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Abstract 

Targeted environmental policies for farmlands may improve the cost-efficiency of conservation 

programs if one can identify those farms that produce public goods with the least cost. We derive 

shadow values of producing crop diversity for a sample of Finnish conventional and organic crop 

farms in the period 1994-2002 in order to examine their opportunity costs of conservation. Our 

results of Data Envelopment Analysis show that there is variation in the shadow values between 

farms and between the technologies adopted. The degree of cost heterogeneity and farms’ potential 

for specialization in the production of environmental outputs determine whether voluntary programs 

such as auctions for conservation payments are economically reasonable. 
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1. Introduction 

Biodiversity conservation on farmland is increasingly recognized as an important environmental 

goal in agricultural policies (see, e.g., Wossink and van Wenum, 2003). Nevertheless, the general 

public largely views agri-environmental policies as subsidy programs that compensate farmers for 

the costs of conservation measures but have yet to provide convincing evidence that they have 

resulted in a better environment (Feng 2007). One of the challenges in designing environmental 

policies is measuring the benefits of environmental improvements. An additional concern is that, 

due to asymmetric information, the regulator does not necessarily know the costs of conservation on 

farmland (Sheriff 2009). In any event, policy design in agriculture needs to be evaluated with 

respect to its environmental targets. 

 

Calls have been heard for better incentives and market-like mechanisms for conservation - such as 

auctions – that would improve the effectiveness and impact of policies designed to enhance 

biodiversity in agriculture (e.g., Pascual and Perrings, 2007). The US Department of Agriculture has 

the longest experience with auctions through its Conservation Reserve Program, into which farms 

are accepted based on an environmental benefits index (Latacz-Lohman & Van der Hamsvoort 

1997, Kirwan, Lubowski and Roberts 2005).  In contrast, the European Common Agricultural 

Policy has focused on dictating farming practices and offering fixed-rate payments rather than 

providing incentives for creating actual environmental benefits. This orientation may be changing, 

for there is growing interest in using auctions as a means to deliver payments for environmental 

services in agriculture. However, given the limited use of auctions in European agriculture, the bulk 

of the research evaluating such policy instruments is based on pilot studies or experiments and 

simulations carried out to test auction theory in alternative settings (e.g., Bastian et al. 2008, Glebe 

2008). Owing to the hypothetical approach used in experimental auctions, the bids do not 

necessarily reflect farmers’ opportunity costs of conservation. 
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We analyze agricultural production within the frame of economic theory by taking crop diversity 

into account as a positive non-market output of farms. Trade-offs in the production of market and 

non-market outputs are made explicit, since the opportunity costs of conservation measures 

ultimately determine the costs of the agri-environmental policies implemented. To gain insight into 

those costs, we apply the framework provided by Färe and Grosskopf (1998) to estimate shadow 

values for non-market environmental amenities. Variants of estimation methods within this 

framework have been used to price negative externalities in European agriculture (e.g., Huhtala and 

Marklund 2008, Piot-Lepetit and Le Moing 2007); rather less work has been carried out on pricing 

the effects of agriculture on biodiversity conservation. The analysis of biodiversity most closely 

related to ours is an application by Färe, Grosskopf and Weber (2001) which prices the non-market 

characteristics of conservation land in the United States.  

 

Our analysis uses crop diversity as a non-market output; this is measured by a farm-level value for 

the Shannon Diversity Index, which captures both the richness and evenness of the crops cultivated. 

The index is a typical landscape diversity indicator, one that can be seen as reflecting the esthetic 

value of a diverse agricultural landscape from a social point of view. On the other hand, in the 

literature on risk management in agriculture, crop diversity has been attributed a private value as an 

option whereby risk-averse farmers can hedge against uncertainty (Di Falco and Perrings 2005). On 

these grounds, the trade-off between market output (crop yield) and non-market ecological by-

products (crop diversity) can be considered relevant for farmers’ decision making.  

 

Lastly, it is important to bring out how the European agricultural policies are reflected in choices of 

farming practices and the corresponding (ecological) benefits. Compared to conventional farming, 

organic production can be seen as a more restricted – or even an alternative – technology that has 
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been promoted for environmental reasons1. We estimate distance functions and efficiency scores for 

conventional and organic crop farms, but our main interest lies in determining shadow values of 

crop diversity for each technology. These values can be interpreted as the opportunity costs of crop 

diversity in terms of forgone crop output. This information reveals whether there is heterogeneity in 

costs between types of farms and, accordingly, room for improving the cost-efficiency of policies 

that target the conservation of crop biodiversity in agriculture. 

 

The paper is organized as follows. Section 2 introduces the crop biodiversity index applied in the 

empirical study. In section 3, we present models of distance functions for the case where there are 

multiple outputs and, alternatively, where one of the outputs is held as a minimum constraint; we 

then derive shadow values for crop diversity using these alternative models. Section 4 presents how 

distance functions, efficiency scores and shadow values are estimated by applying Data 

Envelopment Analysis (DEA), and discusses the interpretation and robustness of the DEA results. 

Section 5 presents the data for the period 1994 – 2002, obtained from cross-sections of Finnish crop 

farms participating in the bookkeeping system of the Farm Accountancy Data Network (FADN). 

The results are reported in section 6. The concluding section discusses several findings on variation 

in the shadow values between farms and between the technologies adopted. 

