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Productivity and Efficiency Analysis of Maize under Conservation Agriculture in
Zimbabwe

Kizito Mazvimavi!, Patrick V Ndlovu?, Henry An3 and Conrad Murendo*

Abstract

This study sought to evaluate the performance of conservation agriculture (CA) technology-
essentially comparing productivity and efficiency levels in maize production in CA and conventional
farming. The analysis is based on a three year panel sample of smallholder farming households and
employing a stochastic production frontier model compare productivity and technical efficiency
between CA and conventional farming. Study results indicate that CA technology is implemented in
relatively smaller plots than conventional farming (0.36ha compared to 0.85ha) but has a significant
contribution to total maize production, on average 50% of output share. Output elasticities indicate
positive responses for labor and seed in CA, and negative responses in conventional farming. On the
other hand, there are negative responses to land and draft in CA. Fertilizer has a greater positive
response in CA than in conventional farming. Overall returns to scale are similar for CA and
conventional farming (0.84 and0.89 respectively). There is evidence of technical progress in CA for the
three year panel period. Technical progress has been land-saving but seed and fertilizer-using in CA,
while land-using and seed-saving in conventional farming. Joint frontier estimates indicate that
farmers will produce 39% more in CA compared to conventional farming. Technical efficiency levels
are generally the same (about 68%) for both technologies. Two-thirds of farmers achieve efficiency
scores in the 60-80% range both CA and conventional farming technologies. These results show
significant yield gains in CA practices and significant contributions to food production. CA is land-
saving, and this is an important issue for land constrained farmers because they can still have viable
food production on smaller area. But high labor demands in CA present some problems in adoption,
particularly for the poorer farmers.

Key words: Conservation agriculture, productivity, efficiency, technical change

I. Introduction

Maize production is an important component of food security and livelihood for
smallholder farming communities of Zimbabwe. The majority of smallholder
farmers grow maize primarily for subsistence using conventional farming
technology based on ox-drawn plow for tillage purposes. The challenge in
Zimbabwe’s smallholder agricultural sector is to raise the productivity of the staple
cereal as a way of solving food insecurity problems. The per capita maize production
is steadily declining, and this has been attributed to significant decline in yields over
the years from 1500 kg/ha in the early 1990s to 500kg/ha after 2000 (Government of
Zimbabwe, 2002). Similar to most parts of sub-Saharan Africa, agricultural
productivity levels in Zimbabwe have fallen due to land degradation as a result of
many years of erosive cultivation, declining soil fertility as farmers fail to replenish
soil fertility (Mano, 2006).
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The response to this food crisis in Zimbabwe has been the wide scale relief
distribution of food aid and direct agricultural input assistance without an exit
strategy for sustaining some of the new technologies promoted within the context of
relief aid (Rohrbach et al, 2005; DFID, 2009). As part of these relief and recovery
programs, research and development initiatives have seen the introduction of a
specific set of technology options that aim to improve and stabilize crop yields while
preserving soil and water, while using precision methods to apply inputs. These set
of technology options is defined as conservation agriculture (Thierfelder and Wall,
2010; Twomlow et al., 2008). But, the key to a prolonged increase in agricultural
production is to improve productivity, which can be achieved through better
technology and efficiency.

In Zimbabwe there has been major investments and policy drive towards CA as a
way of improving productivity through efficient use of production inputs, improved
management, timeliness of operations and conserving the soil. However, in the past
increase in land productivity has come from intensification of agricultural
production and the adoption of yield enhancing technologies especially modern
high yielding varieties and fertilisers. Higher efficiency gives subsistence farmers the
opportunity to produce more output using the current level of inputs especially land
which is limited in supply. Gains in output through productivity growth have
become increasingly important in Zimbabwe as opportunities to bring additional
virgin land into cultivation have significantly diminished in recent years.

So far there is no empirical evidence to show that CA can indeed lead to efficiency
gains which can increase productivity that is crucial for improving livelihoods of
smallholder farmers in Zimbabwe. The few studies that have assessed the effect of
CA adoption on production efficiency (Solis, 2005, Oduol et al., 2011, Musara et al.,
2012) have used cross sectional data. The studies have concluded that adoption of
CA practices push smallholder farmers closer to their production frontier and an
improvement of human capital variables such as access to extension and education
can significantly reduce inefficiencies.

Given the nature of CA and the fact that agronomic benefits from soil improvement
are only realised in the long term, the use of panel data is more appropriate for a
realistic assessment of impact. Through monitoring farmers who have adopted CA
over time, the International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT) has created a database upon which this study will be based.

The paper is structured as follows: Section II is a review of the literature on
productivity measurement and section III develops the theoretical and econometric
model for estimating productivity impacts. Section IV describes the data used in the
study including sample selection issues. Section V is a discussion of diagnostic and
model specification issues in the econometric model. Section VI reports the major
empirical findings. The summary follows in the last section.



Section II. Literature review

CA practices in Africa

A comprehensive review of conservation CA practices in Zimbabwe, and other
Southern African countries is given by Mazvimavi (2011). CA in Zimbabwe is largely
practiced by smallholder farmers using small farm implements such as the hand hoe
to create planting basins. Though specifications may vary, CA technologies typically
involve agricultural management practices that prevent degradation of soil and
water resources and thereby permit sustainable farm productivity without
environmental degradation (Haggblade et al., 2004; Wysocki, 1990; ECAF, 2002).

