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Which Farmers Benefit the Most from Bt Corn Adoption in the Philippines? 

Estimating Heterogeneity Effects 

 

ABSTRACT 

The potential contributions of new biotechnologies to sustainable food and income security have 

been the subject of widespread discussions around the turn of the twenty-first century.  But 

distributional issues of which segments of GMO adopters benefit the most have not been given 

ample attention.  Using propensity scores, we apply the (a) stratification-multilevel method of 

estimating heterogeneous treatment effects (SM-HTE); and the (b) matching-smoothing method 

of estimating heterogeneous treatment effects (MS-HTE) proposed by Xi, Brand, and Jann 

(2011).  We find that the incidence of higher yields, lower insecticide use and reduced seed 

utilization in the Philippines diminishes progressively as a farmer’s propensity to adopt Bt corn 

increases.  Farmers with a low propensity to adopt Bt are those who farm smaller, non-irrigated 

farms located farther from seed suppliers and farmers without previous training on pest 

identification.  In most cases, while these farmers are typically poorer farmers in smaller parcels, 

cannot afford irrigation and are situated in remote areas away from easily accessible seed 

suppliers, there is no evidence, however, that profits differ across farmers with varying 

propensities to adopt the Bt variety.     

 

1. Introduction 

The potential contributions of new biotechnologies to sustainable food and income security have 

been the subject of widespread discussions around the turn of the twenty-first century.  More 

narrowly, the influence of genetically modified crops in enhancing developing country 

agriculture has been trumpeted into the poverty literature as pro-poor (Glover, 2009).  The 

evidence, by far, has been mixed.  Most importantly, distributional issues of which segments of 

GMO adopters benefit the most have not been given ample attention.  Using propensity scores, 

we apply the (a) stratification-multilevel method of estimating heterogeneous treatment effects 

(SM-HTE); and the (b) matching-smoothing method of estimating heterogeneous treatment 

effects (MS-HTE) proposed by Xi, Brand, and Jann (2011).  We find that the incidence of higher 

yields, lower insecticide use and reduced seed utilization in the Philippines diminishes 

progressively as a farmer’s propensity to adopt Bt corn increases.  And since farmers with larger, 



irrigated farms situated closer to seed suppliers and farmers who have previously been trained at 

pest identification are more likely to adopt Bt corn, then Bt technology benefits the most, farmers 

whose propensity to adopt Bt is lower.  These farmers are those who farm smaller, non-irrigated 

farms located farther from seed supplier and farmers who have not received any training on pest 

identification.  In most cases, while these farmers are typically poorer farmers who farm smaller 

parcels, cannot afford irrigation and are situated in remote areas away from easily accessible 

seed suppliers, there is no evidence, however, that there is a difference in profits enjoyed by 

farmers across varying levels of propensities to adopt the Bt variety.     

 

 

2. Adoption of Bt Corn in the Philippines 

Corn is the second most important crop in the Philippines after rice, with approximately one-

third of Filipino farmers (~1.8 million) depending on corn as their major source of livelihood.  

Yellow corn, which accounts for about 60% of total corn production (white corn accounts for the 

rest), is the corn type that is considered in this study.  Most of the yellow corn produced in the 

Philippines is sold to the livestock and poultry feed mill industries, although some small farmers 

keep some proportion of output to be consumed as food especially in times of poor harvest 

(Gerpacio et al., 2004).  

 Corn in the Philippines is typically grown rainfed in lowland, upland, and rolling-to-hilly 

agro-ecological zones of the country.  There are two cropping seasons per year – wet season 

cropping (usually from March/April to August) and dry season cropping (from November to 

February).  Most corn farmers in the Philippines are small, semi-subsistence farmers with 

average arm size ranging from less than a hectare to about 4 hectares (Mendoza and Rosegrant, 



1995; Gerpacio et al., 2004).  Corn producing households are also typically headed by men, 

although it is becoming increasingly common to see both husband and wife equally making farm 

decisions.  These corn producing households usually grow other cash crops in a small percentage 

of their cultivated area and some engage in small-scale (backyard) poultry and livestock 

production to augment income and supply home needs (Mendoza and Rosegrant, 1995; Gerpacio 

et al., 2004).   

