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ABSTRACT 

Differences in resource endowment between regions influence the technologies applied in 
agriculture and cause location-specific effects on production and technical change. Access to 
technologies may also differ within regions because producers may apply different 
technologies in production due to different characteristics. Within this setting, we extend the 
existing literature by considering that producers face region- and farm-specific production 
frontiers. The treatment of essentially heterogeneous technical efficiency (TE) is performed 
following a two-step procedure. First, a random coefficient specification of the production 
technology is used to measure the interactions of technology adoption with time, input factors 
and output. Second, linear programming techniques are employed to envelop the optimal level 
of technology. This procedure is applied to household-level data from eastern, central and 
western provinces in China. Our results provide evidence that technical efficiency is 
significantly affected by farm heterogeneity. This factor influences TE directly as a producer-
specific input, and indirectly through interaction with observable inputs such as land, labor, 
capital and intermediate inputs. Our results also prove the assumption that farming technology 
exhibits region-specific characteristics. Furthermore, there is a disparity of TE across 
provinces that narrows over the study period and is driven by the shifts of production to the 
metafrontier. 

  

JEL classification: D24, N55, O13 

Keywords: technical efficiency, metafrontier, random coefficient model, Chinese agriculture 

 

1 INTRODUCTION 

An increased level of efficiency that better employs scarce resources in agricultural 
production is an important indicator of a nation’s transition process from an agricultural-
based, labor-intensive economy to one increasingly based on industries and services. China’s 
agriculture is unique in that it is characterized by an extremely egalitarian distribution of 
cultivated land, which means that there are more than 200 million rural households, each of 
which cultivate less than 0.55 hectares (NSBC 2005). There is little reason to believe that 
China could expand the average household’s holding of land (through the rapidly-growing 
land rental markets) (Kung 2002), and even if it did, the literature suggests that there are small 
positive economies of scale in Asian agriculture (Trueblood and Coggins 2003). In addition, 
the country’s extension system for expanding new technology in production has collapsed 
(Hu et al 2009). Concerned with national food security, China’s political agenda has always 
placed a high priority on finding methods to motivate small farmers to improve their efficient 
use of input resources, and thus contribute to the rise of productivity.  

Technical procedures using stochastic frontier (SFA) or data envelopment analysis (DEA) are 
generally familiar to studies that evaluate the contribution of technical efficiency (TE) change 
to total factor productivity (TFP) (e.g. Bonds and Hughes 2007). Regarding the application of 
SFA in China, several studies conclude that although TE has improved greatly since 
institutional reforms have been introduced, regional TFP growth differs largely due to 
regional variations of TE in both magnitude and direction (Fan 1991; Wu 1995; Kalirajan et al 
1996). These conclusions have also been verified by applying the DEA approach (Mao and 
Koo 1997). However, all of these studies rely on provincial quantile production data, which 
restricts the analysis to the provincial or regional level and hides the variation of TE and 
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technology within provinces. Thus, policy implications based on provincial- or regional-level 
studies may not necessarily be appropriate at lower administrative levels (Pender et al 1999). 
Using household-level data, Brümmer et al (2002) found that the difference in productivity 
prior to and after the 1990s resulted from differences in TE in the two periods, which was 
brought about by land policy and the frequent adjustment of market policies. Because this 
study is limited to households in the Zhejiang province, it is difficult to generalize its findings 
to households across different economic, social and geographic locations. 

Parallel theoretical and methodological developments on efficiency analysis concentrate on 
the identification of determinants of inefficiency such as location-specific factors of 
production and the behaviour of producers. Using household-level data, Wang et al (1996) 
and Liu and Zhuang (2000) found that under the constraint of market distortions, TE could 
mainly be explained by farm-specific effects. Based on crop-specific production functions, 
Huang and Kalirajan (1997) and Tian and Wan (2000) presented evidence that TE is 
responsive to crop varieties and planting systems, which are under the influence of 
technological improvement. Zhang et al (2011) concluded that technical efficiency and its 
variation across provinces are influenced by local land reallocation policies and institutional 
settings. The basic assumption of the abovementioned studies is that all producers operate 
under a given technology, and thus face the same production efficiency frontier. 