Farmers and agencies working to improve farm productivity have experimented
with a broad range of these soil and water conservation technologies that are
collectively known as CA. Tsegaye et al., (2008) assess the impacts of conservation
agriculture on land and labor productivity in Ethiopia. Their study analyzes the
adoption of the different components of CA and finds that the initial decision to
adopt CA is influenced by regional location, family size, access to extension, and
formal education. They also find a positive relationship between land productivity
and use of CA components such as herbicide application.

Hassane et al., (2000) evaluate the impact of planting basin, and use of fertilizer and
manure on millet crops in Niger. Their study finds that over a five year period from
1991 to 1996, farmers experienced yield gains of up to 511%. Similarly, significant
yield gains are also noted in a study in Zambia by Haggblade and Tembo (2003) who
note that farmers who dug planting basins and applied crop residues and fertilizer
achieved 56% yield gains in their cotton fields and 100% yield gains in their maize
fields.

Gowing and Palmer (2008) examine evidence of CA benefits amongst small-scale
farmers in Africa and conclude that CA does not overcome constraints on low-
external-input systems. They note that CA will deliver the productivity gains that
are required to achieve food security and poverty targets only if farmers have access
to fertilizers and herbicides. They further asset that adoption of CA by small-scale
farmers is likely going to be partial as opposed to full adoption.

While there is evidence of CA gains in the literature, there are also studies that
present a sharply contrasting assessment of CA impacts. Giller et al. (2009) suggests
that empirical evidence is not clear and consistent on CA contributions to yield
gains. Their study notes concerns that include decreasing yield in CA, increased
labor requirements when herbicides are not used, a shift of the labor burden to
women, and problems with mulching requirements due to its shortage or competing
use as livestock feed. They also note that there are many cases where adoption of CA
was temporary and only lasted for the course of active promotion of the technology
by NGOs and research but was not sustained beyond that.



Technical Efficiency and Productivity Growth

The measurement of technical efficiency and productivity growth is an area of study
that has attracted the interest of a number of researchers since the work of Farrell in
1957 (Farrell, 1957). Technical efficiency is just one component of overall economic
efficiency, i.e. producing maximum output given the level of inputs employed
(Kumbhakar and Lovell 2000). Efficiency change essentially contributes to
productivity growth. Efficiency can be considered in terms of the optimal
combination of inputs to achieve a given level of output, that is input-orientation
efficiency, or the optimal output that could be produced given a set of inputs, that is
output-orientation efficiency.

Productivity assessment is often associated with measurement of technical change.
The work of Battese and Coelli (1988, 1992, 1995) has made notable contributions on
measurement of production efficiency using stochastic production frontier approach.
Khumbakar and Lovell (2000) proposes an econometric method that is based on a
primal approach where shifts in the production frontier are due to technical change.
It is often important to interpret results of efficiency and productivity analysis in the
context of the time period analyzed, and also consider issues such as the degree of
sample homogeneity, output aggregation, and use of different methodologies in the
analytical process.

Total factor productivity growth is defined as growth in output that is not explained
by change in inputs. Following this definition and assuming that production is not
always on the frontier, change in productivity can be decomposed into two separate
components: a) movements towards or away from the frontier due to changes in
technical efficiency; and b) shifts in the frontier due to the effect of technological
innovations or progress. Effects of scale changes can also be incorporated in this
measure (Coeli et al.,2005)

Parametric and non parametric approaches

A non-parametric approach to frontier, the Data Envelopment Approach (DEA) was
developed by Charnes, Coopers and Rhodes (1978). The parametric approach was
developed simultaneously by Aigner, Lovell and Schmidt (1977) and Meeusen and
van den Broek (1977) who proposed the stochastic frontier production function. Both
approaches are used in empirical work. However, a weakness associated with the
DEA approach is that all deviations from the frontier are associated with
inefficiency. In agriculture this assumption is restrictive considering that production
is variable due to factors such as weather, pests and diseases. The stochastic
production frontier on the other hand allows for error in measurement.



Section III: Development of theoretical and econometric model

This study uses a stochastic production frontier to estimate productivity and
technical efficiency. To estimate technical efficiency, a joint frontier is used since this
is a comparative analysis of two technologies. Data for the two technologies is
pooled so that technical efficiency predictions are derived from the same data. This
is based on discussions by Battese et al., (2004) on comparing different groups in
technical efficiency estimation.

OLS regressions and Stochastic frontier models

The study will use OLS regressions to model maize production and retrieve output
elasticities and returns to scale associated with CA and conventional farming. Two
separate models are estimated (for CA and non CA) using a structural form
indicated in the translog production function in equation 1.
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where yi; is the log of the output produced, the subscript i = 1, 2, ..., N denotes
households in the panel data, t =1, 2, ..., T are time periods, and j, k=1, 2, ..., ] are
the inputs used, represented by vector x in farm production. Technical change is
neutral with respect to inputs if, and only if, g = 0 Vj, and absent if, and only if,
B=pu=p=0 Vj.

The panel stochastic frontier model to predict technical efficiency is given in
equation 2, with the same specification as equation 1 except that the error term is
composed of two independent elements: v ~ iid N(0, v?) is the random noise error
component and wui > 0 is the technical inefficiency error component. In the
econometric estimation, a joint panel is used, pooling observations for CA and
conventional farming, and incorporating a dummy variable to control for these
technologies.
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The inefficiency effects model provides some explanations for the variations in
efficiency levels among farmers. Following the stochastic production frontier model
in Equation 2, it is assumed that the inefficiency effects are independently
distributed and u;: arises by truncation at zero of the normal distribution with mean,

. 2 . .
u, and variance, o, where 14 is defined by

M
‘th = 50 + Z5mzmt + é‘tt (3)
m=1

where z is a vector of farm specific inefficiency related variables (m=1, ..., M), at time
period ¢, and & coefficient are unknown parameters to be estimated. Since the
dependent variable in the inefficiency model is a measure of inefficiency, a positive
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sign on a parameter indicates a negative efficiency effect. A one stage approach that
uses a maximum likelihood estimator is used to estimate the production and
inefficiency effects simultaneously.

