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Benefits of Public R&D in U.S. Agriculture: Spill-Ins, Extension, and Roads  

 
Abstract 

This paper uses panel data for the 1980-2004 period to estimate the contributions of 
public research to U.S. agricultural productivity growth. Local and social internal rates of 
return are estimated accounting for the effects of R&D spill- in, extension activities and 
road density. R&D spill- in proxies were constructed based on both geographic proximity 
and production profile to examine the sensitivity of the rates of return to these 
alternatives. We find that extension activities, road density, and R&D spill- ins, play an 
important role in enhancing the benefit of public R&D investments. We also find that the 
local internal rates of return, although high, have declined through time along with 
investments in extension, while the social rates have not. Yet, the social rates of return are 
not robust to the choice of spill-in proxy.  

 
Key words: productivity, public R&D, R&D spill- ins, extension, road density, internal 
rate of return, cost function. 
JEL code: Q16, O3, O4 
 
 
 

 

 Since the pioneering work by Griliches (1958, 1964) and Evenson (1967), several 

empirical studies have shown that public investment in agricultural research and 

development (R&D) is a primary driver of productivity growth. Regardless of the 

methodology used, analysts are in agreement that returns to investments in agricultural 

research are high, though the rates of return may differ depending on the particular 

research program or the data used to estimate returns. In a survey of the literature, Alston 

et al. (2000) found that the median of the estimated rate of return to agricultural research 

was 48 percent per year. Huffman and Evenson (2006) reviewed studies of the U.S. 

agricultural sector covering the 1965-2005 period and found that, on average, the social 

rate of return was more than 50 percent per annum. Fuglie and Heisey (2007) reviewed 
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studies on Federal-State investment in agricultural research. They reported that the rates 

of return are in range of 20 to 60 percent for most studies.  

Previous studies on the contribution of R&D to productivity growth can be grouped 

into four main categories. First, there are international studies (Coe and Helpman, 1995; 

Johnson and Evenson, 1999, Funk, 2001) versus single-country studies (Griliches, 1964, 

Esposti, 2002, Mullen, 2007); second, there are studies that construct knowledge stocks 

using patent data (Schimmelpfennig and Thirtle, 1999; Jaffe, 1986; Johnson and 

Evenson, 1999) versus data on R&D expenditures (Alston et al., 2010, Plastina and 

Fulginiti, 2011); third, there are those studies that focus on individual commodities or 

commodity programs (Griliches, 1958; McKinsey and Evenson, 2003, Pardey et al., 

2006; Fulginiti, 2010) versus aggregate output (Nin Pratt et al., 2008, Plastina and 

Fulginiti, 2011); and fourth, there are studies that directly incorporate an R&D stock 

variable in the estimation of a production or cost function (Esposti and Pierani, 2003; 

Onofri and Fulginiti, 2008) versus those that use a two-step procedure regressing an 

index of productivity growth on R&D stocks (Yee et. al, 2002, Alston et. al , 2010). 

Methodological differences aside, many of these studies point to significant 

technology spillovers across geographic boundaries. While the contribution to 

productivity growth of R&D spill-ins from nearby states is widely recognized, it is less 

clear why productivity growth in some states with similar characteristics and with similar 

potential R&D spill-ins is faster than in other states. Nor is it clear through which 

channels technical knowledge is disseminated. Some studies (Birkhauser et al., 1989, 

Evenson, 2001; Huffman et al, 2002, Yee et al, 2002, Schimmelpfennig et al., 2006, 
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among others) have emphasized the important role of the Extension Service in promoting 

productivity growth. Antle (1983) and Paul et al (2001) suggest that road infrastructure 

can also be an important contributor to productivity growth. Yet most of these studies fail 

to address the question of how returns to own R&D are affected by research spill-ins, 

extension activities, and infrastructure. Nor do they consider alternative measures of 

potential research spill- ins; measures based on geographic proximity have become the 

norm.  

The objectives of this paper are, first, to study the interaction between local (i.e., 

own) R&D and research spill-ins, extension activities, and road density. Second, we 

estimate the own as well as social internal rates of return to investment in research in 

each state. Third, we develop alternative measures of potential research spill- ins using 

geographic proximity and production profiles for each state and investigate the sensitivity 

of the estimated rates of return to these alternative measures. Finally, we investigate how 

changes in extension activities and in road density affect the estimated internal rates of 

return.  

We model technology in agriculture by a dual cost function using a panel of U.S. 

states. Knowledge stocks, measured as the cumulation of past research expenditures, are 

treated as a public (i.e., exogenous) capital input. We treat R&D spill-ins, extension, and 

infrastructure differently from own R&D because we think that while own R&D is fully 

usable by the state these “efficiency” variables are only partially usable and enter the cost 

function through interaction terms with local R&D stock.  
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We find that, although sensitive to the alternative proxies for knowledge spill-ins, 

the internal rates of return to investment in R&D in U.S. agriculture have been 

persistently high. Moreover, the rates of return are enhanced through the interaction of 

own R&D with extension activities, knowledge spill-ins, and road density.  

 
Model 

 A number of model specifications have been used to assess the contribution of 

public R&D to U.S. agricultural productivity. Some have first constructed an index of 

productivity growth and, in a two-step procedure, related this index to R&D investments 

(Alston et al., 2010; Yee et al., 2002). Still others have estimated the production or dual 

cost function to obtain simultaneously a measure of productivity growth of the sector and 

R&D’s contribution to that growth (Paul et al., 2001; Huffman et al., 2002; Plastina and 

Fulginiti, 2011). In this study, we specify a dual cost function and incorporate own R&D 

stock, as well as its interactions with R&D spill-ins from other states, extension activities, 

and road density.  

While local investment in public agricultural research is viewed as a major driver 

of technological advancement, investment in research in other states, especially those 

with similar production characteristics, also contributes to local productivity growth. This 

effect is generally referred to as a research “spill- in” from other states. We assume that 

research spill- ins, along with extension activities and road infrastructure, interact with 

local public research to enhance the diffusion and absorption of technical information. An 

extensive road network can provide farmers with an easier and less costly way to acquire 

new technologies by attending workshops or other extension activities. It can also save on 
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the time it takes the extension staff to contact producers around the state. Given the 

development of internet technology and broadband investment, extension staff now have 

more ways to directly strengthen and speed the dissemination and absorption of technical 

information. Similarly, research spill- ins from nearby states, or from states with similar 

production profiles could provide a “cluster” effect and generate a multipliable impact 

with local R&D on productivity growth. In this way, these factors may act as catalysts in 

stimulating diffusion and utilization of technical information.  

We proceed by estimating a translog cost function using state-by-year panel data. 