 

2. Crop biodiversity 

In addition to yielding marketable output such as food and fiber, agricultural systems may produce 

biodiversity, a positive by-product. Crop rotation, the application of chemical inputs, and similar 

choices by the farmer may have various impacts on biodiversity. Biodiversity is a complex concept 

with several dimensions and choosing proper measures of (or indicators for) it poses a challenge. 

                                                 
1 Organic farming emphasizes environmental protection. It avoids, or substantially reduces, the use of synthetic 
fertilizers, pesticides and additives. Crop rotation, mechanical weed control and the protection of beneficial organisms 
are also important (Organic Farming in the EU: Facts and Figures, 2005). These restrictions most likely have an impact 
on the production technology and economic performance of organic farms. 
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We rely on a relatively simple measure of diversity known as the crop diversity index, which can be 

described as a measure of landscape diversity. Callicott, Crowder and Mumford (1999) classify the 

crop diversity index as a compositional measure of species diversity. 

 

Species-level diversity is quantified as the number of species in a given area (richness) and how 

evenly balanced the abundances of each species are (evenness) (Armsworth, Kendall and Davis, 

2004). This is only one of the measures that can be used in analyzing biodiversity. For example, 

community-level biodiversity describes the interactions of species in their natural habitats. The 

spatial scale is also important since richness increases with area. Typically a choice is made to use 

either an economically or an ecologically meaningful scale. We choose to study the diversity of 

agricultural land use at the farm level within the framework of production theory. 2 At the farm 

level, the number of crops cultivated and the area under each crop are available for use by 

government authorities for implementing policy based on crop diversity indices. In fact, the 

cultivation of local crops and crop diversification have been included among the voluntary 

conservation measures eligible for specific support in the Finnish agri-environmental program, but 

the measures have not gained wide popularity among farmers. (Horisontaalinen maatalouden 

kehittämisohjelma 2006) 

 

In this study, richness is measured by the number of cultivated crops, such as barley, grass silage, 

potato, or by the area lying fallow. Evenness refers to how uniformly the arable land area of a farm 

is distributed among different crops and uses. Evenness and richness can be quantified using the 

Shannon Diversity Index (SHDI) (Armsworth, Kendall and Davis, 2004), and the following 

formula: 

 

                                                 
2 For further discussion on farmland biodiversity, see e.g., Jackson, Pascual and Hodgkin (2007). 
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where J is the number of cultivated crops, Pi denotes the proportion of the area covered by a 

specific crop, and ln is the natural logarithm.3 The index in equation (1) equals zero when there is 

only one crop, indicating no diversity. The value increases with the number of cultivated crops and 

when the cultivated areas under various crops become more even. The index reaches its maximum 

when crops are cultivated in equal shares, that is, when Pi =1/J.  

 

We use the SHDI to approximate the diversity produced by farms, that is, a good output within the 

frame of production theory. This can be motivated by the fact that greater crop diversity is likely to 

increase the number of different habitats. In conventional farming, a monoculture may be 

successful, whereas organic production technology requires at least some crop rotation, ruling out 

single-crop cultivation. Thus, organic farming is likely to produce higher crop diversity. Moreover, 

studies have shown that crop rotation conserves soil fertility (Watson et al., 2002), improves 

nutrient and water use (Karlen et al., 1994), and increases yield sustainability (Struik and 

Bonciarelli, 1997).  

 

3. Production technology 

Technology is typically described by production functions defining output as a function of inputs. 

In contrast to scalar-valued production functions, distance functions allow multiple outputs and 

multiple inputs (Shephard 1970). In principle, there are two extreme options that may be applied, an 

                                                 
3 The index has its origin in information theory (Shannon 1948); for applications in environmental economic studies, 
see, e.g., Pacini et al., 2003; Miettinen, Lehtonen and Hietala-Koivu, 2004; Di Falco and Perrings, 2005. Sometimes the 
index is presented in the form exp(SHDI). At the maximum, this form indicates the number of species corresponding to 
a uniform distribution (maximum entropy). 
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input or an output distance function 4 . For any input-output combination (x,y)  R+
N+M, the 

Shephard output distance function Do(x,y) is such that Do(x,y) = min { > 0: y/  P(x)}, where 

P(x) is the output (producible) set.5 The output distance function calculates the largest expansion 

(1/λ) of y along the ray through y as far from 0 as possible while staying in output set (P(x)), which 

means that y belongs to P(x) if and only if Do(x, y)   1. The distance function takes the value one 

only if the output vector belongs to the frontier of the corresponding input vector. Therefore, the 

output distance function completely characterizes the technology, which inherits its properties from 

P(x). 

 

Färe (1975) showed a connection between Shephard distance functions and (Debreu)-Farrell input- 

and output-oriented measures of technical efficiency. The Farrell (1957) measure of output- 

oriented technical efficiency (Fo) is the reciprocal of the value of output distance function, that is 

Fo(x,y) = (Do(x,y))-1. One property of the Farrell measure is that it is invariant with respect to the 

units of measurement in the inputs and outputs. Furthermore, the evaluation of input and output 

efficiency provides equal, albeit reciprocal, values for distance function/technical efficiency when 

constant returns to scale prevail. 

 

Färe and Primont (1995) have shown that there is a dual relationship between input (output) 

distance functions and cost (revenue) functions. This duality can be utilized when we consider 

which orientation would be appropriate in our case; it is also an important property that can be used 

in determining shadow prices. 