Variables for the direct factors of production are land (A), labor (L), draft animals
(K), fertilizer (F), and seed (S). The output (Y) for the production function is maize
produced in kgs. Land is total cultivated area in hectares. Labor is total farm labor
available in the household, expressed in male adult equivalent units. Variables
hypothesized to be explanatory factors of technical efficiency include ; gender
(dummy variable taking the value of 1 if male headed household, zero if female
headed), age and education of household head, asset endowments, and access to
draft power. A time variable is included to estimate the effect of time on technical
efficiency. Land and labor are also included in the efficiency model. The model used
in the study assumes time varying technical efficiency, using a truncated frontier
model.

Section IV: Data

This study makes use of ICRISAT panel data from household surveys collected since
2008 in Zimbabwe. The panel study aimed to examine CA adoption practices
including labor allocation, technology adoption determinants, and productivity
impacts observing the same farmers in successive seasons of real CA practice in non
experimental setting. The study makes comparison of CA technology with
alternative conventional farming practices for the same households (i.e. a household
practices both technologies).

The data was collected in 15 rural districts in Zimbabwe. Table 1 shows the average
number of households interviewed in the full survey sample and the selected sample
(used for this particular study). During the panel period, there were incidences of
attrition as some households could not be re-interviewed in successive seasons of the
surveys. As a consequence, the panel data used in this study is un-balanced. This
may open doors to some econometric problems associated with attrition bias. A
possible solution to attrition bias is to use dynamic panel data models. However, this
study does not tests for attrition bias nor make use of dynamic panel data models.

There were instances where some farmers did not produce maize in particular
seasons, or where the maize crop was completely wiped out by drought. As a result,
this study makes use of a sub sample of the original panel household sample. This
sub sample considers maize producing households and excludes observations where
no maize was produced. Further details on sample selection are discussed in the
proceeding sub-section.



Table 1. Survey sample and selected sample for study

Technology Survey sample Selected sample

CA Conventional Combined CA  Conventional Combined

2008 322 176 498 265 155 420
2009 306 286 592 291 270 561
2010 287 258 545 200 229 429
2008-10 305 240 545 252 218 470
Total observation 1635 1410

Source: ICRISAT Conservation Agriculture panel data 2008-2010.

Table 2 gives some descriptive statistics of the production variables and factors
hypothesized to explain technical efficiency in maize production. Output refers to
total maize produced in kilograms. In this study, aggregation of output from
different plots, as well as aggregation of inputs is done. Aggregation is used in this
case by making implicit assumptions on seperability.

Table 2. Summary Statistics for factors of production and efficiency factors

Production variables Efficiency variables
Year Output Area Labor Draft Seed  Fertilizer Gender Age School  Experience Il Assets
2008 362.40 0.36 3.69 0.74 8.05 35.46 0.63  50.48 6.50 2486 024 72.98
2009 484.25 0.36 3.66 0.62 9.19 33.84 0.68  55.79 6.53 30.83 022 97.04
CA
2010 501.69 0.37 2.54 1.24 9.13 53.53 0.59  54.03 6.91 9771 019  287.95
average 449.45 0.36 3.30 0.87 8.79 40.94 0.63  53.43 6.65 5113 022  152.66
2008 325.09 0.94 3.84 090 19.27 38.68 0.63  50.75 6.57 2537 025 84.00
2009 575.07 0.75 2.93 0.64 17.20 33.52 0.69 5453 6.79 29.90 0.18 91.74
Conventional
2010 649.29 0.85 2.63 1.39  19.03 62.64 0.65 5421 6.81 2672 021  356.20
average 516.48 0.85 3.14 098 18.50 44.95 0.66 53.16 6.73 27.33 021 177.31
2008 348.63 0.57 3.74 080 1219 36.65 0.63  50.58 6.53 2505 025 77.05
2009 527.96 0.55 3.31 0.63 13.05 33.69 0.69 5520 6.65 30.39  0.20 94.49
Average
2010 580.48 0.63 2.59 132 1442 58.39 0.62 54.13 6.86 59.81 020  324.38
average 485.69 0.58 3.21 092 1322 42,91 0.65 53.30 6.68 3842 021  165.31

Source: ICRISAT Conservation Agriculture panel data 2008-2010.

The efficiency variables include gender, age, education level, farming experience of
the household head, and presence of chronically ill persons in the household
(dummy variable proxy for impact of HIV/AIDS, named Ill). Gender and illness are
proportion of households (multiply by 100 to express as percentage). Asset
endowments are expressed as an index which captures information on the
availability of farming implements e.g. plows, cultivators, hoes, in a household. In
general there is not a lot of variation in input use for the three year period. Further
discussion of input allocation is covered in a later section. Averages values for the



efficiency variables are generally the same for both technologies because these
averages are based on the same farmers practicing both technologies.