Differences in resource endowment among regions influence the adoption of technology and 
the variation of TE. This idea has been inlayed into a meta-frontier function to allow 
measuring TE for each group of producers under group-specific production frontiers (Hayami 
1969; Hayami and Ruttan 1970, 1971; Battese and Rao 2002; Stewart et al 2009). This has 
inspired a number of studies on agricultural production across regions within a country as 
well as across countries (Battese et al 2004; Bravo-Ureta et al 2007; Chen and Song 2008). 
However, it is observed that distinct producers even within a local region may have access to 
different technologies due to different farm and household characteristics. Metafrontier 
analysis generally aggregates the producer-specific technologies into several composite 
measures, and fails to capture the impact of heterogeneous technologies available to each 
producer in a certain region. To account for farm-specific factors, random parameter models 
(RPM) can be used. This class of models was introduced by Tsionas (2002) and extended by 
Alvarez et al (2003, 2004). In these models, heterogeneity is captured by an unobservable 
variable that is simulated by suitable estimation procedures.  

The goal of our paper is to extend the existing literature in two dimensions. First, we use a 
random coefficient model to analyze the magnitude and direction of TE change under farm 
heterogeneity and region-specific frontiers. This approach also allows us to assess whether 
regional variation of output is due to farm inefficiencies or is caused by the various sources of 
input heterogeneity such as capital vintages, land quality and human capital, etc. Second, we 
rely on a metafrontier approach to investigate the significance of regional sources of technical 
efficiency.  

The rest of this paper is organized as follows. Section 2 specifies the random parameter model 
and the metafrontier function. Section 3 presents the data source and descriptive statistics of 
variables used in the estimations. Empirical results are presented and discussed in Section 4. 
The fifth section concludes the paper with a summary and a discussion of policy implications. 

2 THEORETICAL BACKGROUND  

The theoretical framework is developed within a panel data methodology, with i = 1,…,N 
farms and t = 1,..,T observations per farm. The first step concerns the estimation of region-
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specific production functions. We model production in an input augmentation framework, i.e., 
we define effective inputs (xe) as:  

ixixt ee t
itit

e  μτxx . (1) 

Here, xit is a vector1 of observable inputs and t accounts for technology change (TC). The 
symbols t and i represent parameter vectors, while i represents a non-observable farm-
specific factor. It can be expected that this input is a surrogate for several determinants of 
farm production usually not observable, like input quality, farm structure and organization, as 
well as socioeconomic characteristics of the farm households. The unobservable component is 
used in an attempt to measure the level and the complex interaction of these determinants.  

In this general representation, the unobservable input can have two specifications. First, 
i = mi

* indicate that farms operate at the optimal level of the specific factor. Second, 
however, farmers may not fully exploit the productive capabilities of the unobserved factor, in 
this case i  = mi < mi

*. Under this assumption, the difference mi - mi
* can be regarded as a 

generic component of technical efficiency (please see equation 6 below).  

The maximum level of production (y*) is given when i = mi
*:  

 ** ; i
e
itit mfy x  . (2) 

Actual production is:  

 i
e
itit mfy ;x , or  

  iti
e
itit TEmfy *; *x , with 

 
 *;

;

i
e
it

i
e
it

it mf

mf
TE

x

x
  . (3) 

In the empirical application we assume a translog production function: 

  e
it

e
it

e
itit

e
I
i

mf xAxxαx xxx ln'ln2
1ln';ln 0

*    . (4) 

Rearranging terms provides: 

   
  itititimt

itmtttimmimiit
e

mt

tmtmmmf

xAxxααα

x

xxxxx ln'ln2
1ln'

2
1

2
1;ln

*

*2**
0

*



 
. (5) 

A similar relationship holds for i = m. The various parameters associated with t and mi are 
functions of xxx ,  as well as ,tx and ix . Given this specification of the production 
function, TE is given by: 

                                                 
1 In this paper vectors and matrices are represented by bold small and capital letters, respectively. 
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 
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iim

iitmt
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



xx

x

αγ

xγ



 22
00 2

1with

.  (6) 

According to (6), TE consists of four components. The first represents a time-invariant firm-
specific effect, whereas the other terms reflect the interaction of m* and m with time and 
inputs. An interesting term in the expression is t, since it provides information about the 
change of inefficiency over time, and thus, reveals whether there are catching up or falling 
behind processes. 

Equations (3) and (6) constitute a system that cannot be estimated directly, since neither m nor 
m* are known. However, the estimation can be conducted when the system is transformed 
into a standard frontier model:  

  itit
*
i

e
itit vum;fyln  x  (7) 

where uit is defined by (6) and  *
i

e
it m;f x  is given by (5).  

Equation (7) can be estimated using maximum simulated likelihood (Greene 2005) by making 
the conventional assumption regarding vit and uit. Thus, vit represents a random error term 
with  vit Nv ,0~ , and uit is the technical inefficiency with  uit Nu ,0~  . Moreover,  

is assumed to obey a standard normal distribution, e.g. 