 Land preparation for corn cultivation in the Philippines usually consists of one or two 

plowing operations, harrowing to level the field and reduce the size of soil clods, and furrowing.  

These land preparation activities are often done with the use of water buffalos, but may be 

mechanized on level terrain, especially if sufficient capital is available to pay for tractor rental.  

Furrowing is immediately followed by sowing and basal fertilizer application.  Producers in 

major yellow corn producing areas historically plant the higher yielding hybrid varieties as 

opposed to the local/traditional open pollinated variety (OPV), although there are some farmers 

in these areas who still plant OPVs primarily for home consumption.  Chemical fertilizers are 

generally applied 25-30 days after planting.  Off-barring, hilling-up, and manual/hand weeding 

are the common cultural practices to control weeds.  In some cases, herbicides are used.   

 Harvesting, dehusking, and sometimes shelling are done manually with both family and 

hired labor.  Corn is sun-dried immediately after harvest, usually on drying pavements at home 

or in common areas in the community.  Dried ears to be sold to the feed industry are then 

typically shelled using mechanical shellers contracted through cooperatives or individual 

entrepreneurs in the area (although some still manually shell the ears).  Dried and shelled corn is 

immediately sold, making storage unimportant.  Farmers usually sell their corn products directly 

in public markets or to feed millers, where prices are often higher.  Corn farmers with loans from 



trader-financiers oftentimes have to sell their grain to these same trader-financiers even at lower 

prices.  These trader-financiers loan out agricultural inputs (i.e. fertilizers, insecticides) to 

farmers at higher than market value, and deduct the value of agricultural inputs (plus interest) 

from the harvest sold back to them.  Farmers who lack sufficient capital to fund their farm 

operations usually borrow from these trader-financiers since it is more convenient (i.e. no 

collateral required, easily accessible) than formal credit channels such as cooperatives and 

commercial rural banks (Mendoza and Rosegrant, 1995; Gerpacio et al., 2004).   

 The most destructive pest in the major corn-producing regions in the Philippines is the 

Asian corn borer (Ostrinia furnacalis Guenee) (Morallo-Rejesus and Punzalan; 2002).  Over the 

past decade or so, corn borer infestation occurred yearly (i.e. infestation is observed in at least 

one region yearly) with pest pressure being constant to increasing over time.  Farmers report that 

yield losses from this pest range from 20% to 80%.  Although the Asian corn borer is a major 

pest in the country, insecticide application has been moderate compared to other countries in 

Asia (i.e. China) (Gerpacio et al., 2004).  Gerpacio et al. (2004) also report that corn farmers in 

major producing regions only apply insecticides when infestation is high and sometimes loan 

arrangements with trader-financiers impose constraints on the availability of insecticides when it 

is really needed (i.e. priority given to paying customers). 

 With the Asian corn borer as a major insect pest for corn in the country, the agricultural 

sector was arguably interested in Bt corn technology as a means of control.  In addition, this 

technology was seen as having the potential to improve corn productivity in the country since 

yields have been low (~2 metric tons/ha) and corn imports have increased over time.  Bt corn 

was first introduced in the Philippines in 1996 on a limited trial basis.  Greenhouse evaluations 

were done in local and international plant breeding laboratories based in the country, in 



collaboration with Monsanto Philippines, Inc.  Between 1999 and 2002, after approval from the 

National Committee on Biosafety in the Philippines (NCBP), field trials of Bt corn were 

conducted in the major corn-producing areas of the country.  Finally, in December 2002, the 

Philippine Department of Agriculture (DA) provided regulations for the commercial use of GM 

crops and approved the commercial distribution of Bt corn (specifically Monsanto’s Yieldgard
TM

 

818 and 838).   In the first year of its commercial adoption, 2002, Bt corn (including that 

combined with herbicide tolerance) were grown in only 1% of the total area planted with corn – 

on about 230,000 hectares.  In 2008, about 12.8% of corn planted was Bt, and in 2009 this 

increased to 19% equal to about 500,000 hectares (GMO Compass, 2010).  