Sample selection

There are instances in the survey data set were households did not produce maize in
a particular year. These observations were excluded from the analysis carried out in
the study. This raises the concern of sample selection bias as also 13.8% of
observations were excluded from the analysis. If the excluded farmers had particular
characteristics specific to them and not observed in the included sample (e.g. non
beneficiaries are likely to be less vulnerable households), then the sample used for
analysis would not be random but rather biased. Households that did not receive
input subsidies were more likely to be excluded from the sample. The full sample
consisted of 1635 observations and the proportion of households that were non
beneficiaries (of input subsidies) in this sample is 20.6%. Beneficiary households are
households that received input support mainly through NGOs. In many instances
these were free gifts of seed and fertilizer targeted at vulnerable households. In the
selected sample, about 20% of non beneficiaries were excluded, compared to 11% of
beneficiaries being excluded.

To explore the potential problem of sample selection bias, a Heckman’s sample
selection model is implemented. In the model the probability of being a maize
producer for a particular year is modeled as a function of whether or not a
household received input subsidies (dummy variable taking the value 1 if
beneficiary and 0 otherwise). An assumption is made that receiving input subsidies
will have an effect on whether a household produced or not, but will not have a
direct effect on levels of production. Within reason, this assumption seems plausible.
The results of the model are presented in Table 3. Draft access is incorporated as a
dummy variable as a strategy to deal with zero values in computing the log for
number of draft animals. This is further discussed in section V.

The probit model for participation in the sample indicates that there is a greater
probability for participation if a household is a beneficiary (coefficient on beneficiary
is positive and statistically significant). To evaluate if there is sample selection bias,
we look at the RHO(1,2) coefficient in the corrected model. The Rho(1,2) coefficient is
not statistically significant at 10% level, which suggests that there is no sample
selection bias. The translog specification of the sample selection model yields even
stronger results for non bias in the selected sample i.e. RHO coefficient =0.185 and
it’s p value =0.675



Table 3. Heckman’s sample selection model

Probit model of participation in sample OLS Corrected Regression for the selected sample
Variable Coefficient Standard Error Variable Coefficient Standard Error
Constant -1.332  0.631*** Constant 2.528 0.321***
Area 0.458 0.062*** Area 0.313  0.050***
Labor 0.061 0.117 Labor 0.059 0.041
Daft access 0.124 0.130 Draft 0.137 0.054
Time 3.391 0.779*** Seed 0.327  0.042***
Time*Time -0.864 0.194*** Fertilizer 0.146  0.013***
Region 0.201 0.129 Draft access 0.140  0.057**
Benefit 0.228 0.139* Time 2.085 0.311***
Time*Time -0.486  0.079***
Region 0.040 0.048
Technology 0.336  0.052***
o(1) 0.797  0.023***
RHO(1,2) 0.249 0.351
Log likelihood -2206.438
N total sample 1635
N selected sample 1410

Stars indicate statistical significance: * for the 10 % significance level, ** for the 5 % significance level,
and ***for the 1 % significance level.

Section V: Model specification and diagnostic issues

Dealing with zero values for input use

A challenge that had to be dealt with in the data is the presence of zero values for
inputs, in particular in constructing the variable for number of draft animals where
some households had no draft animals. Battese (1997) devises a method to get
around this problem, where all zero values for an input are assigned a value of one
to enable computation of the log, then an dummy variable is added to the regression
capturing whether the input was applied or not. This method ensures that efficient
estimators are obtained using the full data set but no bias is introduced.

Choosing between fixed effects and random effects

The availability of panel data makes it possible to control for individual household
specific effects which may potentially bias or make regression estimators
inconsistent. For example differences in plot characteristics, or any other
unobservable or hard to measure characteristics can be controlled for with panel
data. Alternative panel specifications to control for these farmer specific
characteristics are fixed effects and random effects models. In this paper, panel
specification tests are carried out to choose between fixed effects and random effects.
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OLS regressions were run to test for the ideal panel specification for the data using a
Huasman’s test. Table 4 shows results from the regressions and the associated p
values form the Huasman’s test. Both the translog and Cobb Douglas models favour
fixed effects over random effects (significant p values for Hausman'’s statistic). Fixed
effects are strongly favoured in the translog model. For the rest of the analysis, fixed
effects models are used as the panel specification. Interpretation of model
parameters will be done with the stochastic frontier model which will be presented
in a later section of the paper.

Choosing functional form

The choice of functional form to model the frontier and inefficiency effects was of
interest in this study. In the literature, the translog has commonly been preferred as
a more flexible functional form that allows for interaction of inputs, unlike the Cobb
Douglas which does not allow for input interactions and assumes elasticity of
substitution between inputs equals one. To tests for functional forms a likelihood
ratio (LR) tests is used. The LR test is only valid for nested models. The LR test
statistic is A =—-2[L(H,)—L(H,)], where L(H,) and L(H,) are the values of the log-

likelihood function under the specifications of the null and alternative hypotheses,
H, and H,, respectively. If the null hypothesis is true, then A has approximately a

Chi-square (or mixed Chi-square) distribution with degrees of freedom equal to the
number of restrictions. The assumption that the maize production in this sample
follows Cobb-Douglas estimations (8x=0, V j, k and £ =0 V j, ) are strongly rejected
at 1 percent significance level (Chi calculated =63.691, with 35df).

