The Fight Against Salmonella in Agriculture – Research Perspective
(a view from the trenches)

Dayna M. Harhay
The Fight Against *Salmonella* in Agriculture – Research Perspective

(a view from the trenches)

Dayna M. Harhay, PhD
USDA-ARS
U.S. Meat Animal Research Center
Clay Center, Nebraska
How do we prevent *Salmonella* foodborne illness...?

- Know the enemy
- Understand the scope of the problem
- What is being done about the problem?
- What more can be done?
Salmonella and Foodborne Disease

- Salmonellosis – Non-typhoidal *Salmonella enterica*
- > 2,500 serotypes (~1,700 noted for making animals sick)
- U.S. cases per year:
 - Confirmed ~40,000
 - Estimated ~ 1.4 million

CDC, *Salmonella Annual Summary* - 2009

Laboratory-confirmed *Salmonella* isolates from human sources reported to CDC by age group and sex, 2009

27% of confirmed cases <1 – 4 yrs of age
Salmonella and Foodborne Disease

- Salmonellosis – Non-typhoidal Salmonella enterica
- > 2,500 serotypes (~1,700 noted for making animals sick)
- U.S. cases per year:
 - Confirmed ~40,000
 - Estimated ~ 1.4 million

- Generally self limiting enteritis but can be invasive
 - Hospitalization ~15,000 per year
 - Death ~1% of confirmed cases/yr

- Human health cost ~ $330 million/yr
 - Decreased productivity
 - Medical expense

http://www.ers.usda.gov/Data/FoodborneIllness/

- Industry cost ~$100s of millions
 - Product recall
 - Plant closures and clean up
 - Liability costs

CDC, Salmonella Annual Summary - 2009

[Diagram showing laboratory-confirmed Salmonella isolates from human sources reported to CDC by age group and sex, 2009]

- 27% of confirmed cases
 - <1 – 4 yrs of age
- 59% of deaths
 - 65 – 80+ yrs of age
Salmonella and Foodborne Disease

• Primary habitat – animal large intestine / feces
 – “Hearty bug” also survives well in the environment

• 6 serotypes account for >50% human cases
 20 serotypes account for >70% cases
 Are some serotypes more virulent than others?

• Complex etiology
 ~10% cases attributed to outbreaks (OB)
 ~90% sporadic

Many potential sources of Salmonella!
Reservoirs for *Salmonella* and Host Specificity

CDC Top Serotypes

Human salmonellosis

- Enteritidis
- Typhimurium
- Newport
- Javiana
- Heidelberg
- Montevideo
- Saint Paul
- Muenchen
- Braenderup
- Infantis
- Thompson
- Agona
- Schwarzengrund
- Bareilly
- Hadar
- Oranienburg

Salmonella

Host specific vs. Host generalist
The Complexity of *Salmonella* Etiology

HHS Healthy People Initiative 2020
Salmonellosis Target:
6.8 cases / 100K people
Presently ~14 cases / 100K

~10-15% of confirmed cases in U.S. attributed to OB linked with contaminated meat consumption

Sporadic Illness ~90%

~40,000 confirmed cases / yr

Salmonellosis Cases by Source 1998 - 2011

Summary of 152 outbreaks representing 12,181 cases of illness – not all inclusive.

http://wwwn.cdc.gov/foodborneoutbreaks/
Post-Harvest Multiple Hurdle Carcass Interventions

FSIS – 1996
Issued Final Rule:
Pathogen
Reduction;
Hazard
Analysis and
Critical
Control
Point
(PR/HACCP)
Systems

2006 – FSIS
Increased those
performance
standards
Efficacy of Multiple Hurdle Carcass Processing Interventions at Reducing *Salmonella* Prevalence

Beef Processing

- **Hide** ($n=3040$)
 - Pre-evisceration ($n=3040$)
 - Post-intervention ($n=3040$)

<table>
<thead>
<tr>
<th>Step</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide</td>
<td>89.6%</td>
</tr>
<tr>
<td>Pre-evisceration</td>
<td>50.2%</td>
</tr>
<tr>
<td>Post-intervention</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

- ~98% Reduction in *Salmonella* prevalence on carcasses

Multiple hurdle interventions are very effective for reducing pathogen levels on final carcasses

Prevalence of Multidrug Resistant *Salmonella* at Harvest

Beef Processing

Hide (n=3040)

- 6% of all *Salmonella* isolated in this study found to be MDR
 - Consistent subpopulation of any niche
 - ~1.8% Ceftriaxone resistance
 - ~0.1% Nalidixic acid resistance – uncommon

- 16% MDR

Pre-evisceration (n=3040)

- 50.2% MDR

Post-intervention (n=3040)

- 0.8% MDR

Predominant Serotypes

- Newport
- Typhimurium
- Uganda

-Brichta-Harhay et al., (2011) AEM 77:1783-96
Concerns about Drug Resistant *Salmonella* in Ground Beef

- Relatively few outbreaks and recalls, but when they occur they can involve MDR *Salmonella* Newport or Typhimurium