 Apart from Monsanto, Pioneer Hi-Bred (since 2003) and Syngenta (since 2005) currently 

sell Bt corn seeds in the Philippines.  In addition to hybrid seeds, these companies have extensive 

operations in the marketing of agricultural chemicals (Cabanilla, 2007). 

3. Estimation Methods and Data 

Evaluation problem, matching and heterogeneity of effects 

The estimation of causal effects is inherently a comparison of potential outcomes.  In particular, 

the causal effect for farmer i is the comparison of farmer i’s outcome if farmer i adopts the new 

technology (potential outcome under Bt or when treatment, T = 1), 
1

iY , and farmer i’s outcome if 

farmer i does not adopt the new technology (potential outcome under non-Bt or when treatment, 

T = 0), 
0

iY .  The fundamental problem of causal inference is that for each farmer, we can observe 

only one of these potential outcomes at a particular point in time because each farmer will either 

plant Bt corn (T = 1) or non-Bt corn (T = 0), but not both.  As such, the estimation of the causal 

effect of Bt is associated with the problem of predicting unobserved outcomes.  In particular, we 

come across the issue of predicting potential outcomes for Bt farmers had they not adopted Bt; at 



the same, we also run into problem of predicting potential outcomes for non-Bt farmers had they 

adopted Bt. 

For efficient causal inference and estimation of potential outcomes, we would like to 

compare Bt and non-Bt groups of farmers that are similar as possible.  If the groups are very 

different, the prediction Y
 1

 for the non-Bt farmers will be made using information from farmers 

who look very different from themselves, the same thing occurs for the prediction of Y
 0 

for the 

Bt farmers.   

A solution to this is the assumption of “strongly ignorable treatment assignment” which 

implies that (a) the treatment assignment (T) (Bt adoption in this case) is independent of the 

potential outcomes (Y
 0
, Y

 1
) given the covariates (X):  0 1( , ) |T Y Y X , and (b) there is a positive 

probability of receiving each treatment for all values of : 0 ( 1| ) 1X P T X    for all X.  The 

first part of the definition is oftentimes referred to as “unconfoundedness”, “ignorability” or 

“selection on observables”.   Hence, after conditioning on a set of observable farm/farmer 

characteristics, outcomes are conditionally mean independent of Bt adoption.   

The ignorability assumption makes sense in that matching on or controlling for the 

observed covariates also matches on or controls for the unobserved covariates inasmuch as these 

unobserved covariates are related to those that are observed (Stuart, 2010).  However, 

conditioning on X can be difficult due to the “curse of dimensionality.”  In other words, as the 

number of characteristics used in matching Bt and non-Bt farmers increases, the chances of 

finding an exact match are reduced; oftentimes, including even a relatively small number of 

characteristics can quickly result in some Bt farmers remaining unmatched.  To tackle this issue, 

Rosenbaum and Rubin (1983) suggest matching treated and untreated individuals solely on their 

‘propensity score’ – the estimated probability of being treated given observable characteristics 



(X):  0 1( , ) | ( 1| )T Y Y P T X  .  This reduces the matching from a multi-dimensional problem 

(where the number of dimensions depends on the number of available variables) to a one-

dimensional problem.  In our case, each Bt farmer is matched to the non-Bt farmer who is most 

similar in terms of probability of adopting Bt, where this probability is calculated on the basis of 

individual characteristics.  Once the two groups are formed, the average effect is estimated for 

each outcome by simply computing the difference in means between the two groups. 