Diagnostic problems

The chosen translog model has 30 variables and this is likely to lead to problems
caused by correlation among the independent variables, which results in an inability
to identify individual parameters of interest, and problems in statistical inference
due to inflated standard errors and low t stats. This problem is caused partly by
multicollinearity of the independent variables (Wooldridge 2002, Greene 2003).
However, it will be beyond the scope of this study to use alternative models that
might limit the effects of multicollinearity of independent variables.
Heteroskedasticity is tested for using the Breush Pagan tests in the parsimonious
Cobb Douglas specification. This is done by running an OLS regression and using
the residuals to run an auxiliary regression with the original model regressors. The R
squared from the auxillary regression =0.533 (sample size is 1410). The test statistic
(Lagrange Multiplier) is 747.72, with a Chi square distribution (10df). Given these
values, the null hypothesis of Homoskedasticity is rejected at the 1 percent level of
alpha. Therefore results from the Breush Pagan tests indicate that there is
Heteroskedasticity in the data. A challenge arises in the determination of the form of
Heteroskedasticity in order to correct for it in the frontier model. So the frontier
model is run without making a correction for Heteroskedasticity. Autocorrelation is
not anticipated to be a problem in the panel data where the modeling uses fixed
effects. In this regard, neither tests nor corrections are made for autocorrelation.
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Table 4. OLS regressions to test fixed effects versus random effects

OLS Translog Model OLS Cobb Douglas

Variables Coefficient ~Standard Error  Variables Coefficient  Standard Error
Constant Po 2200 0.583*** Constant Yo 2682  0.208***
Land Pa -0.209 0.217 Land Va 0.298  0.041***
Labor )i 0464 0.275* Labor i -0.012  0.054
Draft Animal P 0440 0.370 Draft Animal 7y« -0.001 0.084
Seed P 0.390 0.261 Seed Ys 0.273  0.049***
Fertilizer PBr 0.083  0.094 Fertilizer YF 0.145 0.016***
Land*Land Paa -0.010 0.057 Draft Yo 0.163  0.087**
Labor*Labor B 0.002 0.096 Time YT 1.622  0.262%**
Draft*Draft Prx 0210 0172 Time*Time YT -0.377  0.066***
Seed*Seed Pss 0.058 0.082 Region YR 0.074  0.056
Fertilizer*Fertilizer  frr 0.091 0.018*** Technology Y RT 0.301  0.057***
Land*Labor PaL 0.127  0.065**

Land*Draft Pak 0.163  0.084**

Land* Seed Pas 0.028 0.057

Land* Fertilizer Par 0.029 0.022

Labor*Draft Pk -0.020  0.091

Labor* Seed Pir -0.139  0.078**

Labor* Fertilizer s 0.010 0.024

Draft* Seed Prs -0.165  0.089**

Draft* Fertilizer Pre 0.034 0.027

Seed* Fertilizer Pk -0.058  0.026**

Land*Time Par 0.086 0.048**

Labor*Time Pir -0.011  0.055

Draft*Time Pxr -0.046 0.058

Seed *Time Psr 0.056 0.056

Fertilizer *Time Prr -0.005 0.018

Time PBr 1.809 0.257***

Time*Time Brr -0.852  0.086***

Draft access Pop 0.182  0.067***

Region Pr -0.012  0.047

Technology Prr 0.336  0.046***

R? 0.427 0.634

Huasman p value 0.000 0.098
Observations 1410 1470
Households 470 470

Stars indicate statistical significance: * for the 10 % significance level, ** for the 5 % significance level,
and ***for the 1 % significance level.
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Section VI: Main results
Factor allocation

A look into how farmers allocate factors of production gives an idea of factor
allocative efficiency i.e the use of the right mix of inputs in light of the relative price
of each input. (Kumbhakar and Lovell 2000). In this study information on prices is
not available, hence no direct interpretation of allocative efficiency is made.
However, the analysis takes a look at physical levels of input use. Table 5 shows
land allocation in hectares, and on average conventional farming has a significantly
larger area (0.85ha compared to 0.35ha for CA). Reasons for this include the fact that
farmers are likely to allocate most of their land to the more familiar technology-
which is also relatively easier to implement in larger tracts of land as it makes more
use of draft animals for tillage. CA is generally implemented in smaller tracts of
land due to labor constraints in digging planting basins-in most instances hand hoes
being used for tillage. Fertilizer application rates on the other hand are significantly
higher in CA (on average 155kgs compared to 83 kg in conventional). This is partly
due to greater availability of fertilizer subsidies for CA plots through input relief
programs.

Table 5. Input allocations for CA and conventional farming

Technology Year Land Fertilizer(kg/ha) Seed (kg/ha) Yield (kg/ha)

CA 2008 0.36 143.68 33.23 1474.80
2009 0.36 142.09 37.71 1747.56

2010 0.37 187.52 29.79 1607.37

2008-10 0.36 154.66 34.04 1614.86

Conventional 2008 0.94 85.14 29.53 517.34
2009 0.75 68.94 33.44 1070.37

2010 0.85 97.26 25.33 857.02

2008-10 0.85 82.69 29.67 864.60

Combined 2008 0.57 122.07 31.86 1121.45
2009 0.55 106.88 35.66 1421.64

2010 0.63 139.34 27.41 1206.83
2008-10 0.58 121.28 32.02 1266.87

Source: ICRISAT Conservation Agriculture panel data 2008-2010.

The main types of fertilizer are basal and top dressing. The former is recommended
before planting and the latter is recommended during crop growth. Farmers
commonly substitute basal fertilizer with manure- which is readily available (from
livestock). On the other hand, top dress fertilizers are more limiting, and it is likely
that the big difference in yields between the two technologies is partly being driven
by higher fertilizer application rates in CA. Seed application rates are higher in CA,
and this is possibly due to CA planting recommendations that generally use more
seed per planting station. In terms of general input use, CA is not necessarily
associated with conservative input levels. One can think of the conservation
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attributes of the technology as mainly in the agronomic aspects such as conserving
soil structure, soil moisture through use of mulch, and precision application of
inputs. Mulching is more rigorously done in CA as a strategy to conserve soil
moisture and suppress weeds. This paper however does not quantify mulch input
levels.