*
im

 10,N~m*
i . When estimating the 

RPM, the parameters associated with  are identified up to their sign. Moreover, given the 
distributional assumption about m* they must be regarded as input-specific standard 
deviations (Greene 2005). Thus, the impact of  on production is not uniquely identified.

*
im

*
im 2 

Alvarez et al (2003, 2004) extended the standard approach by assuming that production reacts 
positively to an increase of the unobservable component, e. g.:  

 
0




*
i

*
i

e
it

m

m;f x
. (8) 

This restriction identifies the signs of the corresponding parameters; in addition, farm-specific 
values of unobserved heterogeneity can be estimated by (Alvarez et al 2004): 

 
 

 






R

r
iri

k
i

R

r
iri

k
iri

ii

mtf
R

mtfm
R

mE

1

*
,

1

*
,

*
,

*

ˆ,,,|1

ˆ,,,|1

,|ˆ
δXy

δXy
δX





 (9) 

where  is a draw from the population of , R is the number of the draw, and *
r,im *

im f


denotes 
the portion of the likelihood function for firm i, evaluated at the parameter estimates and the 
current value of . The vector δ  represents a vector of estimated parameters. The capital *

r,im ˆ

                                                 
2 The reason is that m* and the associated parameters enter the model multiplicatively.  
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letter in case of inputs indicates that the likelihood function is evaluated for all observations of 
firm i. 

Given the estimated level of mi, efficiency scores can be computed by (Jondrow et al 1982; 
Alvarez et al 2004): 

 
 
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
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

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
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
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
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*
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2
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|

|

1
,|ln iit

iiit

iit

iititij

m

m

m

muETE  (10) 

with 
v

u 
  ,  and 222

vu   ititit uv  .3 

The second step involves estimating the metafrontier function. By definition, the metafrontier 
function cannot fall below the deterministic portion of the group-specific stochastic frontier 
models. Moreover, it must be ensured that the estimated metafrontier best envelops the 
deterministic components for different groups. Battese et al (2004) proposed a method called 
the minimum sum of absolute deviations to identify the envelope. Following this approach, 
the metafrontier function is estimated by solving the following LP problem: 

*
Min


     
  


I

i

T

t
it

I

i

T

t
kkiitit fmff

1 1

*

1 1

*
,

* ;lnˆ,;ln;ln δxδxδx   (11) 

subject to    k
*

k,iit
*

it
ˆ,m;fln;fln δxδx   

where ln f is the logarithm form of the production function in (2),  is a vector of parameter 
estimates obtained from the stochastic group-specific frontier, and contains the parameters 
of the metafrontier function to be estimated.  

kδ̂
*δ

Once the values of  are estimated, the technology gap ratio (TGR) can be estimated. TGR 
for the i-th producer in the k-th group at the t-th time period can be obtained by: 

*δ

 
 *

it

k
*

k,iitk
it ;f

,m;f
)Y,X(TGR

δx

δx
  (12) 

Then, a measure of the total output-oriented technical efficiency  is obtained by:)Y,X(TEo
it

4  
k
it

k
it

o
it TE*TGR)Y,X(TE   (13) 

Figure 1 assists in providing an intuitive interpretation of our procedure. We basically 
distinguish three levels of production: farm, regional, and national. The farm-specific 
technologies are considered by m*, the indicator of farm heterogeneity. Both the farm level 
and the regional level are estimated by equation (7). The next step consists of determining the 

                                                 
3 The model can be estimated using Limdep 9.0 or NLogit 4.0. The routine also provides the values of the 
unobserved components and efficiency. 
4 Here denotes group-specific (k) technical efficiency provided by the first step for individual producers (i) 
and time (t). 

k
itTE
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metafrontier function as an envelope of regional production functions. This is done by using 
equation (11). 