We then derive estimates of productivity growth that capture the impact of local R&D 

investments as well as the magnifying effects of R&D spill-ins, extension activities, and 

infrastructure. Given its importance, we pay particular attention to construction of the 

R&D spill-in variable. Finally, we estimate state-level internal rates of return to public 

agricultural research.   

 We assume that each state produces three outputs, livestock (V), crops (C) and 

other farm related goods and services (O), using four variable inputs including land (A), 

labor (L), materials (M), and capital (K), and one fixed input, own agricultural R&D 

stock (RD). We include interactions between own R&D and extension activities (ET), 

road density (RO), and R&D spill- ins (SR), which we term “efficiency variables” (E). 

These variables have the potential of increasing the marginal productivity of local R&D 

capital. The translog variable cost function is:  
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where the w’s are input prices, the y’s are output quantities, RD is the own-state R&D 

stock, the E’s are efficiency variables, the D’s are regional dummy variables, and W is a 

measure of rainfall. We introduce regional dummies in the first-order terms to allow for 

differences in cost shares across the production regions. The regions are the USDA’s farm 

production regions defined in table 1. While the coefficient on rainfall may have an 

interpretation, its inclusion in the estimation is to remove noise that could affect the 

estimation of the other parameters.   

Symmetry and linear homogeneity in prices are imposed during estimation. Using 

Shephard’s lemma, the cost share for input i is: 
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The estimated system of equations includes the total variable cost equation (1) and the 

input cost share equations (2). Additive disturbances are appended to each share equation 

and the variable cost function. These disturbances are presumed intertemporally 

independent, multivariate normal with zero mean and nonzero contemporaneous 

covariances. The contemporaneous covariance matrix of the disturbance terms is singular 

since the cost shares must sum to unity at every sample point. Hence, a single share 

equation is dropped in estimation. The system of equations is estimated using the 

Iterative Seemingly Unrelated Regression (ITSUR) algorithm in SAS. The estimation 
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results are independent of the equation dropped under the maintained assumptions on the 

error structure.   

The cost elasticities (ε) with respect to local R&D stocks and the efficiency variables (Eh) 

— spill-in stocks (SR), extension activities (ET), and road density (RO) are estimated:  
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As noted above, one of the effects that we would like to highlight in this study is the 

interaction between local R&D stocks and the efficiency variables. This cross effect is: 
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If εRD or εE is negative, then an increase in local R&D stock or any of the efficiency 

variables Eh reduces total variable cost, given input prices and output levels. If MEEhRD is 

negative then the efficiency variables have a further cost reducing effect; they magnify 

the cost-reducing impact of own R&D, as hypothesized.  

 
Internal Rate of Return to Agricultural Research 

 To evaluate the benefits of public research, we proceed to calculate the internal 

rate of return (IRR). The internal rate of return is the discount rate that makes the net 

present value (NPV) of all cash flows (including both inflows and outflows) from a 

particular investment equal to zero. In other words, the IRR of an investment is the 

discount rate at which the present value of future cash flows equals the current market 
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price of the investment. The benefit from one dollar of R&D invested by a state in its 

own agricultural sector, referred to as local or own-state investment, is the discounted 

value of all future cost savings in that particular state’s agriculture. The local internal rate 

of return, r1, is obtained by solving the following equation:  
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where s is the total number of periods used in the construction of the R&D stock, Rt is the 

own-state research investment at time t, and RDt+τ is the own-state knowledge stock at 

time period t+τ. 
t

t

R
RD
∆

∆ +τ is the change in R&D stock at time period t+τ resulting from 

one dollar of own-state research investment at time t. In this study, 
t

t

R
RD
∆

∆ +τ  are the 

weights used at each point in time to construct the R&D stocks from research 

expenditures:   
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The impact on total variable cost of a one-dollar increase in a state’s agricultural 

research stock can be expressed as (for simplicity the time subscript t is dropped): 
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 To obtain the own-state internal rate of return, we substitute equations (3), (7), 

and (8) into (6), and solve for r1: 
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Given that R&D investments in agriculture have the characteristics of an impure 

public good3, the relevant concept in evaluation should include not only the own-state 

effects but also the benefits to other states from R&D spillovers (i.e., the social rate of 

return). Taking into account these effects, the social internal rate of return, r2, is derived 

by solving for r2 in the following equation: 
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where n is the number of states in a particular region. Therefore, the number of states 

benefiting from state i’s research is n-1. The first term of this equation is the same as in 

equation (8), and it represents the own-state benefits. The second term of the equation 

captures the social benefits generated by state i's research and can be alternatively 

expressed as follows: 
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The weights used in constructing the R&D spill-ins at time period t+τ in state j from 

a one-dollar investment in R&D in state i at time period t is:   

(12)  τ
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∆

∆ +
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jt

R
SR

   

                                                 
3 Pure public goods are non-excludable and non-rival. Public research in other states, though “public”, is 
not fully non-excludable, and therefore an “impure public good” (Cornes and Sandler, 1996).   
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The impact on state j’s cost of research spill- ins from other states can be expressed 

as follows: 

(13)  
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We obtain the social internal rate of return by substituting equations (4), (9), 

(11)-(13) into (10), and solving for r2: 
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Data 

Output quantities and input prices 

 Our data consist of a panel of state-level observations spanning the years 1980 to 

2004. This section provides a brief overview of data sources and aggregation procedures. 

A more detailed description of the data can be found in Ball et al. (1999).  

 We construct state-specific aggregates of output and labor, capital and 

intermediate inputs as Törnqvist indexes over detailed output and input accounts. 

Törnqvist output indexes are formed by aggregating over agricultural goods and services 

using revenue-share weights based on shadow prices. The changing demographic 

character of the agricultural labor force is used to build a quality adjusted index of labor 

input. Construction of a measure of capital input begins with estimating the capital stock 

and rental price for each component of capital input. For depreciable assets, the capital 

stocks are the accumulation of all past investments adjusted for discards of worn-out 
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assets and loss of efficiency of assets over their service life. For land and inventories, 

capital stocks are measured as implicit quantities derived from balance sheet data. 