Output shares

A question of interest is to look at the contribution of the alternative technologies to
total maize production in a household. The output share of each technology gives a
reasonably good indication of its impact on production. Figure 1 shows that CA
contribution to total output in high rainfall areas is on average 63.93%, 50.17%, and
52.42% for the periods 2008, 2009, and 2010 respectively. In low rainfall areas CA
average contribution to total output is 38.01%, 40.41%, and 38.96 for the respective
time periods. These are interesting findings as they give a strong indication that CA
technology, although implemented in relatively smaller plots, still contributes
equally or more than conventional farming. A more complete analysis would require
a look at the cost and revenue implications of CA technology. Tshuma et al., (2010)
in their study note that CA technology generally has significantly higher gross
margins and returns to input use than conventional farming. This study is based on
a sub sample of the data used in this paper. The study primarily evaluates labor and
time allocation in CA versus conventional farming.

Contribution to total maize production

1400
1200
1000
800 -
600 - B Conventional
400 - mcAa

200

total output in kgs

2008 2009 2010 2008 2009 2010

High rainfall areas ‘ Low rainfall areas ‘

Figure 1 Output shares for alternative technologies

Partial factor productivity

A partial productivity index that takes the ratio of a single input over output is used
in this study. These input output (IO) ratios allow for comparison of factor
productivity. Table 6 shows mean differences in input output ratios between
conservation agriculture and conventional farming. Lower IO ratios indicate higher
factor productivity. In each year, CA has higher factor productivity for all the inputs
except draft. CA technology by design avoids the use of draft as a coping strategy
for households with no draft animals. These households can carry out land
preparation and plant on time without having to wait to borrow draft animals from
neighbours. Fertilizer productivity is however only significantly higher in 2008.
Surprisingly, the significantly higher fertilizer regimes on CA do not yield
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corresponding higher productivity for this factor. A common concern with
subsidized inputs is that in some instances it is overused, hence marginal
productivity diminishes. It is however important to note that these productivity
measures (IO ratios) are limited in providing indications of overall productivity and
can be misleading when considered in isolation (Kalirajan and Wu 1999). The
subsequent sections of the paper discuss more complete measures of productivity.

Table 6. Input output ratios for conservation and conventional agriculture

Year Area Labor Draft Seed Fertilizer

CA Conv. CA Cono. CA Conv. CA Conv. CA Conv.
2008 0.002***  0.005 0.023** 0.027 0.013 0.011 0.046*** 0111 0.189** 0.264
2009 0.001***  0.002 0.017*** 0.012 0.007  0.006 0.029***  0.049 0.116 0.123
2010 0.002***  0.003 0.014 0.014 0.012 0.011 0.040***  0.073 0.230 0.225
2008- 0.002***  0.003 0.018 0.016 0.011  0.009 0.037***  0.072 0.174 0.201

10

T tests for equality of means are conducted, and the significance levels indicated by *** for 1% alpha,
and ** for 10% alpha.

Productivity in alternative technologies

Table 7 presents results from the OLS regressions used to compare output elasticities
and returns to scale between CA and conventional farming. A time variable is
incorporated to measure disembodied technical change. The models also include a
time squared variable that allows for non monotonic technical change (Coeli, et al.,
2005). Rainfall region is a dummy variable that controls for rainfall (1 if high rainfall
and 0 if low rainfall area). There is evidence of technical progress in CA (46% on
average) for the three year panel period. The coefficient on time squared is negative
and statistically significant which indicates that the rate of technical change increases
at a decreasing rate through time. The time squared coefficient is particularly large
in the conventional farming model and as a consequence, mean technical progress in
subsequent years rapidly declines for conventional farming.

Time is also interacted with each (log) input variable to allow for non neutral
technical change. The positive coefficient of time interacted with land (in CA model)
implies that technical change has been land saving. A geometric interpretation of the
results is that the Isoquant is shifting inwards at a faster rate over time in the land-
intensive part of the input space. This is possibly a results of less land being
allocated for production due to input shortages in recent years. There are many
instances where farmers leave some of their cropping land fallow due to inadequate
access to inputs. Similarly, technical change has also been draft saving, but this is not
statistically significant. Coefficients of time interactions with labor, seed, and
fertilizer are negative implying factor using technical change for these inputs. These
relationships are statistically significant for seed and fertilizer. On the other hand, for
conventional farming, technical change has been land (significant) and draft-using,
and seed-saving. Direct interpretation of output responses to factors of production
will be covered in the proceeding sub-section on elasticities.
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Table 7. Translog production functions for CA and conventional farming