                                                 
4 Directional distance functions provide a more general representation of technology than do the proportional distance 
functions discussed by Shephard. Chambers, Chung and Färe (1998) have shown that the proportional distance function 
is a special case of the directional distance function. In spite of the generality of directional distance functions, it is 
problematic that the direction vector has to be defined a priori. Therefore, proportional functions are preferred as a 
starting point in the present case. 
5 Input (x) and output (y) combinations consist of N non-negative inputs and M non-negative outputs. Alternatively, the 
input distance function Di(x, y) can be presented as Di(x, y) = max {γ > 0: x/γ  V(y)}, where V(y) is the input 
(requirement) set. 
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In addition to yielding crops that can be sold on the market, agricultural production provides other, 

non-market outputs as by-products. Some of these non-market outputs are desirable and others are 

not, a fact that has to be taken into account when production technology is modelled. When two 

outputs are both desirable, as in our case, it is reasonable to assume a production technology of 

multiple desirable outputs (and multiple inputs), which are strongly disposable.  

 

The assumption as to whether different farm types have or do not have access to the same 

technology is critical in the measurement of the distance function if the technological frontiers 

differ by technology. As Dyson et al. (2001) have pointed out, a comparison of firms assumes that 

the firms compared have access to a similar set of inputs, that is, production technology. This is not 

the case when organic and conventional technologies are analyzed. An additional challenge when 

applying DEA is that if the number of observations differs markedly between samples representing 

two types of technology, the average efficiency scores of the samples are also likely to deviate from 

one another because of the difference in dimensionality. Another concern is the robustness of non-

parametric results. How these challenges are met in the estimations will be discussed in section 4. 

 

Approaches using traditional output distance functions assume that the distance is calculated as a 

possibility for an equiproportionate increase in outputs, given inputs and reference units. The 

direction is chosen without taking into account the preferences of society with regard to these 

different outputs. In principle, the optimal product mix in terms of Pareto optimality is produced 

when the marginal rate of transformation, or the slope of the transformation curve, equals the 

marginal rate of substitution, or the slope of the (utility) indifference curve for the society. In 

practice, we do not know the preferences of society. Therefore, the direction of the distance 

function is a critical assumption in the case of non-market outputs, which do not have a market 

price. We may assume that socially optimal proportions of the two outputs are already being 



10 
 

produced but that the objective of society is to produce more of both. We might also think that 

society chooses between alternative policy goals by seeking to increase either crop diversity (given 

the inputs and traditional output) or the traditional crop output (given the inputs and crop diversity). 

This would be conceivable where a socially optimal level of one of the outputs is already being 

produced but the aim is to evaluate the possibilities to increase the other output. This kind of 

directional distance function is similar to that employed in calculating technical subvector 

efficiency by Färe, Grosskopf and Lovell (1994) and applied to variable inputs by Oude Lansink, 

Pietola and Bäckman (2002). Figure 1 illustrates the traditional radial output distance function 

(solid line) and the specific directional distance functions (broken lines: vertical for crop, horizontal 

for crop diversity 6 ). These three directions are considered in our empirical analysis and, as 

discussed above, the directions reflect society’s potential policy goals.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Traditional (radial) and sub-vector (crop and crop diversity) technical efficiencies. 

 

                                                 
6 An obvious alternative would be to think that society seeks to reduce the cost/input use of production but to still 
preserve current output quantities. This would lead us to an input orientation coinciding with the farm-level objective of 
cost minimization. 

Crop output 

Crop subvector 
efficiency (subC) 

Radial technical 
efficiency (radial) 

Crop diversity 
subvector efficiency 
(subBD) 

A 

0 Crop diversity 
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Although non-market goods have no market price, the current product mix of each farm reflects the 

marginal rate of transformation (MRT) between crop output and crop diversity. It is possible to 

derive a shadow value for crop diversity from the known price of crop output and the current output 

mix, that is, the MRT between market and non-market outputs. It can be claimed that farmers do not 

in fact aim at producing crop diversity; rather, it is a by-product of their production process. 

However, there may be differences between farms in their location on the transformation curve 

(different shadow values), for example because of unobserved heterogeneity in resources or 

heterogeneous risk preferences. This variation provides an opportunity to target policy actions such 

that they serve the aims of enhancing or preserving crop diversity. 

 

 

 4. Methods of analysis 

The most frequently used approaches for estimating distance functions/efficiency scores are 

mathematical programming and econometric estimation of stochastic frontiers. Charnes, Cooper 

and Rhodes (1978) extended the piecewise linear frontier function to multiple inputs and outputs 

and referred to the method as Data Envelopment Analysis (DEA). The benefits of DEA are that no 

functional form (except the scale, disposability, and convexity properties) of the production 

technology has to be assumed prior to analysis and that the method can easily handle multiple 

inputs and outputs. One drawback is that no error component is incorporated into the analysis. 