Implicit rental prices for each asset are based on the correspondence between the 

purchase price of the asset and the discounted value of future service flows derived from 

that asset. Indexes of capital input are formed by aggregating over the various capital 

assets using cost share-weights based on assets-specific rental prices. Intermediate input 

consists of goods and services used in production during the calendar year, whether 

purchased or withdrawn from opening stocks. Price and quantity data corresponding to 

purchases of feed and seed are available and directly enter the calculation of intermediate 

goods. Törnqvist indexes of energy consumption are calculated for each state by 

weighting the growth rates of petroleum fuels, natural gas, and electricity consumption by 

their share in the overall value of energy input. Fertilizers and pesticides are important 

intermediate inputs. Price indexes for fertilizers and pesticides are constructed using 

hedonic methods. The corresponding quantity indexes of fertilizers and pesticides are 

formed implicitly by taking the ratio of the value of each aggregate to its hedonic price 

index. We also calculate price and implicit quantity indexes of purchased services such as 

contract labor, custom machine services, and custom livestock feeding. A Törnqvist 

index of intermediate input is constructed for each state by weighting the growth rates of 

each category of intermediate inputs by their value share in the overall value of 

intermediate inputs. Finally, considerable effort was expended to develop output and 

input measures that have spatial as well as temporal integrity. The result is data for a 

panel of states that can be used for both cross section and time series analysis.   
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Local R&D 

There are many different methods used to construct knowledge stocks. In studies of 

the impact of private research in manufacturing, research stocks are frequently 

constructed from data on research expenditures using the perpetual inventory method. 

However, as noted by Griliches (1998), the usual declining balance or geometric 

depreciation does not fit very well the likely gestation, blossoming, and eventual 

obsolescence of knowledge. He also notes that there is no agreement as to the best model 

to use in constructing R&D stocks. Except for some studies that have based the 

construction on best statistical fit, most approaches are ad-hoc based on intuition.  

We construct knowledge stocks assuming a trapezoidal lag structure as proposed by 

Huffman and Evenson (2006). More specifically, we assume a 2 year gestation period 

during which the impacts of research are negligible, followed by 7 years of increasing 

impacts, 6 years of maturity with constant weights, and 20 years of decay with declining 

weights. A description of the procedures can be found in Huffman (2009). Annual 

research expenditures were provided by Huffman (2009). Nominal research expenditures 

were deflated by an agricultural research price index. This index assumes that roughly 

seventy percent of research expenditures are labor costs, an assumption that is broadly 

consistent with available data on the composition of research expenditures.  

R&D Spill-ins 

  In this study, we construct two public research stock variables, an own-state variable 

and a research spill-in variable. Most studies that include potential spill-ins assume that 

discoveries from public research in a given state are an impure public good. While 



 14 

alternative spillover measurements have been applied to and compared with in the 

manufacturing studies (Kaiser, 2002) many agricultural studies impose the simplifying 

assumption that research benefits are regionally confined and apply simple aggregation 

over USDA production regions (see Huffman et al., 2002; Yee et al., 2002). Studies by 

Alston et al. (2010) and Plastina and Fulginiti (2011) are the exception. Alston et al. 

(2010) constructed the spillover variable based on ‘similarity’ of the production mix, 

while Plastina and Fulginiti (2011) used a stochastic ‘concentric rings’ approach. 

Because this is a key variable in the calculation of social returns, and because other 

studies estimated rates of return using just one of these approaches, we construct four 

alternative R&D spill- in variable. Our objective is to provide information on the sensitivity 

of the estimated rates of return to the alternative measures of potential R&D spill- ins. The 

first two approaches we use are based on geographic proximity, while the last two reflect 

the ‘production profile’ in each state.   

  The R&D spill-in variable is constructed as a weighted sum of own R&D stocks 

from other states: 

(15)  SRi=ΣΩijRDj      ji ≠  

where SRi is the potential R&D spill-in for state i, Ωij are the weights used to capture the 

jth state’s contribution, and RDj is the jth state’s own R&D stock. The weights used in 

(15) are based on the models described below. 

Model 1: Ωij=1 for state j in the same USDA production region (table 1). The R&D 

spill-in stock for state i is the sum of research stocks in all other states in that 

region.  
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Model 2: Ωij=1/distij for an R&D spill- in variable generated based on the geographic 

distance among states. This approach, inspired by gravity-type trade models 

(Tinbergen, 1962), is offered to allow for a geographic ‘correction’ to Model 1. 

The R&D stock generated by a state is scaled using the inverse distance between 

the sending state and the receiving state. The distance between Montana and New 

Mexico is chosen as the cutoff distance. Any state j within the cutoff distance was 

assumed to have an impact on state i’s production and was given a weight equal 

to the inverse of the distance between two states, while states beyond that distance 

were assigned a zero weight.   

Model 3: Ωij=1 for R&D spill-ins based on production profiles. We use cash receipts 

from twelve categories of outputs to generate a production profile for each state. 

The twelve outputs categories are: Meat animals, Dairy products, Poultry/eggs, 

Miscellaneous, Food grains, Feed crops, Cotton, Tobacco, Oil crops, Vegetables, 

Fruits/nuts, and All other crops. We use cluster analysis to group the states with 

similar production profiles. While there are several clustering techniques, we use 

the complete linkage clustering method following Sorensen (1948)4. In complete 

linkage clustering, the distance between two clusters is the maximum distance 

between an observation in one cluster and an observation in the other cluster, 

considering multiple elements. It can avoid the drawback of the single linkage 

                                                 
4 While we prefer using the complete linkage method we compared results with those 
based on alternative cluster methods, such as the centroid method and the average linkage 
method (Hansen and Jaumard (1997) among others). The results were similar so we only 
report the results based on the complete linkage method. 
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method that may force states to be grouped together due to closeness in one single 

element while many other elements could be very different. The procedure is 

implemented using the SAS econometric package and results are presented in 

Table 2. Under this methodology, distant states such as Florida and California 

may be in the same group due to similar production profiles. 

Model 4: Ωij=1/Tecdistij for an R&D spill-in variable generated based on the technical 

distance among states within the same cluster from model 3. Tecdistij is the 

technological distance measured by the inverse of the Spearman correlation 

coefficient on the production mix among states. The higher is the correlation 

relationship, the smaller is the technical distance among states within the same 

cluster. 

Descriptive statistics for the four R&D spill-in variables, along with other efficiency 

variables described below, are presented in table 3. 

Extension  

 The extension full-time equivalent (FTE) staff has been declining for most of the 

states over the 1980-2004 period. Ahearn et al. (2003) reported the series of state FTEs 

for the period 1977-92 by 4 major program areas and by total FTE’s for the period 

1977-97. The disaggregated data are no longer available. We use total FTEs at the state 

level to construct the extension capacity indexes for each state. The extension capacity 

index uses total FTEs as the numerator and the number of farms as the denominator to 
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capture multilateral scale differences5. Data on FTEs by state were drawn from the Salary 

Analysis of the Cooperative Extension Service, Human Resource Division, USDA.  

Roads  

 We construct a road density index to examine the impact of road infrastructure on 

dissemination of technical information. The state road density index was constructed 

using total annual road miles, excluding local (i.e. city street) miles for each state, 

obtained from the Department of Transportation’s Highway Statistics Publications, 

divided by total land area. We expect that with higher road density the cost of 

disseminating technical information is lower and the impact of public R&D on 

productivity is enhanced. Although this variable is rather stable for each state, it varies 

considerably among states.  

