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ABSTRACT: Nonparametric methods for measuring productivity indexes based on bounds for the
underlying production technology are presented.  Following Banker and Maindiratta,
the lower bound is obtained from a primal approach while the upper bound corresponds
to a dual approach to nonparametric production analysis.  These nonparametric bounds
are then used to estimate input-based and output-based distance functions.  These radial
measures provide the basis for measuring productivity indexes.  Application to times
series data on U.S. agriculture indicates a large gap between the primal lower bound
and the dual upper bound.  This generates striking differences between the primal and
dual nonparametric productivity indexes.
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A PRIMAL-DUAL APPROACH TO NONPARAMETRIC PRODUCTIVITY ANALYSIS:

THE CASE OF U.S. AGRICULTURE

I) Introduction.

A considerable amount of research has centered on the measurement of productivity.  Over the

last two decades, much interest has focused on the total factor productivity index proposed by

Christensen and Jorgenson (CJ) (1970).  Diewert (1976) has shown that the CJ index can be derived

from a constant return to scale translog transformation function that is separable in inputs and outputs. 

Caves et al. (1982a) have relaxed this separability requirement and shown that the CJ productivity

index can be obtained from a translog transformation function exhibiting constant return to scale and

constant second order coefficients.  The CJ productivity index appears attractive because it is

empirically tractable while being derived from a flexible multioutput-multifactor representation of the

production technology (e.g. Ball (1985)).  Finally, Caves et al. (1982b) have generalized the CJ index to

handle variable return to scale under the translog functional form.

Caves et al. (1982b) have made explicit the relationship between productivity indexes and

distance functions.  The input-based and output-based distance functions have been studied in detail by

Shephard (1970).  They provide a general representation of the production technology that is

particularly convenient for productivity analysis (Moorsteen (1961); Malmquist (1953)).  This raises

the question of the empirical characterization of these distance functions.  If the distance functions are

translog and exhibit constant second order coefficients, then Caves et al. (1982b) have derived

empirically tractable productivity indexes.  But what if the second order coefficients are not constant? 

Or what if the underlying technology is not translog?  Typically, economists do not have good a priori

information about the true functional form representing technology.  Even if we restrict our attention to

flexible functional forms, there is a very large number of possibilities for choosing a parametric

functional structure.
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This suggests a need to develop nonparametric methodologies for productivity analysis that

would not depend on the choice of a particular functional form (Diewert (1980); Diewert and Parkan

(1983)).  Nonparametric representations of production technologies have been developed over the last

two decades.  Using a primal approach, Afriat (1972), Färe, Grosskopf and Lovell (1985), Färe, 

Grabowski and Grosskopf (1985) and Banker et al. (1984) have developed the nonparametric approach

to production frontier estimation.  This has been called Data Envelopment Analysis (DEA) in the

management science literature (Banker et al. (1984)).   Afriat (1972), Hanoch and Rothschild (1972),

Diewert and Parkan (1983), Varian (1984), Chavas and Cox (1988, 1990) and Cox and Chavas (1990)

have developed a dual approach to nonparametric production analysis under cost minimization or profit

maximization.  More recently, Banker and Maindiratta (1988) have established relationships between

the primal and the dual nonparametric approaches.  Specifically, they have shown that the primal and

dual representations can provide nonparametric bounds on the underlying production technology.

The objective of this paper is to explore the use of both the primal and the dual nonparametric

approaches in the analysis of productivity.  We focus on the general multiproduct-multifactor case with

a finite number of observations on the associated prices and quantities.  As in previous nonparametric

analysis, the approach is not restricted by any particular functional form.  Following Banker and

Maindiratta (1988), a primal lower bound and a dual upper bound representation of the underlying

technology can be obtained.  Using these representations, we propose to estimate the associated

distance functions.  This is done simply by solving linear programming problems formulated using

either just the quantity information (primal approach), or the price and quantity information (dual

approach).  These distance functions are then used to construct nonparametric productivity indexes. 

The methodology is applied to time series data on U.S. agriculture.

The results show that the gap between the primal lower bound and the dual upper bound can be

quite large, generating very different productivity indexes for U.S. agriculture.  This suggests that,
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while the data can likely support a variety of functional forms as representations of the underlying

technology, there may not be any good basis for discriminating among them.  It is found that the CJ

productivity index for U.S. agriculture falls in between our upper bound and lower bound productivity

indexes, although it is closer to the dual upper bound.  The findings also illustrate how an input-based

productivity index can differ from an output-based index, reflecting a departure from constant return to

scale.

II) Productivity Measurement.