Figure 1: Illustration of Meta-frontier, regional and individual frontier functions 

metafrontier function 
regional production functions 
farm production function

y 

x 

 

3 DATA SOURCES and DESCRIPTIVE STATISTICS  

The database used in this study was drawn from a fixed-point survey across Zhejiang, Hubei, 
and Yunnan provinces that is conducted annually by the Chinese Ministry of Agriculture. 
These three provinces were chosen to reflect the diversity of Chinese agricultural production. 
Zhejiang province is one of the richest provinces in the East, Hubei province represents the 
central middle-income region, and Yunnan province belongs to West China and is one of the 
poorest regions in the country.5 The sample collection proceeded in a stratified manner. 
Initially, every county was stratified by annual net income per capita into upper, middle, and 
lower groups. Representative villages in each group were chosen according to geography 
(plain, hilly, or mountainous area), location (city, suburb, or rural), and economic 
characteristics defined as mainly agriculture, forestry, animal husbandry, fishery or others. 
Household data from the respective villages were then randomly selected. To maintain 
longitudinal household information, the same households were interviewed each time the 
survey was conducted. If the household was dropped from the survey and was not recorded on 
the household list in the village, a new sample household was recruited from the same village 
with another ID and remained in the survey for the following years.6 These characteristics 
allowed us to establish a balanced panel data from 1995 to 2002, in which 133 households 
were attained from Zhejiang, 160 households from Hubei and 215 households from Yunnan. 
The household data contained detailed information on agricultural production operations. 

Table 1. Descriptive statistics of variables by provinces, 1995-2002 

Variable Symbol Unit No. of 
Observation Mean Standard 

Deviation Minimum Maximum 

Zhejiang  

                                                 
5 Per capita gross regional product in Zhejiang, Hubei and Yunnan in 2004 amounts to 23,942 RMB, 10,500 
RMB and 6,733 RMB, respectively (NSBC, 2006). 
6 Households dropped from the survey due to the emigration of the whole family from the village to the urban 
area or other towns or villages, or the family members died after several years of being in the survey.  
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Output Y Yuan 1064 15592.1 28431.6 110.2 231667.0
Labor A Day 1064 294.4 237.9 2.0 3600.0
Land L Mu 1064 4.7 2.6 0.1 22.0
Capital K Yuan 1064 2697.8 7728.0 30.0 85300.0
Intermediate V Yuan 1064 10230.4 25063.9 14.0 229611.0

Hubei  
Output Y Yuan 1280 5370.9 3393.3 253.0 41163.9
Labor A Day 1280 382.1 149.9 17.0 1106.0
Land L Mu 1280 13.7 273.5 0.6 9793.0
Capital K Yuan 1280 626.3 663.6 14.0 9700.0
Intermediate V Yuan 1280 1841.4 2046.2 4.0 36956.0

Yunnan  
Output Y Yuan 1720 6506.1 3201.0 154.7 43090.0
Labor A Day 1720 610.8 260.3 20.0 1816.0
Land L Mu 1720 6.2 3.3 0.7 29.7
Capital K Yuan 1720 1184.9 985.4 14.0 9800.0
Intermediate V Yuan 1720 3558.4 2061.0 150.0 28387.0

All  
Output Y Yuan 4064 8527.3 15407.4 110.2 231667.0
Labor A Day 4064 455.9 263.1 2.0 3600.0
Land L Mu 4064 8.2 153.5 0.1 9793.0
Capital K Yuan 4064 1405.1 4101.7 14.0 85300.0
Intermediate V Yuan 4064 4764.4 13364.2 4.0 229611.0
        Source: Fixed-point household level data, Ministry of Agriculture (MOA), China. 

The dependent variable used in the frontier production functions is the value of output, which 
aggregates the value of physical products from crops, livestock and other agricultural 
products. Labor input is defined as total annual working days allocated to agricultural 
production, forestry, animal husbandry and fishery activities. Land input includes cultivated 
land, husbandry land and woodland. Capital is taken as the monetary value of farm machines. 
Intermediate inputs sum up expenditure on chemical fertilizer, pesticides, plastic film and 
other expenditures involved in production. All value variables in the unit of RMB are 
normalized at constant 1995 prices.  

Descriptive statistics of the variables presented in Table 1 reveal significant variations of 
output and inputs across provinces. Rural households in Zhejiang, on average, earn more 
agricultural income using less land and labor, but more capital and intermediate inputs 
compared to households in Hubei and Yunnan. This might be caused by different resource 
endowment and farm structures across provinces, indicating that technology adopted by rural 
households is to a large extent region-specific. This suggests that metafrontier does exist in 
China’s agricultural production. Thus, previous studies that do not account for region-specific 
technology are perhaps inadequate for modeling Chinese agricultural production. 
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4 EMPIRICAL RESULTS 

The data described in the previous section were used to estimate the stochastic province-
specific and pooled production functions shown in equation (7). The stochastic province-
specific production functions are estimated using the household data separately for each 
province, whereas in the pooled estimation, the data from all provinces are considered. The 
variables used in the model estimation were normalized by their respective geometric means 
to avoid numerical difficulties in the maximum likelihood estimations, and to facilitate the 
interpretation of the parameter estimates.7 The estimated coefficients for each model are 
presented in Table 2.  