Weather  

 Weather is treated as a control variable in this model. While several alternative 

weather indexes such as the Palmer index and the Stallings index have been used in 

empirical work, we use total precipitation in inches from March to November (Schlenker 

and Roberts, 2006, 2008).  

 

Empirical Results  

                                                 
5 Normalizing by number of farms has potential implications as number of farms as well 
as extension FTE’s have been declining. It is also important to notice that along with the 
changes in farm size distribution and information technology, the nature of service has 
changed from one-on-one to group-level engagement. This change in delivery mode 
reflects the increasing public-good characteristic of the service provided.  
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We estimate the variable cost function (1) and the cost share equations (2) using the 

four alternative measures of R&D spill-ins defined above. Prior to estimation, we 

investigate the time series properties of the data. We conduct panel unit root tests 

proposed by Levin, Lin, and Chu (2002). All of the test statistics presented in table 4 are 

less than the critical value at the 5% level. Therefore, we reject the presence of a unit root 

and proceed by estimating equations (1) and (2) assuming stationarity.   

 We then estimate a total of 100 parameters based on 1200 observation for each 

model subject to symmetry and linear homogeneity in input prices. The curvature and 

monotonicity properties of the cost function were inspected after estimation. 

Monotonicity was satisfied globally. Concavity in prices implies a negative semi-definite 

Hessian. We find that this condition holds locally.  

In table 5, we present the parameter estimates for the four models, excluding 

constant and interactive terms between regional dummies and input prices from each 

model. We note that 184 of the 236 parameter estimates (across the four models) are 

significant at the 5% confidence level. Moreover, the parameter estimates (other than 

those for the R&D spill-in variables) are stable across the different model specifications, 

giving an indication of the robustness of the estimates. Finally, as can be seen in table 5, 

the coefficients on the interactive terms between own R&D and the efficiency variables 

(extension activities, roads, and R&D spill-ins) are all significant except for the 

coefficient on the R&D spill-in variable in Model 2.  

The impacts of public R&D, extension activities, roads, and R&D spill- ins on 

agricultural productivity growth can be examined through the alternative cost elasticities 
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and the marginal effects of the efficiency variables on R&D’s cost saving effect. The cost 

elasticities of own R&D, extension activities, road density, and R&D spill-ins are all 

negative (see table 6). From table 6, we see that a 1-percent increase in own R&D 

reduces total variable cost by 0.13-0.15 percent, depending on the model specification. 

Extension activities led to the greatest reduction in costs (0.23%-0.25%), followed by the 

effect of R&D spill- ins (0.01%-0.16%) and road density (0.04%-0.06%).   

 Table 7 presents the marginal effect of each efficiency variable on cost diminution 

through their interaction with own R&D (see equation 5). The estimates are all significant 

at 1% level except when we proxy spill- ins using geographic distance (Model 2). We find 

that an increase in extension activities, road density, and R&D spill-ins significantly 

enhance the cost-reducing effect of own R&D investments. Among the efficiency 

variables, extension activities have the greatest impact, while road density has the 

smallest impact. This effect, paired with the decreasing trend in extension activities 

through time, is important in understanding the evolution of the own-state internal rate of 

return, as will be seen later. 

The results presented in tables 6 and 7 provide evidence that own R&D, as well as 

R&D spill- ins, extension activities, and road density, have a positive and significant 

effect on the productivity of U.S agriculture (except R&D spill- ins from Model 2). It also 

shows that the estimated impacts of R&D spill- ins on productivity vary across models 

with Model 1, based on the USDA production regions, having the largest impact and 

Model 2, based on geographical distances, having the smallest.  
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 Next, we use the estimated coefficients and equations (10) and (14) to calculate 

own and social rates of return to agricultural research by state and by year. The mean 

rates of return for all states and all years are shown in table 8. Note that own-state rates of 

return (r1) are robust across the different model specifications. Note also the sensitivity of 

the estimated social rates of return to alternative proxies for research spill-ins. Estimates 

from Models 3 and 4 that use the production profile approach to the construction of the 

R&D spill-in stocks are very close, while those from Models 1 and 2, based on 

geographical proximity, are very different. The rates in Model 1, estimated using the 

most common approach found in the literature (i.e., grouping states according to the 

USDA production regions) are the largest, while those from Model 2 are the smallest.  

 Figures 1 and 2 show the evolution of the internal rates of return. We see that both 

the own-state internal rate of return r1 and the social rate of return r2 in all four models 

declined beginning in the mid-1980s. While the own-state internal rates of return (r1) 

continued to decline over the sample period, the social internal rates of return (r2) 

stabilized or exhibited a slight increase. The declining own-state internal rates of return 

estimated here are associated with declining extension staffing during these years. 

However, in the estimation of the social rates of return, this effect seems to be 

outweighed by research spill-in effects.  

 Table 9 reports the rates of return by production region. The estimates of local rates 

of return are robust to the model specification. Estimates of the social rates of return 

across the regions are much lower for Model 2 than for the other three models. The rates 

of return for the Lake States, Corn Belt, Appalachia, Delta, Southern Plains, and Pacific 
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regions are more similar than the rates for the Northeast region, as indicated by the 

standard deviation. The states in the Lake States, Corn Belt, Northern Plains, and 

Southern Plains regions have, on average, both higher local and social rates of return.  

 Based on the estimated marginal effects (see equation (5)) of extension activities, 

road density, and R&D spill- ins, we calculate the impacts of these variables on the 

internal rates of return (equations (9) - (14)). These results are presented in table 10. A 

10-percent increase in extension activities increases the local internal rate of return, on 

average, by approximately 1.4 percentage points. For example, in model 1, the local 

internal rate of return on investments in R&D is 10.75 percent. A 10-percent increase in 

extension service raises this rate to 12.15 percent. This boosts the social rates of return by 

an average of 0.36 percentage points using Model 1and 1.18 percentage points using the 

specification in Model 2. We note, however, that the extension variable shows a 

decreasing trend during the period of analysis. Research spill- ins also have an important 

positive effect on social rates, ranking second in magnitude to investments in extension 

activities. Contrary to the evolution of the extension variable, the spill-in stock variables 

have all trended higher over the sample period. 

 
Summary and Conclusions  

This paper uses data for a panel of states to estimate the own and social internal rates 

of return to public R&D expenditure. The social rates of return incorporate the 

interactions with R&D spill-ins, extension activities, and road density. We construct four 

alternative measures of potential R&D spill- ins based on geographic proximity and 

similarities in production to determine the sensitivity of the estimated rates of return to 
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model specification. Our estimates indicate that extension activities, road density, and 

R&D spill-ins from other states play an important role in determining the efficacy of 

R&D expenditures. Among these variables, the impact of extension activities seems to be 

the strongest. These activities enhance productivity growth by facilitating the 

dissemination of technical information.  