However, to the extent that farmers can self-select into Bt adoption based on their 

anticipated benefits and costs of the adoption, and for reasons unknown to the evaluator, there is 

no guarantee that treatment effects will remain unbiased.  Self-selection in most empirical work 

is circumvented with the use of instrumental variables (IV).  When farmers self-select into the Bt 

adoption decision, for instance, based on their “ability,” then a regression of potential outcomes 

of interest, Yi, (such as yield, profits, and input demands) on the Bt adoption variable (Di) and 

other independent variables leaves an error term, ei, that includes the unobservable characteristic 

“ability”, A, that influences the Bt adoption decision (ei = Ai’γ + vi).  This results in omitted 

variables bias in estimating the coefficient on Di.  If one has access to a variable (instrument 

called Zi) that satisfies the exclusion restriction in that it is correlated with Di and uncorrelated 

with any other determinants of the dependent variables, (uncorrelated with Ai  and vi ) then the 

omitted variables bias is avoided.   

However, potential problems with the use of IV can arise.  First, problems of estimation 

and inference surface in the presence of "weak instruments." Weak instruments are those that do 

not have a high degree of explanatory power for the endogenous independent variables, or when 

the number of instruments becomes large. In a situation of weak instruments, the danger is that 

the instrumental variables test will fail to discern a problem of endogenous explanatory variables, 



even when significant (finite sample) bias is present, because the estimated standard errors are 

not very accurate (Hausman, 2001).  Second, access to IVs that satisfy the exclusion principle is 

not available.    

In using IVs to estimate heterogenous treatment effects, Imbens and Angrist (1994) 

demonstrate that the linear IV estimate can be interpreted under weak conditions as a weighted 

average of local average treatment effects (LATE), where the weights depend on the elasticity of 

the endogenous regressor to changes in the IVs. This means that the effect of a variable is only 

pronounced for segments of the population affected by the observed changes in the IVs, and that 

those segments which respond most to changes in the instruments will have the largest effects on 

the magnitude of the IV estimate.   

Given the practical difficulty of accessing IVs when estimating heterogenous treatment 

effects, Xie, Brand and Jann (2011) propose two methods hinged on the ignorability assumption: 

the (a) stratification-multilevel method of estimating heterogeneous treatment effects (SM-HTE); 

and the (b) matching-smoothing method of estimating heterogenous treatment effects (MS-

HTE).   SM-HTE estimates propensity scores for the probability of treatment given a set of 

observed covariates for each unit in the initial step then constructs balanced propensity score 

strata (ranges of propensity score) in the subsequent step.  Average treatment effects are 

estimated for each strata by directly comparing outcomes between the treated and untreated 

groups within the strata or by applying OLS within each strata.  A linear trend is then evaluated 

across the strata by using variance-weighted least squares regression of strata-specific treatment 

effects on strata ranges of propensity scores. 

  MS-HTE overcomes two of the weaknesses of the SM-HTE: the assumption of 

homogeneity within strata such that both all treated (and untreated) observations are considered 



interchangeable within a strata; and, the assumption of a linear trend in the pattern of treatment 

heterogeneity.   In MS-HTE, the treated units are matched to untreated units based on estimated 

propensity scores.  The data is then transformed into treated-untreated comparisons.  Treatment 

effects are then estimated as a function of the propensity score by fitting a non-parametric model 

as a smoothing device. 

 

Data and definition of variables 

The data used in this study is from the International Food Policy Research Institute (IFPRI). 

Field work was conducted in the Province of Isabela in Northern Luzon and the Province of 

South Cotabato in Mindanao from July 2007 to April 2008 (Figure 1). Based on secondary data 

and interviews with key informants, these sites were known to have both adopters and non-

adopters of Bt maize.  Data collected in the survey included information on corn farming systems 

and environment, inputs and outputs, costs and revenues, marketing environment, and other 

factors related to Bt corn cultivation were collected (i.e., subjective perceptions about the 

technology).    