Based on the earlier work of Moorsteen (1961) or Malmquist(1953), Diewert (1976), Caves et

al. (1982a, 1982b) and others have stimulated renewed interest on the index number approach to

productivity measurement.  The common starting point for this work is Shephard's distance functions,

which provide a convenient and flexible representation of the underlying technology for productivity

measurement purposes.

Consider a (mx1) input vector x = (x , x , ..., x )'  0 used in the production of a (sx1) output1 2 m

vector y = (y , y , ..., y )'  0.  Characterize the underlying technology by the production possibility set1 2 s

T, where (y, -x)  T.  We assume throughout the paper that the set T is non-empty, closed, convex and

negative monotonic.   1

Shephard (1970, p. 64-78) defines the input distance function as

D (y, x) = sup  { : (y, -x/ )  T}. (1)T

The input distance function in (1) can be used to generate the input requirement set IR (y) = {x: D (y,T T

x)  1} as well as the frontier isoquant of a production set IS (y) = {x: D (y, x) = 1)} (Shephard (1970),T T

p. 67).  Note that the input distance function completely characterizes the technology T.  It measures

the proportional (or radial) reduction in all inputs x that would bring the firm to the frontier isoquant
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IS (y).T

The input distance function has been of great interest in efficiency analysis.  It is the reciprocal

of the Farrell (1957) measure of technical efficiency, where 1/D (y, x) = 1 corresponds to technicalT

efficiency while 1/D (y, x) < 1 identifies technical inefficiency.  In this latter case, 1/D (y, x) measuresT T

the proportional (or radial) rescaling of all inputs that would bring the firm to the frontier isoquant

IS (y) (Färe, Grosskopf and Lovell, 1985).  Similarly, [1 - 1/D (y, x)] can be interpreted as theT T

proportional reduction in production cost that can be achieved by moving to the frontier isoquant.

Shephard (1970, p. 206-212) alternatively defines the output distance function as

F (y, x) = inf  { : (y/ , -x)  T}. (2)T

The output distance function can be used to generate the production correspondence PC (x) = {y: F (y,T T

x)  1} and the frontier correspondence FC (x) = {y: F (y, x) = 1} (Shephard (1970), p. 209).  ItT T

follows that F (y, x) in (2) defines the substitution alternatives among the outputs y, given inputs x.  AsT

with the input distance function in (1), note that the output distance function in (2) provides a complete

characterization of the underlying technology.  Also, note that 1/F (y, x) measures the proportionalT

rescaling of all outputs y that would bring the firm to the frontier production correspondence FC (x). T

Then, [1/F (y, x) - 1] can be interpreted as the proportional increase in revenue that can be achieved byT

moving to the frontier correspondence.

The properties of the two distance functions D (y, x) and F (y, x) have been analyzed in detailT T

by Shephard (1970, p. 207-208).  Note that there exists a simple relationship between these two

functions under constant return to scale.  Indeed, (y/k, -x)  T implies (y, -kx)  T for any k > 0 under

constant return to scale.  From (1) and (2), this implies that D (y, x) = 1/F (y, x).  In other words, eachT T

distance function in (1) or (2) is a reciprocal function of the other under constant returns to scale. 

However, under a variable return to scale technology, D (y, x) =/ 1/F (y, x) in general.T T
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The distance functions (1) and (2) provide a basis for measuring productivity.  From (1) under

technology T, the Malmquist input-based productivity index for observation (y, x) relative to

observation (y , x )  T isT T

IM = D (y , x )/D (y, x).T T
T T

If observation (y , x )  T is technically efficient, then D (y , x ) = 1.  This generates the input-basedT T T T
T

productivity index proposed by Caves et al. (1982b)

IP = 1/D (y, x)T

It measures the radial inflation factor for all inputs such that the inflated inputs (IP x) = x/D (y, x) lieT

on the frontier isoquant IR (y) generated by technology T (Caves et al. (1982b), p. 1407).  In thisT

context, a firm choosing (y, x) has a higher (lower) productivity than the reference technology T if IP >

1 (< 1).  

Alternatively, from (2) under technology T, the Malmquist output-based productivity index for

observation (y, x) relative to observation (y , x )  T isT T

OM =  F (y, x)/F (y , x ).T T
T T

If observation (y , x )  T is technically efficient, then F (y , x ) = 1.  This generates the output basedT T T T
T

productivity index proposed by Caves et al. (1982b)

OP = F (y, x) T

which measures the radial deflation factor for all outputs by which the deflated outputs (y/OP) = y/F (y,T

x) lie on the frontier correspondence FC (x) generated by technology T (Caves et al. (1982b), p. 1402). T

Thus, a firm choosing (y, x) has a higher (lower) productivity than the reference technology T if OP > 1
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(< 1).