The estimates of the own internal rates of return are robust across the alternative 

models, while the social internal rates of return deviate from each other depending on the 

particular measure of potential R&D spill-ins. The social rates of return based on USDA 

production regions are much higher than those estimated by the other models. This is 

important given the prevalence in the literature of this approach for the calculation of 

knowledge spill- in stocks. We find that the decline in own rates of return is associated 

with declines in extension investments during this period. 

This study provides evidence that the returns to agricultural research during the 

1980-2004 period have been quite high. It confirms that they were higher still as a result 

of extension activities, research spillovers across states, and a higher road density. These 

findings have important implications for policy and should not be disregarded when 

allocating public resources to alternative research activities.  
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 Table 1. USDA’s Production Regions 

Region   States 
Northeast 

 
NH, PA, ME, MD, RO, MA, DE, CT, VT, NY, NJ 

Lake States 
 

MN, MI, WI 
Corn Belt 

 
OH, IA, MO, IN, IL 

Appalachian 
 

WV, TN, NC, VA, KY 
Southeast 

 
SC, AL, GA, FL 

Delta 
 

LA, AR, MS 
Northern Plains 

 
ND, SD, KS, NE 

Southern Plains 
 

TX, OK 
Mountain 

 
CO, UT, AZ, NM, WY, NV, ID, MT 

Pacific   OR, CA, WA 
Data source: USDA
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 Table 2. Clusters for 48 States Based on Production Profile  

 

Data source: Developed by authors. 

Cluster States

1 IA, IL, IN, MN, MO, NE, OH, SD
2 CO, ID, KS, MI, NM, NV, OK, OR, TX, UT, WY
3 AL, AR, DE, GA, MD, NC, SC, TN, VA, WV
4 NY, VT, WI
5 CT, NH, PA, RI
6 CA, FL, MA, ME, NJ, WA
7 AZ, LA, MS
8 MT, ND
9 KY
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Table 3 Descriptive statistics for efficiency variables 
   

statistics extension  road density 
R&D spilii-in  

(Model 1) 
R&D spilii-in 

(Model2) 
R&D spilii-in 

(Model3) 
R&D spilii-in 

(Model4) 
(unit) (FTE per farm) (mile per square mile) (constant dollars) (constant dollars) (constant dollars) (constant dollars) 
N 1200 1200 1200 1200 1200 1200 
MIN 0.0000 0.0583 11696201 100129407 5406608 1270725 
MAX 0.0476 2.5634 219463954 1155346530 217905010 175632026 
MEAN 0.0100 0.6193 86160408 575183765 119101019 85945211 
STD 0.0069 0.4828 39880052 239590346 60382324 48655117 
Note: FTE indicates full time equivalent staff numbers 
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Table 4. Panel Unit Root Tests of Variables Used in the Study  

Variables LLC' Statistic1 p-value 
LnTVC -5.10 0.0000 
SK -8.65 0.0000 
SL -2.37 0.0090 
SM -1.78 0.0377 
LnV -2.86 0.0021 
LnC -3.88 0.0001 
LnO -9.75 0.0000 
LnRD -36.83 0.0000 
LnET -2.48 0.0066 
LnRO -4.71 0.0000 
LnSR1 -30.60 0.0000 
LnSR2 -34.84 0.0000 
LnSR3 -34.21 0.0000 
LnSR4 -34.65 0.0000 
LnA -3.61 0.0002 
LnM -2.37 0.0088 
LnK -11.73 0.0000 
LnL -1.68 0.0462 
LnW -10.14 0.0000 
Note 1: The LLC panel unit root test  is based on the method proposed by Levin, 

Lin, and Chu (2002). Our tes ts inc lude a constant term for every  variable 
except  LnK.  In the case of LnTVC, LnET, a t ime t rend was inc luded.   

Note 2: SR1, SR2, SR3 SR4 are alternative R&D spil lins based on the est imates 
from Model 1 through Model 4.   

Note 3:  V stands for livestock, C for crops, O for other farm related goods and services, A 
for land, L for labor,  M for materials, K for capital, RD for own agricultural R&D 
stock, ET for extension, RO for road density, SR for R&D spillins  
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Table 5. Coefficient Estimates of cost and share equations, 48 states, U.S. Agriculture, 
1980-2004, alternative R&D spill-in stocks.  

  Model 1       Model 2       Model 3       Model 4     

Parameters coeff icients 
 t 

ratio      coeff icients  t ratio      coeff icients  t ratio      coeff icients  t ratio    
βV 1.4720 5.46 *** 