Stochastic frontier analysis requires specific assumptions about functional forms and efficiency 

distributions but also accounts for statistical noise.7  

 

 

 

                                                 
7 For a methodological development, see e.g., Daraio and Simar (2007), Kuosmanen and Johnson (2010). 
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4.1 Non-parametric efficiency analysis 

We prefer non-parametric DEA-based models because of the minimal assumptions required for 

estimation. Moreover, it is possible to derive farm-specific shadow prices for crop diversity, not just 

one socially optimal value for all farms. In DEA, estimation is carried out using linear programming 

(LP) models which have to be solved for each decision-making unit (farm) separately. In the case of 

constant returns to scale, we define the model with M outputs, ym, and N inputs, xn, and with K 

decision-making units forming the reference set and each unit, k’, being compared in turn to that 

set. In our notation, , or , denotes technical output efficiency under constant returns to 

scale (CRS) and strong disposability (S) assumptions. Radial output efficiency can be conveniently 

used in the estimation, inasmuch as the measure is the reciprocal of the output distance function, 

that is,  (Färe, Grosskopf and Lovell, 1994). 

   (2) 

When the non-negative intensity variables zk are not constrained, the scaling of reference units up 

and down is unlimited, a condition which reflects CRS.  

 

4.2 Efficiency scores 

The DEA method for efficiency scores suffers from two limitations: sensitivity, meaning that 

outliers may significantly affect the location of the non-stochastic frontier, and the curse of 

dimensionality, meaning that the number of observations affects the level of efficiency. This 

precludes comparing the scores of the two samples, conventional and organic, directly, in particular 

when the samples differ in size. There are alternative solutions to overcome this obstacle. 
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First, one has to determine which observations should be regarded as outliers. We have applied the 

approach put forward in Charnes et al. (1985) by removing the most influential observations in the 

DEA.8 In several sequential runs of the analysis, we removed observations that were peers for more 

than one-third of the observations; we left out the observations that were peers only for themselves 

and for a few other farms; and lastly we removed the most inefficient farms, defined as those with 

efficiency scores of less than one-third.   

 

Second, we tackle the curse of dimensionality in alternative ways. In order to compare different 

groups, we apply the metafrontier approach and pool all the farms into one data set (Battese, Rao 

and O’Donnell 2004). The efficiency of all units is assessed against the same pooled set of 

reference observations. The efficiency levels are therefore more readily comparable than they 

would be in separate samples. One drawback here is that the method cannot account for the fact that 

one production method may be more restrictive than another in the use of inputs, for example, a 

condition we may well assume when comparing organic and conventional farms. Thus, metafrontier 

results should be interpreted with care in comparisons, but they do bring additional information 

about the robustness of efficiency scores and shadow values. 

 

As the choice of the reference set for technology is crucial in the efficiency analysis, the small 

number of observations for organic farms poses a challenge for analyzing the organic technology 

separately. Accordingly, we perform sensitivity analysis of efficiency scores following the 

procedure described by Simar and Wilson (2000). The procedure takes into account the fact that 

DEA scores are based on finite samples and that efficiency scores may be sensitive with respect to 

the estimated efficient frontier because of sampling variation. It provides bias-corrected estimates 

                                                 
8 De Witte and Marques (2010) describe several ways to search and test for outliers in data; one of the tests presented is 
the one proposed by Charnes et al. (1985).  
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and confidence intervals for efficiency scores.9 Yet, these confidence intervals are fairly wide;  

despite fairly large differences in the efficiency scores of specific units, the differences often do not 

turn out to be statistically significant.  

 

4.3 Shadow values 

Relative shadow values or prices (relative weights) for inputs and outputs can be obtained from the 

dual (primal in Charnes, Cooper and Rhodes, 1978) solutions of the linear equation system above 

(equation 2). The dual form for a regular model (CRS) is as follows: 

  (3) 

The non-negative multipliers can be interpreted as the relative shadow prices of inputs xn 

and outputs ym. As the equations show, the prices are farm (k’) specific. We apply these relative 

shadow prices, estimated from the above dual formulation of DEA, when determining the value of 

crop diversity. When we have estimates for the relative shadow prices and know the true price of 

one of the outputs (crop output), we may solve for the shadow value of crop diversity for the current 

product mix and MRT for each farm. 

 
To assess the influence on the shadow values of the direction chosen for the evaluation, we 

introduce the LP model of subvector efficiencies with a slightly different set of constraints10. In 

particular, we first assume that only the traditional output is adjusted; crop diversity is treated as an 

                                                 
9 For bias correction, the R package FEAR was used. (Wilson 2008) 
10 In practice, in the primal (output-oriented) formulation the distance/efficiency coefficient is minimized/maximized 
with respect to only one output, the other output being an ordinary constraint. See online Appendix. 
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ordinary constraint, indicating that the crop diversity in any feasible solution should be at least as 

large as in our decision-making unit (the vertical direction in Figure 1, henceforth denoted by 

_subC). Technical output efficiency is thus only measured in relation to traditional output, given 

inputs and crop diversity. Second, we evaluate the efficiency with respect to crop diversity, given 

traditional output and inputs (the horizontal direction in Figure 1, _subBD).  

 

Finally, we want to gain insight into the factors that influence shadow values. This is not necessarily 

a straightforward task. It has been debated whether the second-stage regression on efficiency scores 

can be estimated with consistency (e.g., Simar and Wilson 2007), and similar concerns can be 

raised where identifying determinants for shadow values is concerned. Having said this, the results 

of a second-stage regression of non-parametric efficiency scores have proven to be fairly robust 

with respect to the estimation method used. Following McDonald (2009), we use ordinary least 

squares in our regressions for shadow values.  