Standard variations of composite error terms (  v + u) are approximately 0.20 in Hubei, 
0.28 in Yunnan and 0.35 in Zhejiang, implying that a large part of output variation is 
explained by the model. However, not only the size but also the structures of the two error 
terms vary among the provinces. The importance of inefficiency compared to the random 
effects on output variability is expressed in term  which is equal to the relation of the u and 
v. Thus, values larger than 1 imply that inefficiency is more pronounced than random 
influences. This holds for Zhejiang and Hubei, while in Yunnan both sources have 
approximately the same value.  

Further differences among the provinces exist with respect to the impact of TC. While 
agriculture in Zhejiang and Yunnan benefited from technical progress, production in Hubei is 
characterized by accelerated technological progress (at and att < 0). On average, Yunnan 
benefited more from TC than Zhejiang. However, in the latter we observed an accelerating 
growth of production possibility while the growth rate in Yunnan was decreasing. In all 
provinces technical change was capital saving (kt < 0), and intermediate inputs and labor 
using (at > 0, vt >0). Land saving TC was estimated for Yunnan and Hubei, while in 
Zhejiang it was land using. 

The estimates of #, with # = A, L, K, V are the production elasticities at the sample mean. 
Our results indicate that there is no joint pattern of average elasticities of physical inputs 
among regions. The two most important factors are labor and intermediate inputs, the latter of 
which accounted for approximately 40% of production. The production elasticities of labor 
are approximately 0.4 in Zhejiang and Hubei, but in Yunnan it is significantly smaller at 
approximately 0.15. This structure of the elasticities is consistent with the level of regional 
development. Since Yunnan is less developed than the other regions, it can be expected that 
the opportunity costs of labor are relatively low in this region, which implies that farms 
allocate comparatively more labor to agricultural production than farms in other regions. The 
lowest production elasticity is observed for capital, with values at about 0.02. This holds for 
all regions. However, contrary to labor this is not an indicator that capital is abundant, but 
rather scarce. Since an elasticity is the ratio of marginal and average product, a small elasticity 
can also be attributed to a high average factor productivity. This will be the case when the 
factor is scarce, for example capital in Chinese agriculture. The production elasticity of land 
also differs significantly across regions and ranged from about 0.18 in Hubei to 0.08 in 
Zhejiang and .1 in Yunnan. The sum of the individual production elasticities provides the 
elasticity of scale. This indicator ranges from about 0.9 in Zhejiang and Hubei to about 0.75 

                                                 
7 Due to this procedure, the parameter estimates for x cannot be directly interpreted as average production 
elasticities in the group-specific estimations. However, the difference between the estimates and the average 
production elasticity was rather low. Thus, in order to facilitate comparison between the group-specific and the 
pooled models, is it appropriate to regard the parameter estimates as fair approximations for the production 
elasticities.  
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in Yunnan. This result is also consistent with labor-intensive and capital-extensive 
production, since economies of scale usually can only be exploited through the adoption and 
intensive use of new machinery.  

 

Table 2. Parameter estimates for the random coefficient model across provinces and 
Metafrontier function, 1995-2002 
 Random coefficient model 
 Zhejiang  Hubei Yunnan All 

Metafrontier 

0  0.4492 (0.0290) 0.1397 (0.0149) 0.0802 (0.0173) 0.2912 (0.0101) 0.7421 

Impact of technical change  

T  0.0092 (0.0085) -0.0094 (0.0035) 0.0222 (0.0034) 0.0011 (0.0021) -0.0161 

TT  0.0033 (0.0054) -0.0019 (0.0025) -0.0096 (0.0027) -0.0038 (0.0020) 0.0122 

AT  0.0128 (0.0092) 0.0196 (0.0066) 0.0031 (0.0072) 0.0186 (0.0030) 0.0220 

LT  0.0161 (0.0118) -0.0125 (0.0062) -0.0008 (0.0056) 0.0018 (0.0041) 0.0259 

KT  -0.0138 (0.0042) -0.0035 (0.0024) -0.0044 (0.0025) -0.0114 (0.0017) -0.0710 

VT  0.0065 (0.0075) 0.00003 (0.0041) 0.0070 (0.0043) 0.0028 (0.00280 0.0176 

Mean of the random process (average production elasticities)  