 
1.7428 6.11 *** 

 
1.8615 6.39 *** 

 
1.7991 6.33 *** 

βC -0.6314 -2.59 *** 
 

-0.6989 -2.66 *** 
 

-0.9780 -3.61 *** 
 

-1.0304 -3.88 *** 
βO -0.5048 -1.81 * 

 
-0.6410 -2.16 ** 

 
-0.3581 -1.20 

  
-0.4313 -1.47 

 βV V 0.0401 1.80 * 
 

0.0579 2.45 ** 
 

0.0302 1.25 
  

0.0463 1.96 ** 
βV C -0.0139 -0.77 

  
-0.0059 -0.31 

  
-0.0041 -0.21 

  
-0.0147 -0.77 

 βV O -0.0595 -3.54 *** 
 

-0.0869 -4.90 *** 
 

-0.0646 -3.48 *** 
 

-0.0692 -3.82 
 βC C 0.1213 6.19 *** 

 
0.1221 5.88 *** 

 
0.1352 6.39 *** 

 
0.1441 6.89 *** 

βC O -0.1174 -7.16 *** 
 

-0.1306 -7.50 *** 
 

-0.1445 -8.21 *** 
 

-0.1390 -8.01 *** 
βO O 0.1830 7.28 *** 

 
0.2376 9.00 *** 

 
0.2313 8.58 *** 

 
0.2284 8.54 *** 

                γRD -0.4867 -1.16 
  

-0.5864 -1.29 
  

-0.5960 -1.36 
  

-0.7470 -1.71 
 γRD RD -0.0103 -0.50 

  
-0.0085 -0.38 

  
-0.0019 -0.09 

  
-0.0017 -0.08 

 
                αA A 0.0487 17.96 *** 

 
0.0517 19.02 *** 

 
0.0496 18.20 *** 

 
0.0497 18.21 *** 

αA M -0.0350 -10.57 *** 
 

-0.0322 -9.85 *** 
 

-0.0343 -10.51 *** 
 

-0.0340 -10.42 *** 
αA K -0.0029 -1.61 

  
-0.0044 -2.45 ** 

 
-0.0029 -1.62 

  
-0.0030 -1.65 * 

αA L -0.0108 -4.87 *** 
 

-0.0151 -6.91 *** 
 

-0.0125 -6.01 *** 
 

-0.0128 -6.16 *** 
αM M 0.1607 21.39 *** 

 
0.1675 22.98 *** 

 
0.1627 23.40 *** 

 
0.1679 23.90 *** 

αM K -0.0760 -14.89 *** 
 

-0.0793 -15.76 *** 
 

-0.0744 -15.55 *** 
 

-0.0780 -15.98 *** 
αM L -0.0498 -11.77 *** 

 
-0.0561 -13.79 *** 

 
-0.0541 -14.26 *** 

 
-0.0559 -14.72 *** 

αK K 0.1353 24.60 *** 
 

0.1364 24.96 *** 
 

0.1325 25.04 *** 
 

0.1350 25.08 *** 
αK L -0.0563 -28.77 *** 

 
-0.0527 -27.92 *** 

 
-0.0552 -31.90 *** 

 
-0.0541 -30.62 *** 

αL L 0.1169 31.58 *** 
 

0.1238 34.62 *** 
 

0.1217 37.01 *** 
 

0.1228 37.38 *** 

                δA V -0.0294 -15.17 *** 
 

-0.0297 -14.64 *** 
 

-0.0286 -14.37 *** 
 

-0.0278 -13.81 *** 
δA C 0.0119 5.29 *** 

 
0.0151 6.80 *** 

 
0.0141 6.25 *** 

 
0.0124 5.41 *** 

δA O 0.0032 1.35 
  

0.0018 0.78 
  

0.0027 1.16 
  

0.0033 1.41 
 δM V 0.0713 19.37 *** 

 
0.0681 17.51 *** 

 
0.0667 18.54 *** 

 
0.0643 17.30 *** 

δM C -0.0675 -16.92 *** 
 

-0.0664 -16.66 *** 
 

-0.0585 -15.25 *** 
 

-0.0594 -15.05 *** 
δM O 0.0395 9.25 *** 

 
0.0386 8.99 *** 

 
0.0316 7.61 *** 

 
0.0354 8.44 *** 

δK V -0.0093 -6.90 *** 
 

-0.0079 -5.60 *** 
 

-0.0076 -5.94 *** 
 

-0.0071 -5.20 *** 
δK C 0.0214 13.49 *** 

 
0.0203 13.15 *** 

 
0.0164 10.84 *** 

 
0.0180 11.36 *** 

δK O -0.0273 -15.99 *** 
 

-0.0271 -16.00 *** 
 

-0.0238 -14.67 *** 
 

-0.0261 -15.61 *** 
δL V -0.0326 -12.31 *** 

 
-0.0305 -11.09 *** 

 
-0.0304 -11.67 *** 

 
-0.0294 -11.00 *** 

δL C 0.0343 11.77 *** 
 

0.0309 10.85 *** 
 

0.0281 9.98 *** 
 

0.0290 10.07 *** 
δL O -0.0154 -4.87 ***   -0.0133 -4.25 ***   -0.0105 -3.38 ***   -0.0126 -4.03 *** 
Note 1: The spillin RD stocks are based on production region, geographical distance, un-w eighted production profile, and 
correlation w eighted production cluster for Model 1 to Model 4, respectively. 

                
  Note 2: V stands for livestock, C for crops, O for other farm related goods and services, A for land, L for labor, 

              M for materials, K for capital, RD for ow n agricultural R&D stock, ET for extension, RO for road density, SR for R&D spillins.  
Note 3: '***' indicates signif icant at 1% level. '**' indicates signif icant at 5% level. '*' indicates signif icant at 10% level. 
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Table 5. (continue) 

  Model 1       Model 2       Model 3       Model 4     

Parameters coeff icients  t ratio      coeff icients  t ratio      coeff icients  t ratio      coeff icients  t ratio    
θA RD -0.0165 -6.06 *** 