 

5. Data 

We use a data set of bookkeeping farms that constitutes a sample of Finnish crop farmers from the 

Farm Accountancy Data Network (FADN) of the EU in the period from 1994 to 2002. Because of 

the small number of organic farms, the original panel was complemented by adding organic farms 

that had participated in the bookkeeping system for at least two years as well as the farms that had 

changed over from other forms of production (e.g., milk production) to crop production. Thus, the 

final panel is unbalanced. Farms were classified as crop farms if their animal density was less than 

0.1 animal units per hectare and the share of cereals in total sales return was at least 20 percent.11 In 

total, about 1,000 farms in Finland submit their bookkeeping records to FADN. Farms receiving aid 

                                                 
11 This is to guarantee that the return from animal production is low but that, at the same time, the farm is allowed to 
have a limited amount of such production. Farms that specialize solely in sugar beet and potato cultivation are 
eliminated, because the production technology of such farms differs significantly from that of the majority of less-
specialized crop farms. See Oude Lansink, Pietola and Bäckman (2002). 
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for organic farming are considered farms engaged in organic production. Summary statistics for the 

final data set used in the analysis are presented in Table 1. 12 

 

Table 1. Descriptive statistics of conventional and organic farms. 

  Conventional Organic 
Number of observations 662 136

  Mean St.dev. Mean St.dev. 
Crop output, € (constant 2000 prices) 32,776 23,856 14,758 20,565 
Crop diversity, SHDI 1.31 0.37 1.40 0.32 
Labour, hours 1,823 983 1,497 1,075 
Land, ha 65 36 48 42
Energy, € (constant 2000 prices) 5,516 3,430 4,263 5,254 
Other inputs, € (constant 2000 prices)   20,152 13,866 11,866 17,765 
Capital, € (constant 2000 prices) 63,589 44,030 50,693 57,848 

 
 

 

We use crop returns as a proxy of the quantity of aggregate marketable crop output, measured at 

constant prices of the year 2000. For both organic and conventional farms, output at constant prices 

is obtained by dividing crop returns by the respective price indices of conventional outputs 

published by Statistics Finland. The main reason for using only price indices for conventionally 

produced goods is that no reliable prices or price indices for organic products are available. 

Consequently, any price premium for organic products would increase our proxy of the output 

quantity13. Then again, the average traditional crop output is considerably lower on organic than on 

conventional farms (see Table 1).14 All subsidies (direct payments) paid on the basis of the arable 

land area of the farms are excluded.  

 

                                                 
12 It should be noted that the average arable land area (size) of farms in FADN is larger than the average in Finland. In 
2000, the number of crop farms in FADN by size class was as follows: 32 farms were smaller than 30 ha in size, 42 
between 30 and 50 ha, 36 between 50 and100 ha and 15 over 100 ha. (Riepponen, 2003)    
13 The same applies to other positive quality differences that cause higher prices.  
14 The market share of organic products was at most two percent in Finland, and anecdotal evidence suggests that price 
premiums did not increase over the study period, but, at best, the prices followed the pattern for conventional products.  
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We use the Shannon Crop Diversity Index (SHDI) to measure the desirable environmental by-

product of the farms in the study – crop diversity. As Table 1 indicates, the index is on average 

larger on organic farms.15 Even though the SHDI was chosen as an indicator, because it takes into 

account the evenness and richness of land use, there is a strong correlation between the index and 

the number of crops cultivated on a farm. The distribution of the number of crops for organic farms 

is slightly skewed such that the share of farms having seven or more crops is larger among the 

organic than the conventional farms.  

 

Five inputs are used for the outputs. Labour is measured in hours as a sum of family and hired 

labour input. Land is measured in hectares representing the total arable land area of the farm. Input 

variables accounted for at constant prices of 2000 are energy, including both fuel and electricity; 

other variable input, consisting of purchased fertilizers, seed, etc.; and capital, including the value 

of buildings and machinery. The respective input price indices are obtained from Statistics Finland. 

The average arable land area of conventional farms is about 15 hectares larger than that of organic 

farms, a difference that is statistically significant (t-test statistics 4.41, p-value < 0.001).  

 

We observed some very low or fairly high crop output values in the original data set. As 

emphasized above, in non-stochastic models it is important to search for possible outliers, since low 

(high) output relative to inputs also yields a low (high) technical efficiency score for a farm. After a 

careful analysis of possible outliers (Charnes et al. 1985), we removed 27 conventional farms and 6 

organic farms from the data set. The total number of observations used is 798, of which 662 are 

conventional and 136 organic farms (Table 1). 

 

 

                                                 
15 The t-test statistics for differences in output and crop diversity index were 9.04 (p-value < 0.001) and -2.91 (p-value < 
0.001), respectively. 
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6. Results 

6.1 Efficiency scores for conventional and organic farms 

The mean values and confidence intervals for the efficiency scores from the alternative models are 

summarised in Table 2. The large difference in the distributions of efficiency scores for organic 

farms by number of outputs is reflected in the summary statistics for efficiency scores from the 

metafrontier model. Table 2 shows that the mean (confidence interval) one-output efficiency score 

for organic farms is 0.33 (0.30-0.36), whereas the mean two-output efficiency score is 0.63 (0.60-

0.66). A similar comparison among the conventional farms shows that the mean one-output 

efficiency score is 0.54 (0.53-0.57), whereas the mean two-output efficiency score is 0.61 (0.60-

0.63). For two-output metafrontier models, no differences in efficiency scores between the farm 

types exist and the confidence intervals also overlap in the models with bias correction.  