Focus group discussions were undertaken to draw out qualitative information about 

knowledge-building processes, intergenerational transfers of knowledge, farming skills, and the 

capacity of farmers to choose between Bt and non-Bt maize. The outcomes of these discussions 

also helped shape the survey instruments used to interview individuals. Sampled farmers were 

interviewed face to face with pre-tested questionnaires and visual aids. Key informant interviews 

were used to compile information about seed supply channels. A total of 466 small-scale growers 

of Bt (254) and non-Bt (212) maize were randomly selected in 16 villages. Non-Bt farmers in the 

2007/2008 survey were restricted to hybrid corn users (specifically Monsanto’s Dekalb818 and 



Dekalb9051 Isohybrid) and excluded users of traditional varieties.  This narrows the analysis to 

the performance difference between Bt corn relative to a more homogenous population of non-Bt 

farmers (i.e. hybrid corn users only).  Table 1 presents summary statistics for all variables used 

in the empirical analysis.  

4. Empirical results 

Propensity score estimation 

Table 1 provides results for the propensity score probit estimation for predicting the likelihood of 

Bt adoption.  The estimation results suggest that farmers that had previously attended training on 

pest identification are likely to adopt the Bt variety.   Also, farmers who farm larger corn areas 

and at the same time, irrigated parcels, are most likely to embrace the Bt technology.  Table 1 

also suggests that farmers within shorter distance from seed suppliers are likely to adopt the Bt 

variety.   

Homogenous effects estimation 

A rather naïve approach to estimating homogenous effects is to regress particular outcome 

variables such as profit, yield, and input (i.e. insecticide, seed, labor, fertilizer, herbicides) use on 

Bt and take the parameter estimate on Bt as the effect.  Another naïve approach would be to 

control for propensity scores across farmers.  Table 2 presents the estimated average effects of Bt 

adoption on various outcome variables.  Overall, the results suggest that controlling for factors 

that might have induced self-selection or have predisposed farmers (pre-adoption heterogeneity 

bias) to adopt Bt through the propensity score results in lower effects of Bt across all outcome 

variables.  But because these average effects obscure the heterogeneity in the effects of Bt due to 

inherent differences in Bt adopters, we need to evaluate possible heterogeneous effects. 

 



Heterogeneous effects estimation across strata 

We evaluate heterogeneous effects following the SME-HTE methodology by Xie, Brand and 

Jann (2011).  In Level-1, propensity score stratum-specific Bt effects on outcome variables are 

estimated by OLS: 

(1)         Yi j = αj + γj Bti 

where Yij is the conditional expected value for a particular outcome variable, Y, for the ith farmer 

in the jth propensity score stratum and Bt is an indicator variable for Bt corn adoption.  The 

estimated slopes from (1) are then used as observations in a Level-2 model that summarizes the 

pattern of heterogeneous Bt effects across propensity-score strata:  

(2)                                                γj  = µ0  + δj + εj 

where γj are the estimated Level-1 slopes, µ0 is the Level-2 intercept, δj  is the Level-2 slope and 

an error term, εj , assumed to be Normally distributed. 

 Table 3 and Figure 2 report the results of the SM-HTE approach.   Only about a third of 

the Level-1 slopes in Table 3 are statistically significant.  Interestingly, Level-2 slopes are 

statistically significant only for yield and seed use.  In Table 3, the yield-increasing effect of Bt 

diminishes at PhP 328.43 for every unit change in propensity score rank.  Interestingly, the seed-

reducing effect of the Bt variety is implied only in the upper strata (3 through 5) and that this 

effect declines by 1.15 bags/ha for every unit change in propensity rank.  It is surprising, 

however, that no statistically significant insecticide use-reducing effect of Bt is found when 

others did (Mutuc, Rejesus and Yorobe, 2011).  The limited number of Level-1 slopes that are 

estimated in the stratification step subsequently limits the identification of higher order 

functions; we address this by using the MS-HTE by Xie, Brand, and Jann (2011).   

 



Heterogeneous effects estimation from matching/smoothing method 

Following the estimation of propensity scores for Bt adoption, adopter and non-adopters of Bt are 

then matched according to these propensity scores and the differences between them with respect 

to yield, profit and input use are generated using the kernel matching method.  These differences 

are plotted over the range of propensity scores and a smoothed curve is The results of this non-

parametric approach are depicted in Figure 2.  Compared to Figure 1, we now have a continuous 

representation of the propensity scores.     