 
-0.0205 -7.98 *** 

 
-0.0193 -7.61 *** 

 
-0.0199 -7.84 *** 

θM RD -0.0044 -0.94 
  

-0.0010 -0.22 
  

-0.0045 -1.04 
  

0.0000 0.01 
 θK RD -0.0129 -6.88 *** 

 
-0.0131 -7.41 *** 

 
-0.0122 -7.25 *** 

 
-0.0140 -8.04 *** 

θL RD 0.0338 9.58 *** 
 

0.0346 10.32 *** 
 

0.0360 10.90 *** 
 

0.0339 10.18 *** 

                φV RD -0.0416 -2.73 *** 
 

-0.0574 -3.56 *** 
 

-0.0586 -3.58 *** 
 

-0.0557 -3.46 *** 
φC RD 0.0498 3.70 *** 

 
0.0560 3.80 *** 

 
0.0683 4.62 *** 

 
0.0690 4.79 *** 

φO RD 0.0453 2.95 *** 
 

0.0484 2.98 *** 
 

0.0311 1.89 * 
 

0.0360 2.21 ** 

                ξET RD -0.0154 -18.82 *** 
 

-0.0144 -16.48 *** 
 

-0.0149 -17.65 *** 
 

-0.0150 -17.49 *** 
ξRO RD -0.0021 -4.38 *** 

 
-0.0031 -5.83 *** 

 
-0.0035 -7.27 *** 

 
-0.0033 -6.85 *** 

ξSR RD -0.0091 -12.45 *** 
 

-0.0010 -1.12 
  

-0.0037 -9.46 *** 
 

-0.0026 -8.42 *** 

                ρET A -0.0106 -4.11 *** 
 

-0.0101 -3.82 *** 
 

-0.0104 -3.95 *** 
 

-0.0094 -3.62 *** 
ρRO A -0.0063 -3.71 *** 

 
-0.0092 -5.21 *** 

 
-0.0083 -4.85 *** 

 
-0.0077 -4.55 *** 

ρSR A -0.0159 -3.45 *** 
 

0.0110 3.08 *** 
 

-0.0013 -1.13 
  

-0.0028 -3.02 *** 
ρET M 0.0636 13.04 *** 

 
0.0582 11.87 *** 

 
0.0570 12.15 *** 

 
0.0593 12.45 *** 

ρRO M 0.0096 3.15 *** 
 

0.0119 3.76 *** 
 

0.0114 3.91 *** 
 

0.0118 4.01 *** 
ρSR M 0.0112 1.52 

  
0.0029 0.48 

  
0.0202 9.57 *** 

 
0.0133 7.83 *** 

ρET K -0.0210 -11.50 *** 
 

-0.0198 -10.91 *** 
 

-0.0180 -10.53 *** 
 

-0.0199 -11.24 *** 
ρRO K -0.0056 -4.72 *** 

 
-0.0052 -4.35 *** 

 
-0.0049 -4.50 *** 

 
-0.0057 -5.04 *** 

ρSR K -0.0006 -0.17 
  

-0.0058 -2.33 
  

-0.0086 -11.57 *** 
 

-0.0043 -7.03 *** 
ρET L -0.0320 -9.04 *** 

 
-0.0284 -8.14 *** 

 
-0.0287 -8.34 *** 

 
-0.0300 -8.66 *** 

ρRO L 0.0023 1.04 
  

0.0025 1.09 
  

0.0018 0.85 
  

0.0016 0.75 
 ρSR L 0.0051 0.87 

  
-0.0081 -1.77 * 

 
-0.0103 -6.79 *** 

 
-0.0062 -5.12 *** 

ρW A -0.0002 -0.39 
  

-0.0005 -0.99 
  

-0.0002 -0.48 
  

-0.0002 -0.46 
 ρW M 0.0007 1.05 

  
0.0004 0.67 

  
0.0004 0.57 

  
0.0003 0.51 

 ρW K -0.0014 -4.24 *** 
 

-0.0012 -3.73 *** 
 

-0.0013 -4.12 *** 
 

-0.0013 -3.93 *** 

ρW L 0.0009 1.55 
  

0.0012 2.21 ** 
 

0.0011 2.03 * 
 

0.0011 2.05 ** 

                
equations R2 

adjusted 
R2 

  
R2 

adjusted 
R2 

  
R2 

adjusted 
R2 

  
R2 

adjusted 
R2 

 LnTVC 0.9811 0.98 
  

0.9779 0.98 
  

0.9795 0.98 
  

0.9789 0.98 
 SM 0.4856 0.48 

  
0.4719 0.47 

  
0.5240 0.52 

  
0.5026 0.50 

 SK 0.7396 0.74 
  

0.7405 0.74 
  

0.7737 0.77 
  

0.7513 0.75 
 SL 0.6642 0.66     0.6711 0.67     0.6838 0.68     0.6740 0.67 
 Note 1: The spillin RD stocks are based on production region, geographical distance, un-w eighted production profile, and 

  correlation w eighted production cluster for Model 1 to Model 4, respectively. 

  Note 2: V stands for livestock, C for crops, O for other farm related goods and services, A for land, L for labor, 
  M for materials, K for capital, RD for ow n agricultural R&D stock, ET for extension, RO for road density, SR for R&D spillins.  

Note 3: '***' indicates signif icant at 1% level. '**' indicates signif icant at 5% level. '*' indicates signif icant at 10% level. 
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Table 6. Cost Elasticity of R&D, Extension Services (ET), Roads (RO), and Spill-in R&D Stocks (SR), 48 States, U.S. 
Agriculture, 1980-2004, alternative spill-in models. 
Elasticity   Frequencies   Model 1   Model 2   Model 3   Model 4 

        mean   
standard 
deviation   mean   

standard 
deviation   mean   

standard 
deviation    mean   

standard 
deviation 

ξRD  1200  -0.1287  0.0903  -0.1518  0.0860  -0.1347  0.0808  -0.1511  0.0889 
ξET  1200  -0.2482  0.0209  -0.2329  0.0191  -0.2419  0.0193  -0.2428  0.0197 
ξRO  1200  -0.0361  0.0038  -0.0538  0.0054  -0.0608  0.0051  -0.0579  0.0049 
ξSRD   1200   -0.1637   0.0103   -0.0142   0.0064   -0.0576   0.0061   -0.0402   0.0041 

 

Note: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production cluster for Model 1 to 

Model 4, respectively. 
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Table 7. Marginal Effect of the Extension Service, Roads and R&D spill-ins on R&D’s Cost Saving, 48 States, 

 U.S. Agriculture, 1980-2004, alternative Spill-in models 

         

Marginal effect 
  Model 1    Model 2   Model 3   Model4  
  value    t ratio   value   t ratio   value   t ratio   value   t ratio 

MERDET  -0.015  -18.82  -0.014  -16.48  -0.015  -17.65  -0.015  -17.49 
MERDRO  -0.002  -4.38  -0.003  -5.83  -0.004  -7.27  -0.003  -6.85 
MERDSR   -0.009   -12.45   -0.001   -1.12   -0.004   -9.46   -0.003   -8.42 

 

Note: The spillin RD stocks are based on production region, geographical distance, un-w eighted production profile, and correlation w eighted 
 production cluster for Model 1 to Model 4, respectively. 
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Table 8. Internal Rate of Return of Public R&D in Agriculture by Year, 48 U.S. States, 1980-2004, alternative Spill-in 
models 

Year         Model 1         Model 2         Model 3         Model 4 
  r1    r2    r1    r2    r1    r2    r1    r2   