 

Table 2. Radial technical efficiency scores. 
 

 All farms Conventional Organic 

 Mean 
 
 CiL-CiU Mean CiL-CiU Mean CiL-CiU 

Metafrontier (MF)      
MF_1O 0.51 0.49-0.52 0.54 0.53-0.57 0.33 0.30-0.36 
MF_2O 0.62 0.60-0.63 0.61 0.60-0.63 0.63 0.60-0.66 
MF_2Obc 0.56 0.55-0.57 0.56 0.55-0.57 0.55 0.53-0.58 
       
Separate frontiers  (SF)      
      
SF_1O   0.54 0.53-0.56 0.50 0.46-0.54 
SF_2O  0.67 0.66-0.69 0.69 0.68-0.71  
SF_2Obc   0.61 0.60-0.63 0.61 0.58-0.64 
       

     Note: 1O – one output, 2O – two outputs, 2Obc - two outputs bias corrected;  
     CiL – confidence interval (lower 95%), CiU – confidence interval (upper 95%). 

 
In the lower panel of Table 2, the efficiency scores estimated separately for each technology show 

that the estimates for organic farms in the case of one output are slightly lower than in the 

conventional case but that the confidence intervals overlap. In the two-output case, the efficiency of 
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conventional and organic farms is significantly higher than in the one-output case but bias 

correction reduces the scores of both farm types. 

 

Due to the relatively wide confidence intervals, there is only limited statistical evidence that the 

estimation method has an impact on efficiency scores in the two-output case. Table 2 shows that the 

models using separate frontiers produce systematically higher scores for organic farms than the 

metafrontier approach does. This is true also for conventional farms, except for the very similar 

one-output estimates obtained for the separate frontier and the metafrontier. A natural explanation 

for the lower efficiency scores of organic farms in the metafrontier approach is the crucial impact of 

the reference set in DEA: organic farms, which are fewer in number and, on average, have smaller 

traditional crop output, account for fewer close-to-frontier observations than the more numerous 

conventional farms.16  

 

All models show that there is room for improvement in efficiency for both conventional and organic 

farms. There is variation in the efficiency scores and, as will be seen, there is also variation in the 

estimates of shadow values. 

     

 

6.2 Shadow values, or opportunity costs, of crop diversity 

We apply the dual formulation of DEA to calculate shadow values for crop diversity. It should be 

noted that an increase of one unit in the index is quite considerable, whereby we report the shadow 

                                                 
16 In fact, we estimated technical efficiencies also applying order-m which is more robust with respect to the number of 
observations and extreme values than standard DEA (Cazals, Florens and Simar, 2002 and Daraio and Simar, 2007). 
The estimations were carried out using FEAR (Wilson 2008). The results of separate frontiers (assuming m=20 and 
input orientation) show that in the one-output case conventional farms (mean technical efficiency 0.835 and standard 
deviation 0.243) are more efficient than organic farms (mean technical efficiency 0.805 and standard deviation 0.206). 
However, when two outputs are considered, organic farms (mean technical efficiency 0.825 and standard deviation 
0.182) are more efficient than conventional farms (mean technical efficiency 0.786 and standard deviation 0.222). The 
differences are significant at least at the 5 % risk level. 
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prices, or marginal values, for an increase of 0.1 unit of the SHDI. This is an increase that an 

average farm in the data set might achieve by adding one crop, for example.  

 

Since the shadow values reflect the opportunity costs to farms of increasing crop diversity, they 

provide important information for policy design. Indeed, it is meaningful to compare the shadow 

values also between organic and conventional technologies, because the shadow values - the 

opportunity costs - may be technology driven and, given their technological constraints, the farms 

supply crop diversity as an output to the same “policy-driven market” of environmental outputs.  

 

Table 3. Shadow values of crop diversity (SHDI) per hectare in Euros. 

 

Direction of  Conventional Organic 

distance function Mean CiL-CiU Mean CiL-CiU 

 

MF_radial   21 19-23 56 46-66 

SF_radial  44 39-48 41 31-51  

SF_subBD   66 60-72 53 42-63 

SF_subC   23 21-25 18 14-22 

            Note: Shadow values based on directional distance functions, constant returns to scale.  
            Metafrontier (MF) and separate frontiers (SF) for conventional and organic farms:  
            radial (_radial), crop diversity sub-vector (_subBD) and crop sub-vector (_subC);  

CiL – confidence interval (lower 95%), CiU – confidence interval (upper 95%) 
 
 

Table 3 summarizes statistics for the shadow values of a marginally increasing SHDI based on the 

alternative models for organic and conventional technologies. In addition to the Farrell-type radial 

direction, two subvector efficiency models are applied using the two directional distance functions, 

that is, crop subvector efficiency (_subC) and crop diversity subvector efficiency (_subBD). For 

comparison purposes, the shadow values from the metafrontier model in the radial direction are also 

presented. 
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Interestingly, the differences in the mean shadow values between technologies do not prove to be 

statistically significant in the technology specific, separate estimations. The large deviation in 

shadow values leads to large confidence intervals (also for individual units when bootstrapped), and 

the confidence intervals for the shadow values for organic and conventional farms overlap. 