OLS regression for CA OLS regression for non CA

Variables Coefficient Standard Error = Variables Coefficient ~ Standard Error
Land N -0.307 0.254 Land B 0956 0.534*
Labor B 0.739  0.337** Labor B -0.651 0.621
Draft Animal P -1.023  0.488** Draft Animal Px 2292 0.741%*
Seed Bs 0.008 0.305 Seed Ps -0.532  0.741
Fertilizer Br 0.338  0.138** Fertilizer PBr -0.081 0.184
Land*Land Paa 0.068 0.084 Land*Land Paa 0.097 0.114
Labor*Labor B -0.124 0.138 Labor*Labor BiL 0.203 0.176
Draft*Draft Pk 0.205 0.348 Draft*Draft Prx 0.896  0.285***
Seed*Seed Pss 0.294  0.091*** Seed*Seed Pss 0.169 0.227
Fertilizer*Fertilizer S 0.022 0.028 Fertilizer*Fertilizer S 0.168  0.031***
Land*Labor Par 0.170  0.088* Land*Labor Par -0.082 0.157
Land*Draft Pak -0.131  0.097 Land*Draft Pak 0.766  0.162***
Land* Seed Pas -0.137 0.081* Land* Seed Pas -0.171 0.131
Land* Fertilizer Par 0.062  0.031** Land* Fertilizer Par 0.055 0.043
Labor*Draft Pk 0.127 0.109 Labor*Draft Pik -0.468 0.191**
Labor* Seed Pie -0.172 0.098 Labor* Seed Pir 0.001 0.166
Labor* Fertilizer Prs 0.026  0.036 Labor* Fertilizer Prs 0.079  0.042*
Draft* Seed Prs 0.106 0.134 Draft* Seed Prs -0.695 0.202
Draft* Fertilizer Pxr 0.060 0.060 Draft* Fertilizer Pxr -0.088  0.044**
Seed* Fertilizer Pse -0.026  0.042 Seed* Fertilizer Pse -0.118  0.051**
Land*Time Par 0.296 0.062*** Land*Time Par -0.173  0.098*
Labor*Time Bur -0.072  0.060 Labor*Time Bur 0.040 0.090
Draft*Time PBrr 0.096 0.067 Draft*Time Pxr -0.096 0.085
Seed *Time Bsr -0.155  0.069** Seed *Time Psr 0.259  0.105**
Fertilizer *Time Prer -0.111  0.031*** Fertilizer *Time Prr 0.022 0.025
Time Pr 2312 0.321%** Time Pr 1.183  0.464*
Time*Time Prr -0.615  0.100%** Time*Time Prr -0.927  0.129%
Draft access Pop 0135 0.125 Draft access Pop 0.310 0.133**
Rainfall region Br -0.231  0.078*** Rainfall region Br -0.211  0.093**
Observations 756 654
Households 392 405
R squared 0.800 0.860
Adj R squared 0.548 0.583

Stars indicate statistical significance: * for the 10 % significance level, ** for the 5 % significance level, and ***for the 1 %

significance level.

Elasticities

Flasticities of output with respect to each of the inputs are calculated as first
derivatives of the output with respect to each input:
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where y is output, x is vector of inputs j, k = 1,..., ] inputs, g is input elasticity, ¢ is
time period, and f are the parameters from the estimated translog function.
Elasticity estimates are evaluated at the mean of the data for the different panel
periods. The indicator of returns to scale (RTSC) is calculated from the sum of the
input elasticities

RTSC =2, ony =Zgj :Z{ﬂj +2 B Inx, +:Bjtt}' (4)

7 olInx;,

In table 8, output elasticity with respect to land is negative for CA and positive for
conventional farming (but inelastic for both). The negative response to land
expansion ceteris paribus in CA seems plausible since CA is best suited to small
plots.

Table 8. Elasticities and returns to scale estimates

Technology Year Land Labor Draft Fertilizer Seed RTSC

CA 2008 -0.147 0.553  -0.830 0.735 0.518  0.829
2009  -0.153 0.554 -0.845 0.668 0.539  0.763

2010  -0.137 0.590 -0.747 0.668 0.564  0.938

2008-10 -0.146 0.566 -0.807 0.690 0.540 0.844

Conventional ~ 2008 0422 -0.690 2527 0.692 -1.986  0.965
2009 0232 -0.670 2.439 0.448 -1.903  0.547

2010 0393 -0.665 2.759 0.623 -1.967 1.144

2008-10 0.349 -0.675 2.575 0.588 -1.952  0.885

Labor has a positive elasticity in CA, indicating greater returns to labor under CA.
This is an interesting result within the context of discussions and debates on the
dilemma of high labor requirements but greater returns to labor in CA. Draft is
expected to be more important in conventional farming as shown by the positive
elasticities compared to negative responses in CA. Output response to fertilizer is
positive for both technologies but greater in CA. Output elasticity with respect to
seed is positive in CA but negative in conventional farming. Overall, returns to scale
is similar in CA and conventional farming (0.84 and 0.89 respectively).

Technical efficiency

Results of the stochastic frontier and inefficiency effects are presented in Table 9.
Technology is a dummy variable (1 if CA and 0 if conventional). Holding all other
factors constant, a farmer will produce 39% more maize output in CA than in
conventional farming (technology coefficient =0.39 and is statistically significant).
This indicates greater productivity in CA technology.
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Table 9. Stochastic production frontier estimates