A  0.4166 (0.0329) 0.3778 (0.0206) 0.1576 (0.0185) 0.1768 (0.0082) 0.1838 

L  0.0834 (0.0289) 0.1849 (0.0184) 0.1000 (0.0162) 0.0847 (0.0070) 0.1030 

K  0.0493 (0.0115) 0.0272 (0.0084) 0.0400 (0.0098) 0.0344 (0.0035) 0.0217 

V  0.4120 (0.0200) 0.3802 (0.0129) 0.4362 (0.0137) 0.4666 (0.0052) 0.3742 

Coefficients of unobservable factor  

M0  0.1826 (0.0152) 0.0784 (0.0067) 0.2269 (0.0087) 0.0680 (0.0044) 

TM  -0.0081 (0.0050) -0.0088 (0.0024) 0.0165 (0.0028) 0.0059 (0.0021) 

AM  0.0782 (0.0174) -0.0937 (0.0135) -0.0805 (0.0155) 0.0007 (0.0071) 

LM  -0.0478 (0.0219) 0.0376 (0.0110) 0.1278 (0.0129) 0.0115 (0.0083) 

KM  0.0725 (0.0089) -0.0213 (0.0061) 0.0120 (0.0070) -0.0612 (0.0040) 

VM  -0.1812 (0.0119) -0.0579 (0.0079) 0.1259 (0.0107) 0.1599 (0.0060) 

MM  0.1594 (0.0181) 0.0604 (0.0079) -0.2525 (0.0110) -0.4132 (0.0084) 

(Next) 
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Table 2. continued 
 Random coefficient model 
 Zhejiang  Hubei Yunnan All 

Metafrontier 

Pure second order effects  

AA  0.0969 (0.0399) 0.1508 (0.0349) 0.0683 (0.0394) 0.0015 (0.0134) -0.0352 

LL  -0.0176 (0.0354) -0.0644 (0.0156) 0.3560 (0.0373) 0.0028 (0.0083) 0.1718 

KK  
0.0497 (0.0078) -0.0028 (0.0085) 

-
0.0215 (0.0105) 0.0583 (0.0034) 0.2861 

VV  0.1695 (0.0149) 0.1072 (0.0137) 0.2059 (0.0213) 0.1326 (0.0061) 0.2394 

AL  
0.0317 (0.0256) -0.0990 (0.0334) 

-
0.1453 (0.0345) 0.0187 (0.0105) -0.1233 

AK  
0.0569 (0.0117) 0.0204 (0.0131) 

-
0.0599 (0.0162) 0.0385 (0.0045) -0.0152 

AV  
-0.1070 (0.0227) -0.0646 (0.0179) 

-
0.0157 (0.0274) -0.0696 (0.0075) -0.0192 

LK  
-0.0385 (0.0169) -0.0061 (0.0135) 

-
0.0252 (0.0148) -0.0682 (0.0068) 0.0996 

LV  
0.0322 (0.0165) 0.0565 (0.0200) 

-
0.0444 (0.0232) 0.0269 (0.0072) -0.0867 

KV  -0.0365 (0.0080) -0.0033 (0.0094) 0.0368 (0.0127) -0.0165 (0.0039) -0.0910 

Efficiency distribution   

v  0.2510  0.1289  0.2007  0.1838   

u  0.3843  0.2277  0.2060  0.2535   

  0.4590 (0.0133) 0.4590 (0.0133) 0.2876 (0.0062) 0.3131 (0.0029)  

  1.5309 (0.1470) 1.5309 (0.1470) 1.0264 (0.0929) 0.7250 (0.0401)  

LogL -452.4872  204.4948  -197.851 -1075.278  

Ob. 1064  1280  1720  4064   

Source: Own estimates. 
Notes: Figures in parentheses are standard deviation. 
Corresponding to restriction (8), production is increasing with m* in all provinces. Moreover, 
the vast majority of the coefficients are highly significant. This indicates that agricultural 
production is strongly affected by determinants that are not contained in the household data. 
Possible candidates include soil quality and also socioeconomic characteristics such as 
household size, off-farm labor supply or hired labor input. The combined effects of the 
unobserved components are rather complex and lead to different impacts on the production 
elasticities. Thus, the structure of the parameter estimates for #M, with # = A, L, K, V are 
quite heterogeneous across regions. However, it is interesting to note that more favorite 
unobserved components do not necessarily lead to a better exploitation of technical progress 
and production possibilities. This is only the case in Yunnan (TM > 0), while in the other two 
regions the opposite effect dominates. This might indicate that technical progress within the 
latter regions is driven by catching up processors of farms lacking behind, an interpretation 
that is supported by the low impact of technical change in Hubei and Zhejiang.  
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Based on the results in Table 2, a likelihood ratio (LR) test was conducted for the null 
hypothesis that the province-specific frontiers are identical. The test statistics rejected the null 
hypothesis with a p-value less than 0.001, implying that the province-specific frontiers are not 
the same. Moreover, conclusions regarding the efficiency of agricultural production would 
also be biased if all observation were evaluated with regard to the wrong reference 
technology. Therefore, the metafrontier function presented in equation (11) must be 
estimated. The production elasticities of the metafrontier function are given in the last column 
of Table 2. The structures of the elasticities are basically the same as those at the regional 
level, though smaller in size. This is consistent with the presumption that the metafrontier 
function is the envelope of the regional production functions. Moreover, the production 
elasticities provided by the metafrontier function vary from the estimates of a pooled 
estimation (Table 2, Column 7). This holds especially for intermediate inputs whose 
importance is overestimated by the pooled estimation. 