While the insecticide-reducing effect of Bt was not apparent under the SM-HTE approach 

in Figure 1, it becomes evident in Figure 2 above propensity scores of 2 but that this insecticide-

reducing effect of Bt diminishes as we move to higher propensity scores.  As such, farmers that 

benefit the most from this effect are those whose propensity to plant Bt are somewhat on the 

lower end.  Consistent with the results under the SM-THE model, farmers progressively benefit 

from reduced use of seeds as their propensity to adopt Bt increases.  In Figure 2, we also observe 

the yield-increasing effects of Bt to decrease as farmers’ propensity to adopt Bt increases.  In 

short, farmers who benefit the most from increased yield due to the Bt variety are the least likely 

to adopt the technology.   

5. Conclusions and Policy Implications  

The incidence of higher yields, lower insecticide use and reduced seed utilization in the 

Philippines diminishes progressively as a farmer’s propensity to adopt Bt corn increases.  And 

since farmers with larger, irrigated farms situated closer to seed suppliers and farmers who have 

previously been trained at pest identification are more likely to adopt Bt corn, then Bt technology 

benefits the most, farmers whose propensity to adopt Bt is lower.  These farmers are those who 

farm smaller, non-irrigated farms located farther from seed supplier and farmers who have not 



received any training on pest identification.  In most cases, while these farmers are typically 

poorer farmers who smaller parcels, cannot afford irrigation and are situated in remote areas 

away from easily accessible seed suppliers, there is no evidence, however, that there is a 

difference in profits enjoyed by farmers across varying levels of propensities to adopt the Bt 

variety.    There is, however, an important caveat that needs to be taken into account.  The survey 

crop year 2007/2008 was a year of bad weather in the major corn-producing areas (i.e., extreme 

dry spell in Isabela province and unusually heavy rains in South Cotabato province (Yumul, Jr., 

Cruz, Dimalanta, Servando, & Hilario, 2010).  Thus, the results of this study are for an atypical 

year.  It would be more substantial if several surveys can be analyzed in a similar context to see 

if results widely vary or remain the same.   This study is the first to evaluate heterogeneity 

effects of Bt corn adoption and there is a wide latitude for similar studies better assess whether Bt 

adoption resonates well with the claim that genetically modified crops are indeed pro-poor. 
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Table 1.  Propensity Score Probit Regression Models Predicting Bt Adoption 
 

Bt Adoption Coefficient p-value 

Farm experience 

Age 

Education 

Household size 

Pest identification training 

  (Attended = 1) 

Ownership  (Owner = 1) 

Borrowing (Borrowed money = 1) 

Distance to seed supplier 

Infestation relative to last year 

  (Less severe = 1) 

Corn area 

Scouting (Scouting for pests = 1)   

Irrigation (Irrigated = 1) 

Location dummy 

  (Isabela = 1, South Cotabato = 0)  

Constant 
 

LR χ
2
     

Prob > χ
2
         

-0.0045 

0.0079 

0.0016 

-0.0264 

0.6766 

 

-0.2829 

0.0013 

0.0162 

-0.1399 

 

0.2721 

-0.0854 

0.9816 

0.4165 

 

-1.2481 
        

            101.69 

(0.000) 

0.554 

0.296 

0.878 

0.527 

0.000* 

 

0.392 

0.994 

0.044** 

0.324 

 

0.007* 

0.663 

0.000* 

0.165 

 

0.030** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.  Homogenous Effects of Bt Adoption on Select Variables 
 

 Yi = α + γBt Yi = α + γBt + λpscore 

 Bt Constant Bt Prop Score Constant 

Profit  

(PhP/ha) 

15368.85 

(0.128) 

19639.81* 

(0.009) 

10574.75 

(0.397) 

26898.88 

(0.314) 

8598.27 

(0.542) 