Comparison of the separate frontiers shows that the shadow values derived from the crop subvector 

(SF_subC) are the lowest for both farm types. However, when compared to the use of separate 

frontiers, the metafrontier approach (MF_radial) generates the lowest shadow values for 

conventional farms and the highest shadow values for organic farms. This pattern can be attributed 

to the fact that the reference group determining the frontier is different in the models with separate 

frontiers and a metafrontier and that the reference set affects shadow prices. Given that organic 

farms have on average smaller crop output and larger crop diversity than conventional farms, their 

opportunity costs in terms of forgone output are larger in the pooled data set, which is dominated by 

observations representing conventional technology.  

 

One is naturally inclined to explain the variation in shadow values with reference to variables 

describing the farm characteristics. A second-stage OLS regression on the shadow values of crop 

diversity is estimated separately for organic and conventional farms. The dependent variable is the 

estimated shadow value of crop diversity per hectare, based on the radial direction. 

 

Among the explanatory variables, the capital-labour and land-labour ratios measure the relative 

intensity of input use. In general, these shares change according to farm size, but they are also 

dependent on the kinds of crops being cultivated. These variables have been used in Latruffe, 

Davidova and Balcombe (2008), for example, as explanatory variables for efficiency scores. 

Dummy variables are used as indicators for size.17  The region variable includes two regions: 

                                                 
17 These four size classes were used in Riepponen (2003). 
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southern Finland and the rest of Finland. Climatic conditions are best in the south, where most of 

the farms are located. Region in the models is a dummy variable receiving a value of 0 for southern 

Finland and 1 otherwise. The observations are from several time periods, or years. The period 

variable captures a possible linear trend in shadow value over time. The share of cereal output of 

total output is a measure of specialization in cereal farming. The effects of interactions between size 

dummies and number of crops and region have been included in the model.  

 

The results of a regression analysis on the shadow values from separate frontiers are presented in 

Table 4. The model diagnostics indicate that all the models are significant although their 

coefficients of determination (R2) are fairly low, varying between 0.25 and 0.45. The directions of 

effects are mainly similar, but the significance levels of coefficients vary. In the regression for 

organic farms, the only significant variables (at least at the 10 % risk level) are the regional and 

land area dummies, as well as their interactions. The estimated shadow values of crop diversity tend 

to be higher on average in the rest of Finland than in the south. However, farm size counteracts 

regional impact: it is less costly to increase diversity on large than on small farms.  
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Table 4. Ordinary least squares regression on shadow value of crop diversity 

 
 

 Explanatory variables, Conventional   Organic 

 X Coeff. p-value Mean (X) Coeff. p-value Mean (X) 

Constant     43.85*** 0.0029  54.36* 0.0602

Period      -0.03 0.9568 5.13    0.92 0.6430 5.60 

Nr of crops, NC     11.80*** 0.0002 5.27   -0.45 0.8858 5.98 

Regional dummy, R     28.48* 0.0795 0.12  61.03*** 0.0004 0.34 

Land-labour ratio -202.86*** 0.0095 0.04 -58.12 0.8086 0.04 

Capital-labour ratio      0.12** 0.0298 41.27     0.24 0.2250 47.46 

Share of cereal output    21.06*** 0.0006 0.76 -17.51 0.4140 0.60 

Size dummya, S1  -43.34*** 0.0053 0.35 -18.55 0.2250 0.37 

Size dummya, S2  -39.89*** 0.0078 0.41 -44.86** 0.0394 0.14 

Size dummya, S3  -46.92*** 0.0078 0.15 -61.19*** 0.0095 0.14 

Interaction R*S1  -15.03 0.3862   -68.46*** 0.0055   

Interaction R*S2  -44.66** 0.0215   -64.95*** 0.0383   

Interaction R*S3  -34.54* 0.0636   -55.02 0.2093   

Interaction NC*S1    -1.21 0.7453         

Interaction NC*S2  -10.37*** 0.0025         

Interaction NC*S3  -11.55*** 0.0013         

Model diagnostics             

Number of 
observations 

  641       125 

Parameters   16       13 

Degrees of freedom   625       112 

R-squared   0.458       0.325 

Adjusted R-squared   0.445       0.252 

F(prob)   35.3(.0000)         4.5(.000) 

Log likelihood   -3165       -667 

Restricted(b=0)   -3362       -692 

Chi-sq(prob)   393.1(.000)       49.1(.000) 
a For size dummies, S1=between 30 and 50 ha, S2= between 50 and100 ha, and S3 = over 100 ha; the reference class is 
a farm smaller than 30 ha in size. 
Note: Mean value of a dummy variable indicates the share of the farms in the dummy category. 
Asterisks denote significance at * 10% level, ** 5% level, *** 1% level. 
 

For the shadow values of conventional farming, all other explanatory variables are significant 

except period.  The shadow value per hectare is higher on average in the rest of Finland than in the 

south, and the impact of size is negative and highly significant. As in the case of organic farms, the 

regional and size dummies counteract each other. A high capital-to-labour intensity raises but a high 

land-labour ratio reduces the shadow price of crop diversity. The number of crops and the share of 

cereal output have a positive effect on the shadow value of crop diversity. The effect of the number 
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of crops on the shadow value decreases with farm size, and it is negligible in the largest size class. 