    mean 
standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation 

1980  13.89 11.02  39.26 19.49  15.90 12.85  16.43 12.77  14.31 12.37  25.96 15.46  15.48 12.60  28.11 21.72 
1981  16.01 11.65  43.36 21.02  18.11 13.51  18.58 13.43  16.12 12.82  29.11 16.80  17.42 13.12  31.63 23.94 
1982  13.87 8.45  42.56 19.51  16.56 10.70  17.01 10.65  14.96 10.86  28.60 15.54  16.20 10.95  30.91 23.88 
1983  15.05 9.11  42.23 18.90  17.35 11.18  17.74 11.13  16.22 11.48  28.69 15.49  17.30 11.57  31.36 23.66 
1984  14.95 9.19  43.08 19.37  17.30 11.45  17.11 11.93  15.57 11.63  29.31 15.93  16.69 11.82  31.85 24.59 
1985  13.02 7.67  41.29 18.47  15.74 9.98  16.19 9.99  14.34 10.31  28.20 15.19  15.51 10.35  30.42 23.98 
1986  10.95 7.08  38.03 17.19  13.77 9.19  14.38 9.17  12.31 9.87  26.11 14.31  13.59 9.74  28.25 22.75 
1987  10.53 7.07  36.87 16.53  13.01 9.35  13.65 9.33  11.67 10.01  25.36 14.07  12.93 9.84  27.41 22.59 
1988  10.59 7.22  37.51 16.58  13.33 9.46  13.53 9.89  12.56 10.15  25.91 14.21  13.52 10.15  28.07 22.38 
1989  10.19 7.50  37.76 16.94  12.71 9.43  13.51 9.39  11.62 10.34  25.95 14.44  12.82 10.11  27.73 22.78 
1990  10.07 6.85  38.14 17.13  12.82 9.10  13.67 9.09  11.64 9.80  26.44 14.59  12.76 9.74  28.24 23.74 
1991  9.75 6.69  37.23 16.73  12.42 8.85  13.22 8.86  11.48 9.62  25.73 14.36  12.49 9.59  27.63 23.51 
1992  9.77 6.91  37.38 17.10  12.42 8.98  13.25 9.01  11.14 9.52  25.80 14.58  12.23 9.49  27.52 24.02 
1993  10.07 7.01  37.56 16.67  12.73 9.03  13.60 9.01  11.60 9.73  26.31 14.62  12.69 9.65  28.75 24.98 
1994  9.23 6.42  38.40 17.25  12.57 8.73  13.51 8.74  11.09 9.42  26.88 14.91  12.30 9.38  29.26 25.75 
1995  9.66 6.84  38.23 16.81  12.72 9.17  13.64 9.13  11.71 10.09  26.96 14.95  12.80 10.01  28.92 25.61 
1996  9.92 7.55  39.43 17.15  13.15 9.51  14.12 9.42  11.65 10.25  27.74 15.10  12.91 10.11  29.75 26.86 
1997  9.30 6.77  39.70 17.20  12.77 8.68  13.77 8.64  11.38 9.63  27.86 14.81  12.61 9.41  30.54 26.65 
1998  7.95 7.44  39.31 17.24  11.37 7.87  12.58 7.79  10.31 9.08  28.00 15.14  11.34 8.95  30.59 28.00 
1999  8.27 6.37  39.15 17.04  11.37 7.79  12.43 7.77  10.41 9.11  28.04 14.93  11.64 8.78  30.51 27.37 
2000  8.78 6.87  40.32 17.35  12.65 8.79  13.64 8.76  11.47 10.20  28.96 15.27  12.74 9.87  31.23 27.71 
2001  8.35 7.50  40.39 17.34  12.42 8.29  13.46 8.26  11.62 9.44  29.01 15.01  12.40 9.56  31.72 28.07 
2002  9.03 6.91  40.28 17.23  12.78 8.94  13.90 8.86  11.98 9.92  29.14 15.18  12.73 10.15  32.30 29.08 
2003  9.55 6.71  40.69 17.51  12.21 8.95  13.46 8.74  11.17 10.07  29.18 15.49  12.65 9.50  32.16 29.30 
2004   8.55 6.60   40.77 17.89   11.53 7.39   12.37 8.05   9.91 8.81   29.23 15.63   11.48 8.22   31.47 28.85 

Note 1: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production cluster for Model 1 to Model 
4, respectively. 
Note 2: r1 indicates local internal rate of return, and r2 indicates social internal rate of return. 



 39 

 

 

 

Table 9. Internal Rate of Return by Region, U.S. Agriculture, 1980-2004, alternative Spill-in models 

Region 
  

      Model 1       Model 2           Model 3           Model 4       

 r1     r2    r1     r2    r1    r2    r1    r2   

  mean 
standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation 

1.Northeast  9.88 10.06  31.14 19.85  10.98 11.28  11.43 11.42  10.13 11.23  19.57 20.02  11.18 11.38  29.98 30.56 

2.Lake States 11.35 5.30  51.09 8.54  15.02 4.15  15.86 3.90  12.59 4.74  35.34 4.31  13.72 4.40  25.25 5.43 

3.Corn Belt  13.05 6.00  55.22 11.47  16.58 6.57  17.19 6.74  13.31 6.20  36.94 8.25  14.26 6.65  28.55 6.59 

4.North Plains 16.16 13.86  52.95 16.11  24.70 16.70  25.92 16.04  23.62 19.44  38.84 15.22  25.82 18.84  38.03 15.42 

5.Appalachian 11.62 5.55  26.09 9.73  14.10 6.55  14.38 6.58  13.03 6.38  26.90 10.33  14.09 6.44  43.02 45.81 

6.Southeast  7.32 5.14  34.69 9.43  9.65 4.04  10.15 3.72  8.22 5.44  25.05 5.91  9.40 4.28  16.91 3.91 

7.Delta States 7.62 3.34  34.87 5.86  9.19 4.18  9.53 4.17  8.42 4.20  24.18 7.82  9.22 4.07  23.38 4.31 

8.Southern Plains 20.76 6.64  54.53 18.42  27.26 4.77  27.63 4.59  29.51 4.69  47.44 9.97  29.82 4.54  32.25 4.76 

9.Mountain  9.31 5.17  40.14 14.30  10.72 5.92  12.58 5.79  9.78 6.09  20.53 8.74  10.99 6.00  31.98 26.52 

10.Pacif ic   9.27 3.23   36.99 16.45   11.67 3.88   11.98 5.53   8.97 4.09   31.40 9.37   10.74 4.02   18.28 4.98 
Note 1: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production cluster for Model 1 to Model 4, 
respectively. 
Note 2: r1 indicates local internal rate of return, and r2 indicates social internal rate of return.  
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Table 10. Impacts of the Extension Service, Roads, and Spill-in R&D on Internal Rate of Return in U.S. Agriculture, 1980-2004, 
alternative Spill-in models   

Note 1: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production cluster for Model 1 to Model 4, 
respectively. 
Note 2: r1 indicates local internal rate of return, and r2 indicates social internal rate of return.  

                        
    Model 1         Model 2         Model 3         Model 4     
 r1    r2    r1    r2    r1    r2    r1    r2   

  mean 
standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation mean 

standard 
deviation 

internal rate of return 10.75 7.98  39.56 17.62  13.61 9.71  16.96 10.32  12.36 10.29  27.54 14.96  13.52 10.23  29.29 15.56 
                        
add 10% of ET 12.15 8.35  39.92 17.55  15.06 10.15  18.17 10.67  13.79 10.77  28.21 15.09  15.01 10.72  30.01 15.64 
                        
contribution of ET 1.40 0.38  0.36 0.43  1.44 0.44  1.18 0.59  1.43 0.48  0.67 0.57  1.49 0.49  0.72 0.61 
                        
add 10% of RO 10.95 8.03  39.61 17.61  13.94 9.81  17.22 10.41  12.71 10.41  27.70 14.99  13.86 10.35  29.46 15.58 
                        
contribution of RO 0.20 0.05  0.05 0.06  0.32 0.10  0.26 0.15  0.35 0.12  0.16 0.13  0.34 0.11  0.16 0.14 
                        
add 10% of SR 11.60 8.20  39.77 17.58  13.72 9.74  17.04 10.35  12.73 10.42  27.71 14.99  13.78 10.32  29.42 15.57 
                        
contribution of SR 0.84 0.23   0.22 0.26   0.10 0.03   0.08 0.05   0.37 0.12   0.17 0.14   0.27 0.09   0.13 0.11 
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Figure 1. Own internal rate of return, U.S. agriculture, 1980-2004, alternative spill-in models (without social benefit). 
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Figure 2. Social internal rate of return, U.S. agriculture, 1980-2004, alternative spill-in models. (with social benefit). 
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