Table 3 presents average TE scores relative to the stochastic region-specific frontier and 
metafrontier technologies, as well as TGR scores for each province and all the samples by 
year. TE scores relative to the region-specific technology average 0.84 both in Hubei and 
Yunnan, and 0.75 in Zhejiang. The differences between average TE scores indicate that farms 
in Zhejiang are considerably more heterogeneous with respect to exploiting the regional 
production possibilities than are farms in the other regions. This conclusion is supported by 
the higher standard variations in TE relative to the region-specific technology, which are 
relatively small in Hubei and Yunnan but large in Zhejiang, especially during the late 1990s. 
This suggests that though the farming management in China is simple due to the constraint of 
inputs endowment, it is comparatively more flexible on farming management practice in 
Zhejiang than in Yunnan and Hubei.  

The high variation of TE in Zhejiang implies the existence of more technologically advanced 
farms in that region, which in turn are likely to define the interregional production frontier. 
This conjecture is confirmed by the results of the metafrontier analysis. Table 4 indicates that 
the TGR of region-specific technology to the metafrontier technology is relatively small in 
Zhejiang. This reflects the fact that farm households in comparatively rich provinces like 
Zhejiang adopt more advanced technology for managing farms. Moreover, it has been shown 
that in Zhejiang, households are more likely to use capital and other intermediate inputs such 
as fertilizer and pesticide, rather than traditional labor-intensive technology (see Tables 1 and 
2).  

Turning to oTE , we found that the relative inefficiency of production is driven by TGR 
(Equation 10), e.g. the inefficiencies among regions are more pronounced than those within 
the regions. Average TE scores imply that all of the households in this study were, on 
average, producing 82% of the outputs that could be potentially produced from the given 
inputs by using a region-specific technology as a reference; however, only half of them used 
the metafrontier technology as a reference. TGR is at about 50%, indicating that production 
could be doubled if farms were able to access the technology given by the interregional 
frontier. Moreover, looking at the interregional difference of oTE , the results indicate that 
Yunnan is in the process of catching up with Zhejiang, e.g. adopting the best regional 
production technology. In sum, the developments of oTE and TGR indicate that Chinese 
agricultural TFP growth can be further promoted through technology and knowledge transfer 
which will find their expression in the improvement of oTE . 
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Table 3. Technical efficiency and technology gap ratio estimates, 1995-2002 

 1995 1996 1997 1998 1999 2000 2001 2002 95-02 
Zhejiang  

TE 0.7509 0.7667 0.7945 0.7197 0.7437 0.7655 0.7640 0.7532 0.7573

 (0.0888) (0.0751) (0.0785) (0.1335) (0.0905) (0.1072) (0.1089) (0.1098) (0.1024)

TGR 0.5776 0.5797 0.6036 0.4943 0.5802 0.5680 0.5978 0.6099 0.5764

 (0.1779) (0.1624) (0.1951) (0.1910) (0.1661) (0.1920) (0.2028) (0.2070) (0.1898)

TEo 0.4361 0.4418 0.4827 0.3631 0.4330 0.4338 0.4580 0.4564 0.4381
 (0.1521) (0.1265) (0.1730) (0.1673) (0.1356) (0.1570) (0.1699) (0.1598) (0.1587)

Hubei  

TE 0.8505 0.8175 0.8513 0.8497 0.8474 0.8576 0.8322 0.8463 0.8441

 (0.0819) (0.0934) (0.0647) (0.0653) (0.0666) (0.0682) (0.0926) (0.0725) (0.0772)