All in all, the results make economic sense, since one could expect capital-intensive, specialized 

farms that are close to practicing a cereal monoculture to have high opportunity costs of increasing 

crop diversity.  

  

6.3 Policy implications 

Because there is strong variation in the shadow values, we identify the shadow values of the least-

cost farms to see how large a proportion of each sample they represent. We order the farm 

observations (given their land area) by the estimated shadow values, or opportunity costs (per 

hectare) of increasing crop diversity (SHDI) by a marginal value of 0.1 unit. The opportunity costs 

in Figure 2, presented in order from lowest to highest, can be interpreted as supply curves for crop 

diversity, provided that the samples can be considered representative of active farms in Finland. 

 

 
 
Figure 2. Observations of conventional (Con, broken lines) and organic (Org, solid lines) farms 
ordered by the estimated shadow values of increasing SHDI by 0.1 unit representing 90 % of total 
land area in each sample; separate frontiers (SF): radial (_radial, black lines) and crop diversity sub-
vector (SF_subBD, grey lines). 
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Figure 2 shows that the shadow values for conventional farms derived from the radial model (black 

broken line) are rather close to the shadow values for  organic farms derived from the crop diversity 

subvector model (grey solid line) but that the shadow values for organic farms increase faster. For 

both types of farms, the shadow values derived from the crop diversity subvector model give the 

highest estimates (grey lines), whereas the traditional radial distance function (black lines) produces 

shadow values that lie below the subvector estimates. This means that the opportunity costs of a 

policy that aims at increasing crop diversity at the current level of crop output will be higher than 

the costs of a policy that aims at increasing the current level of crop diversity while increasing 

traditional crop output.  

 

Our findings provide interesting policy implications. The average opportunity costs of conservation 

do not reflect the variation in costs between farms and may bias the design of environmental 

policies. In addition to noting the absolute magnitudes of our shadow value estimates, one should 

recognize the heterogeneity between farms with respect to these costs. This causes the supply 

curves for crop diversity to become upward sloping, as illustrated in Figure 2. This in turn means 

that, for example, a discriminative-payment auction for crop diversity could generate cost savings in 

total payments compared to a fixed-payment scheme at any given payment level. Looked at in 

another way, for any proportion of a total budget allocated for conservation payments, a fixed-

payment scheme would give society less crop diversity than a discriminative-payment scheme 

would.  Stoneham et al. (2003) reached a similar finding on potential cost savings in a pilot auction 

of conservation contracts in Australia.  

 

The least-cost farms would naturally be the most likely candidates for receiving conservation 

payments if auctions and competitive bidding were used to promote the conservation of crop 

diversity on farmland. Our analysis suggests that, of the two distinct technologies considered, 
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organic rather than conventional farms are more likely to be among the least-cost farms. However, 

because conventional farms form a majority of farms, accounting for over 95% of arable land area, 

it is important to recognize that least-cost farms are not distinguished by farming technology alone. 

Our results suggest that the winners in auctions for conservation payments for crop diversity could 

be large-area farms in wealthier southern Finland. This can be a concern as regards distribution of 

income. Moreover, identification of low-cost farms using auctions for conservation payments 

should not increase the administrative costs of voluntary programs. On balance, further research is 

warranted on the issues of administrative burden and equity that come into play when implementing 

policies to achieve conservation targets for crop diversity in agriculture.  

 

 

7. Conclusions 

Consideration of the environmental benefits to be achieved is important for the design of agri-

environmental policies. Our study integrates such benefits into the production process as a desirable 

output and compares conventional and organic technologies using the Shannon Crop Diversity 

Index. The index takes into account both richness and evenness, but one could focus on richness 

only and use number of crops as an ecological indicator.  

 

In our sample, organic farms had slightly higher crop diversity on average than conventional farms 

did. A difference regarding crop diversity appeared in the analysis of the opportunity costs in that 

these costs were found to be higher on average for conventional than organic farms. Yet, it is 

important to recognize the heterogeneity in costs between the farms using the same technology, as 

the variation in the shadow values is strong.  This means that the cost-efficiency of conservation 

programs could be improved generally by using discriminative payments and targeting low-cost 

farms: either cost savings could be realized in the total amount of payments or more crop diversity 
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could be achieved with a given total budget for payments. Hence, targeted policies would make 

economic sense. However, our sample of farms and our analysis show that farms producing crop 

diversity at the lowest costs are not necessarily, nor even likely to be, those farms that policy 

makers ought to target under considerations of equity and opportunities to increase the incomes of 

small farms in areas less wealthy than southern Finland.  

 

Even though our approach is only a first step towards analyzing the economic and environmental 

impacts of alternative farming technologies simultaneously, the thrust of our analysis is clear. 

Normally, there is a trade-off between several outputs, whereby multiple outputs, including 

environmental impacts, should be accounted for. It is important to identify the heterogeneity of 

farms in producing environmental benefits if tailored agri-environmental policies are to lead to cost-

efficiency and savings in the use of taxpayers’ money.   

 

Further research is needed on elaborating other environmental benefit indices that can be calculated 

on the basis of the farm accountancy data available to regulators. If landscape values are evaluated, 

the scale of analysis should be extended beyond the borders of farm units. Studies incorporating 

aggregation over farms and time would enable better-informed policy assessments.  
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