ2 u  1.517      

Likelihood ratio  -1549.7      

Observations  1410      

Households  470      

Stars indicate statistical significance: * for the 10 % significance level, ** for the 5 % significance level, and ***for the 1 % 
significance level. 
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Technical efficiency predictions are derived from this model. In the inefficiency 
model, a positive sign indicates that the variable increases inefficiency. In general, 
demographic factors (gender, education, labor availability) have no effect on 
inefficiency. Inefficiency is also not affected by the type of technology that farmers 
use (no statistical significance in technology coefficient). Households with high asset 
levels are likely to be more efficient. This is expected since higher asset values imply 
greater availability of farming implements-which translates to more timely and 
effective farming operations. Farmer efficiency is generally increasing (at a 
decreasing rate) over time. Farmers operating on relatively large tracts of land are 
likely to be less efficient. This seems plausible in the context of a production 
environment characterised by limited inputs-hence increasing land while holding 
other direct factors (draft and labor) constant will lead to inefficiency in production. 

Technical efficiency scores are reported in table 10. Average efficiency levels in both 
high and low rainfall areas are not statistically different between CA and 
conventional farming. (70% and 68% in CA, 68% in conventional, in high and low 
rainfall areas respectively. Just fewer than 25% of household have average efficiency 
scores below 60%. The majority of households (62% under both technologies) have 
average efficiency scores of in the range 61-80%. In CA about 16.5% of households 
achieve technical efficiency levels greater than 80% while 14% of households achieve 
the same range in conventional farming. 

 

Table 10. Distribution of efficiency scores (percentage of households) 

Technology Year <0.40 0.41 -0.60 0.61 -0.80 >0.80 TE N 

CA 2008 1.89 21.13 60.00 16.98 0.681 265 

 2009 0.69 19.59 64.60 15.12 0.684 291 

 2010 1.00 22.50 59.00 17.50 0.687 200 

 2008-10 1.19 21.07 61.20 16.53 0.684 252 

Conventional 2008 1.29 24.52 63.87 10.32 0.664 155 

 2009 0.76 19.70 65.53 14.02 0.684 264 

 2010 2.18 21.40 58.08 18.34 0.677 229 

 2008-10 1.41 21.87 62.49 14.23 0.677 216 

 

Figure 2a and 2b shows efficiency levels for the alternative technologies in high and 
low rainfall areas. Technical efficiency tends to vary more in high rainfall areas 
compared to low rainfall- areas under both technologies.  
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Figure 2a TE scores high rainfall     Figure 2b TE scores low rainfall 

 

Section VII. Policy insights 

Interesting policy insights can be drawn from these results. First, it is clear that CA 
results in significant yield gains and significant contributions to food production 
although it is implemented on small pieces of land. CA is land saving, and this is an 
important issue for land constrained farmers because they can still have viable food 
production with limited land. On the other hand, high labor demands in CA present 
some problems in adoption. NGOs promoting CA commonly target vulnerable 
farmers such as women famers, the elderly and households affected by HIV/AIDS. 
NGO targeting of vulnerable households may impact negatively on labor availability 
for CA practices. There is a need to include better resourced farmers as technology 
innovators.  

CA requires higher quantities of seed and fertilizer. These inputs are not readily 
available to most small holder farmers hence adoption may be stalled by that fact. 
However, there are opportunities to counter this problem if CA farmers can achieve 
a marketed surplus, which can generate money to buy the seed and fertilizer. It is 
therefore important for functional output markets to be in place to complement 
technology adoption.  

 

Section VIII. Conclusion 

CA technology is implemented in relatively smaller plots than conventional farming. 
However, there is evidence of significant contribution of CA technology to total 
maize production amongst households. Our results show that productivity is greater 
in CA for all inputs except draft. Estimated output elasticities show that positive 
responses for labor and seed in CA, and negative responses in conventional farming. 
On the other hand, there are negative responses to land and draft in CA. Fertilizer 
has a greater positive response in CA than in conventional farming. Overall returns 
to scale are similar for CA and conventional farming. There is also evidence of 
technical progress in CA for the three year panel period. Technical progress has been 
land-saving but seed and fertilizer-using in CA, while land-using and seed-saving in 
conventional farming. Joint frontier estimates indicate greater productivity gains in 
CA (39% more than conventional farming-ceteris paribus). Technical efficiency levels 
are generally the same for both technologies. The majority of farmers achieve 
efficiency scores in the 60-80% range under both technologies.  
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Some limitations to this study include the short panel period, which limits observing 
long term trends, as well as the unavailability of price information to do a more 
complete economic analysis. It would also be interesting to look at adoption 
intensity, in terms of what components of CA are being practiced more and the 
relationship to efficiency and productivity gains.  
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