TGR 0.4758 0.4906 0.4854 0.4684 0.4764 0.4619 0.4550 0.4173 0.4664

 (0.1369) (0.1318) (0.1300) (0.1308) (0.1192) (0.1218) (0.1298) (0.1450) (0.1323)

TEo 0.4065 0.4019 0.4157 0.3986 0.4029 0.3968 0.3797 0.3547 0.3946

 (0.1263) (0.1193) (0.1203) (0.1151) (0.1049) (0.1119) (0.1185) (0.1285) (0.1193)

Yunnan  

TE 0.8360 0.8376 0.8534 0.8396 0.8343 0.8442 0.8475 0.8413 0.8417

 (0.0783) (0.0528) (0.0451) (0.0542) (0.0564) (0.0514) (0.0465) (0.0578) (0.0563)

TGR 0.3359 0.3743 0.4301 0.4458 0.4583 0.4668 0.4540 0.4525 0.4272

 (0.0888) (0.0881) (0.1192) (0.1261) (0.1275) (0.1308) (0.1467) (0.1649) (0.1336)

TEo 0.2818 0.3140 0.3674 0.3747 0.3824 0.3945 0.3837 0.3817 0.3600

 (0.0817) (0.0790) (0.1052) (0.1107) (0.1104) (0.1148) (0.1233) (0.1458) (0.1167)

All  

TE 0.8183 0.8127 0.8373 0.8114 0.8147 0.8278 0.8208 0.8198 0.8204

 (0.0916) (0.0788) (0.0665) (0.1011) (0.0818) (0.0835) (0.0888) (0.0882) (0.0859)

TGR 0.4432 0.4647 0.4929 0.4656 0.4959 0.4918 0.4920 0.4826 0.4786

 (0.1655) (0.1508) (0.1616) (0.1482) (0.1452) (0.1534) (0.1704) (0.1877) (0.1617)

TEo 0.3615 0.3752 0.4128 0.3792 0.4021 0.4055 0.4019 0.3928 0.3914

 (0.1365) (0.1193) (0.1384) (0.1296) (0.1174) (0.1272) (0.1395) (0.1496) (0.1335)
Source: Own estimates. 
Notes: Figures in parentheses are standard deviation. 
 

5 CONCLUSION 

In this study we extend the existing literature by evaluating the impact of farm heterogeneity 
when the producers in regions may access farm-specific and time-varying technology. 
Furthermore, producers in different regions face region-specific production frontiers. The 
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consideration of essentially heterogeneous technical efficiency is first estimated in a two-step 
procedure, a random parameter model followed by a metafrontier production function. 
Utilizing household-level data from three provinces in China, the applied approach provides 
new insights into efficiency analysis in general, and efficiency problems faced by Chinese 
farms in particular. The empirical results presented here highlight three important 
implications which require special attention when used for evaluating efficiencies. 

First, the results from random parameter models provide evidence that technical efficiency is, 
in addition to the four main physical inputs (labor, land, capital and intermediate inputs), 
significantly influenced by unobserved farm-specific variables. These variables influence 
production and TE directly as a producer-specific input, and indirectly through interaction 
with other observable inputs. Since the impact of the unobservable component is significant, 
omitting household heterogeneity would result in a biased parameter and thus efficiency 
estimates. This implies that previous studies that do not account for the unobservable 
component factors might be inadequate for evaluating TE of China’s agricultural production. 

Second, farming technology was found to exhibit a region-specific feature. Over time, the 
nature of technology changes, as indicated by the sign of the time variable being identified as 
positive in Yunnan and Zhejiang, but negative in Hubei. The regional differences in terms of 
return to scale can be explained by the different application of physical inputs and interaction 
of managerial ability through the observable factors. The evidence is as follows: the use of 
less labor-intensive farming technology in Zhejiang and Hubei than in Yunnan; the use of 
more land-intensive farming technology in Hubei than in Zhejiang and Yunnan.  

Third, our results suggest that there is a disparity in TE across the three provinces, where the 
narrowing disparity over the study period is driven by shifts of the production to the 
metafrontier. To further fill the gap across the regions, the Chinese government has prompted 
the “Western Region Development Strategy” to increase investment and speed up the 
development of western regions. Furthermore, from 2002, the government began to subsidize 
grain producers instead of collecting agricultural taxes. Subsidies, although just beginning, are 
mostly evaluated as being decoupled (Sonntag et al 2005; Huang et al 2011). This is expected 
to motivate households to increase investment, adopt new technologies and use physical 
inputs more efficiently in production. The effects of these policies on agricultural production 
is worthy of further empirical evaluation. 
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