Yield  

(kg/ha) 

950.63* 

(0.000) 

3731.31* 

(0.000) 

548.55* 

(0.002) 

1883.35* 

(0.000) 

2993.26* 

(0.000) 

Insecticide  

(kg/ha) 

-0.73* 

(0.000) 

0.98* 

(0.000) 

-0.64* 

(0.000) 

-0.62** 

(0.047) 

1.28* 

(0.000) 

Fertilizer  

(50-kg bags/ha) 

1.64* 

(0.000) 

7.86* 

(0.000) 

1.06* 

(0.010) 

2.43* 

(0.005) 

6.92* 

(0.000) 

Seed   

(kg/ha) 

-1.06** 

(0.011) 

19.41* 

(0.000) 

-0.95** 

(0.043) 

-0.19 

(0.848) 

19.38* 

(0.000) 

Herbicide  

(L/ha) 

0.76* 

(0.003) 

1.03* 

(0.000) 

0.34 

(0.276) 

2.05* 

(0.002) 

0.23 

(0.500) 

Labor   

(man-days/ha) 

4.45*** 

(0.077) 

49.49* 

(0.000) 

5.04*** 

(0.091) 

1.20 

(0.850) 

49.55* 

(0.000) 
Notes: P-values in parentheses. *,**,*** correspond to 1%, 5%, and 10% levels of significance.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.  Treatment Effects by Strata: Profit, Yield, Inputs on Bt 

 

Level-1 

Slopes 

Profit 

(PhP/ha) 

Yield 

(kg/ha) 

Insecticide 

(kg/ha) 

Fertilizer 

(50-kg 

bags/ha) 

Seed 

(kg/ha) 

Herbicide 

(L/ha) 

Labor 

(man-

days/ha) 

1  [0.0-0.2) 

 

2  [0.2-0.4) 

 

3  [0.4-0.6) 

 

4  [0.6-0.8) 

 

5  [0.8-0.1] 

 

6221.11 

(0.166) 

5766.36** 

(0.042) 

5961.75*** 

(0.095) 

23345.02 

(0.501) 

182.5392 

(0.977) 

1186.08** 

(0.019) 

1075.37 

(0.001)* 

749.89 

(0.040)** 

189.90 

(0.521) 

281.55 

(0.659) 

0.02 

(0.933) 

-0.50 

(0.453) 

-0.90* 

(0.000) 

-0.79* 

(0.000) 

-0.18 

(0.242) 

-0.73 

(0.482) 

1.75** 

(0.018) 

1.46*** 

(0.053) 

0.84 

(0.227) 

0.62 

(0.711) 

1.30 

(0.503) 

1.04 

(0.207) 

-1.27  

(0.235) 

-1.56*** 

(0.020) 

-2.71*** 

(0.032) 

0.13 

(0.693) 

0.89* 

(0.000) 

-0.08 

(0.910) 

0.67 

(0.250) 

0.17 

(0.789) 

16.36** 

(0.045) 

9.19 

(0.141) 

2.94 

(0.627) 

3.37 

(0.513) 

5.26 

(0.570) 

Level-2 

Slope 

-1150.31 

(0.517) 

-328.43*** 

(0.026) 

0.01 

(0.806) 

0.13 

(0.680) 

-1.15* 

(0.003) 

0.00 

(1.000) 

-3.01 

(0.214) 
Notes: P-values in parentheses.  *,**,*** correspond to 1%, 5%, and 10% levels of significance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1.  Survey Areas:  Isabela and South Cotabato Provinces, Philippines 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2.  Stratified Bt Effects on Profit, Yield and Input Use  

 

 

 

 
Notes:  Red dots refer to treatment effects within strata with 95% confidence intervals represented by dashed lines.  

Black line is the linear trend line. 
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Figure 3.  Matched Differences in Bt Effects 

 

 

 
Notes:  Local polynomial smoothing (kernel matching), degree (2) and bandwidth (0.1).  Shaded bands pertain to 

95% confidence interval.  
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