Newport MDR-AmpC	**MDR Typhimurium**
2002 47 ill | 2003 58 ill
2007 43 ill | 2009 14 ill
2009 42 ill | 2011 19 ill

- Concern that multidrug resistant (MDR) *Salmonella* are more invasive than susceptible *Salmonella* - *are they?*
Salmonella Prevalence in Ground Beef

USMARC Nationwide survey 2007-2008 of *Salmonella* prevalence in ground beef (n=4,136 samples) found **mean prevalence to be 4.2%**
Bosilevac et. al., (2009) AEM 75:1892-1900

- Most commonly observed serotypes: **Montevideo (21%)**, **Anatum (15%)**, **Muenster (8%)**, **Mbandaka(6%)**

- **MDR Salmonella** – 0.6%
 - MDR Typhimurium 0.09%
 - MDR Newport 0.07%

~0.4% of outbreak cases (1998-2011)

No Montevideo outbreaks linked to Ground Beef...
The Future Landscape of the Fight Against *Salmonella* in Agriculture...

MiniLIMS - BioTeam
Sequence, assembly, and annotation data analysis pipeline

USMARC
acquired 2008

USMARC
acquired 2011
Bacterial Pathogen Genome Sequencing

"It is now readily possibly to determine the draft genome sequence of a bacterial pathogen within a two day time span"

Source Tracking - Molecular Epidemiology based on specific patterns of Single Nucleotide Polymorphisms (SNPs) within a pathogens genome sequence
Outbreak occurred
July 2009 – April 2010
273 ill (44 states)
52 hospitalized
0 deaths

Causative agent: S. Montevideo

Highly clonal strains confound epidemiologic investigations

Bosilevac et. al., (2009) AEM 75:1892-1900
Outbreak occurred July 2009 – April 2010
273 ill (44 states)
52 hospitalized
0 deaths

Causative agent: S. Montevideo

Highly clonal strains confound epidemiologic investigations

- Performed whole genome sequencing (WGS) of 40 Montevideo Isolates with PFGE patterns matching the OB strain (clinical, environmental, laboratory and food isolates)

- Found a core set of SNPs that defined the outbreak strains – they were even able to determine that one of the “outbreak” cases in California was unrelated

Bosilevac et. al., (2009) AEM 75:1892-1900
Pathogen Source Tracking

Salmonellosis

Sporadic Illness ~90%

Montevideo

Montevideo

Montevideo

Montevideo

Montevideo
Other Future Trends:
Metagenomics & Transcriptomics

Metagenomics:
the study of complex mixtures/communities

- Isolate total genomic DNA
- Sequence
- Characterize the “players” in a given microbial niche

Transcriptomics:
Direct sequencing of total expressed RNA

- Isolate total expressed RNA
- Convert to cDNA
- Sequence
- Characterize gene expression in a given niche

Scanning electron micrograph (SEM) of bacteria in cattle feces – magnification ~10,000x
Questions that can be asked using genomics technology:

Metagenomics –

How do fecal community profiles change with perturbation?
- Antibiotic exposure
- Pathogen colonization

Provides opportunity to discover new probiotics
- Non-pathogens that can displace *Salmonella* in fecal or environmental niche
Questions that can be asked using genomics technology:

Transcriptomics –

How do *Salmonella* respond to carcass processing interventions?

- Characterize the MDR Newport transcriptional profile in response to simulated carcass processing interventions

16% genes showed increased expression:

- Heat shock
- Acid stress
- DNA repair
- Virulence response

Transcriptional profiling of intervention survivors provides information on how to further target these *Salmonella*
Conclusions and Thoughts...

So how do we prevent *Salmonella* foodborne illness...?

- Better source tracking – more accurately identify sources of *Salmonella*
 - SNP based

- Identify opportunities for interventions in Pre-harvest environments
 - Metagenomics
 - Probiotics (competition)

- Increase our understanding of Intervention survivors – Transcriptomics
 - Identify targets for elimination

![Sporadic Illness](pie_chart.png)

![Salmonellosis Cases by Source 1998 - 2011](pie_chart2.png)

Summary of 152 outbreaks representing 12,181 cases of illness – not all inclusive.
Acknowledgments

US MARC Scientists and Technicians

Terry Arthur
Mick Bosilevac
Norasak Kalchaynand
John W. Schmidt
Rong Wang
Steven Schackelford
Tommy Wheeler

Kim Kucera
Julie Dyer
Frank Reno
Bruce Jasch
Greg Smith

Former US MARC
Mohammad Koohmarae

Texas Tech University
International Center for Food Industry Excellence

Greg Harhay
Tim Smith

Guy Loneragan
Sara Gragg
Mindy Brashears
Chance Brooks
Tyson Brown

National Cattlemen’s Beef Association
Beef Industry Food Safety Consortium (BIFSCo)

Renee Godtel
Bob Lee

Mandy Carr-Johnson
Bo Reagan

Partners in Industry – Thank you!