Translog Stochastic Frontier Model Inefficiency Effects Model

Variables Coefficient Standard Error = Variables Coefficient  Standard Error
Constant Po 2.855  0.497%** Age Yac -0.003 0.013
Land Pa -0.076  0.188 Education YE 0.000 0.086
Labor yia 0.665  0.2255%** Gender Ye -0.001 0.632
Draft Animal Px 0.236  0.299 Asset value  yav -0.003  0.001**
Seed P 0.320 0.233 Draft Yo 0.430 0.628
Fertilizer Br 0.05 0.078 Time % -4.383  1.654***
Land*Land Paa 0.059 0.054 Time*Time  yrr 1.389  0.470***
Labor*Labor yin 0.055 0.093 Area Ya 1404 0.380***
Draft*Draft P 0.229 0.135 Labor 7 0.263 0.571
Seed*Seed Pss 0.078 0.079 Region YR 0.009 0.570
Fertilizer*Fertilizer S 0.090  0.015%** Technology  yrc 0.416 0.730
Land*Labor PaL 0.185  0.062***
Land*Draft Pak 0.143  0.079**
Land* Seed Pas 0.023  0.056
Land* Fertilizer Par 0.003 0.021
Labor*Draft Pk -0.028  0.069
Labor* Seed Pir -0.196  0.069***
Labor* Fertilizer Prs 0.005 0.021
Draft* Seed Prs -0.112  0.081
Draft* Fertilizer Pre 0.049 0.021**
Seed* Fertilizer Pse -0.057  0.023**
Land*Time Par 0.132  0.038***
Labor*Time Pir -0.017 0.047
Draft*Time PBrr -0.043  0.050
Seed *Time Bsr 0.073  0.045
Fertilizer *Time Prr -0.011 0.014
Time Pr 1.394  0.231%**
Time*Time Prr -0.573  0.091***
Draft access Pop 0.244  0.057***
Rainfall region Lr 0.001 0.040
Technology Brr 0.394  0.048***
A 1916 0.735
Sigma u 1.232  0.337
v 0413
ou 1.517
Likelihood ratio -1549.7
Observations 1410
Households 470

Stars indicate statistical significance: * for the 10 % significance level, ** for the 5 % significance level, and ***for the 1 %
significance level.



Technical efficiency predictions are derived from this model. In the inefficiency
model, a positive sign indicates that the variable increases inefficiency. In general,
demographic factors (gender, education, labor availability) have no effect on
inefficiency. Inefficiency is also not affected by the type of technology that farmers
use (no statistical significance in technology coefficient). Households with high asset
levels are likely to be more efficient. This is expected since higher asset values imply
greater availability of farming implements-which translates to more timely and
effective farming operations. Farmer efficiency is generally increasing (at a
decreasing rate) over time. Farmers operating on relatively large tracts of land are
likely to be less efficient. This seems plausible in the context of a production
environment characterised by limited inputs-hence increasing land while holding
other direct factors (draft and labor) constant will lead to inefficiency in production.

Technical efficiency scores are reported in table 10. Average efficiency levels in both
high and low rainfall areas are not statistically different between CA and
conventional farming. (70% and 68% in CA, 68% in conventional, in high and low
rainfall areas respectively. Just fewer than 25% of household have average efficiency
scores below 60%. The majority of households (62% under both technologies) have
average efficiency scores of in the range 61-80%. In CA about 16.5% of households
achieve technical efficiency levels greater than 80% while 14% of households achieve
the same range in conventional farming.

Table 10. Distribution of efficiency scores (percentage of households)

Technology Year <0.40 0.41-0.60 0.61-0.80 >0.80 TE N
CA 2008 1.89 21.13 60.00 16.98 0.681 265
2009 0.69 19.59 64.60 15.12 0.684 291
2010 1.00 22.50 59.00 17.50 0.687 200
2008-10 1.19 21.07 61.20 16.53 0.684 252
Conventional 2008 1.29 24.52 63.87 10.32 0.664 155
2009 0.76 19.70 65.53 14.02 0.684 264
2010 218 21.40 58.08 18.34 0.677 229
2008-10 1.41 21.87 62.49 14.23 0.677 216

Figure 2a and 2b shows efficiency levels for the alternative technologies in high and
low rainfall areas. Technical efficiency tends to vary more in high rainfall areas
compared to low rainfall- areas under both technologies.
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Section VII. Policy insights

Interesting policy insights can be drawn from these results. First, it is clear that CA
results in significant yield gains and significant contributions to food production
although it is implemented on small pieces of land. CA is land saving, and this is an
important issue for land constrained farmers because they can still have viable food
production with limited land. On the other hand, high labor demands in CA present
some problems in adoption. NGOs promoting CA commonly target vulnerable
farmers such as women famers, the elderly and households affected by HIV/AIDS.
NGO targeting of vulnerable households may impact negatively on labor availability
for CA practices. There is a need to include better resourced farmers as technology
innovators.

CA requires higher quantities of seed and fertilizer. These inputs are not readily
available to most small holder farmers hence adoption may be stalled by that fact.
However, there are opportunities to counter this problem if CA farmers can achieve
a marketed surplus, which can generate money to buy the seed and fertilizer. It is
therefore important for functional output markets to be in place to complement
technology adoption.

Section VIII. Conclusion

CA technology is implemented in relatively smaller plots than conventional farming.
However, there is evidence of significant contribution of CA technology to total
maize production amongst households. Our results show that productivity is greater
in CA for all inputs except draft. Estimated output elasticities show that positive
responses for labor and seed in CA, and negative responses in conventional farming.
On the other hand, there are negative responses to land and draft in CA. Fertilizer
has a greater positive response in CA than in conventional farming. Overall returns
to scale are similar for CA and conventional farming. There is also evidence of
technical progress in CA for the three year panel period. Technical progress has been
land-saving but seed and fertilizer-using in CA, while land-using and seed-saving in
conventional farming. Joint frontier estimates indicate greater productivity gains in
CA (39% more than conventional farming-ceteris paribus). Technical efficiency levels
are generally the same for both technologies. The majority of farmers achieve
efficiency scores in the 60-80% range under both technologies.
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Some limitations to this study include the short panel period, which limits observing
long term trends, as well as the unavailability of price information to do a more
complete economic analysis. It would also be interesting to look at adoption
intensity, in terms of what components of CA are being practiced more and the
relationship to efficiency and productivity gains.
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