Under constant returns to scale, we have seen that the two distance functions (1) and (2) are

reciprocal to each other.  It follows that the two productivity indexes, IP and OP, are identical under

constant returns to scale (Caves et al. (1982b), p. 1408).  Correspondingly, these measures will differ

from each other under variable returns to scale.

The above productivity indexes can help evaluate the rate of technical change in an industry. 

Their use typically depends on the nature of the data available.  With cross-section data, firm level

information is available only for a given time period.  In such a situation, productivity indexes are

basically undistinguishable from radial technical efficiency indexes.  Yet, if the industry is affected by

technical progress, these indexes can reflect different adoption rates of new technology across firms as

the production possibility set expands.  With time series data, the productivity indexes allow a

measurement of the rate of shift of frontier technology over time.  And if firm level data are available

both across firms and over time (e.g. the case of panel data), then it becomes possible to distinguish

between efficiency and productivity: the cross section information across firms provides a basis for

estimating technical efficiency indexes within each period; and the time series information allows the

estimation of productivity indexes across periods.   2

In the analysis of time series data, IP and OP based on observing (y, x) at time t are

productivity indexes for time t given the reference technology T.  Two approaches can be distinguished

depending on the choice of the reference technology T: 1/ sequential analysis; and 2/ intertemporal

analysis.  A sequential productivity index for time t involves a reference technology T corresponding to

current and previous observations but not subsequent ones.  An intertemporal productivity index for

time t involves a reference technology T evaluated on the basis of observations from all time periods.

Diewert (1976), and Caves et al. (1982a, 1982b) propose productivity indexes associated with a

flexible translog transformation function.   Caves et al. (1982b) show that such indexes can be built3
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from the commonly used Törnquist-Theil indexes for inputs and outputs, corrected by scale factors. 

Although their approach is quite appealing, it is restricted by two underlying assumptions:  1/ the4

technology must be represented by a translog production transformation; and 2/ the second order

coefficients of the translog distance function must be the same between the firm being evaluated and

the reference technology (Caves et al. (1982b), theorems 3 and 4).

This raises several questions.  What if the underlying production transformation is not translog? 

Or, what if the second order coefficients of the translog representation are not constant?  In these cases,

the productivity measurements proposed by Caves et al. (1982b) may not be appropriate.  In an attempt

to answer these questions, we investigate some alternative productivity measurements in a general

nonparametric framework that requires less a priori structure on the underlying technologies.

III) The Nonparametric Approach.

In order to make productivity indexes empirically tractable, we need to obtain some

representation of the reference technology T.  In this section, we explore how nonparametric methods

can be used for that purpose.  We will limit our discussion to the analysis of productivity based on time

series data.  5

Consider a set I = {1, 2, ..., n} of n observations on (y, x) in a given industry.  Assume that the

output-input vectors (y , -x )  T and the corresponding price vectors (p , r ) are observed for eachi i i i

observation i  I.  Here, y   0 and p   0 are (sx1) vectors of output quantities and prices, and x   0 andi i i

r   0 are (mx1) vectors of input quantities and prices.  Assuming that the set I involves time series data,i

this information can be used to measure productivity over time.  In a sequential analysis of productivity

for time t, the reference technology T is evaluated based on the set I of observations made up to time t. 

Alternatively, in an intertemporal analysis, the reference set T is evaluated based on the observations

for all time periods.



8

Consider the maintained hypothesis of profit maximization:

Max  [p 'y  - r 'x : (y , -x )  T], (3)y,x i i i i i i

for each i  I.  Let y  = y (p  ,r ) and x  = x (p  ,r ) denote the profit maximizing output supply and inputi i i i i i i i
* *

demand functions corresponding to (3) for firm i  I.  Then, by definition of the maximization problem

in (3), profit maximizing behavior must satisfy the following set of inequalities:

(p 'y  - r 'x ) - (p 'y  - r 'x )  0 (4)i i i i i j i j
* * * *

for all i  I and all j  I.  Expression (4) corresponds to Varian's Weak Axiom of Profit Maximization:

it is a necessary as well as a sufficient condition for profit maximization given the n observations on

production behavior (Varian (1984), p. 584).

However, all the observations on the n firms may not satisfy (4) for all i  I and all j  I.  For

example, this could happen if the n firms do not all have access to or use the same technology.  In this

case, it is useful to consider the subset of firms E  I that do satisfy (4).  For this purpose, define the

function G  for each i  I:i

G  = {max [(p 'y  - r 'x ) - (p 'y  - r 'x ): j  I]}  0.i j i j i j i i i i

Clearly, finding G  = 0 for some i  I implies there does not exist a j  I that would satisfy (p 'y  - r 'x ) >i i j i j

(p 'y  - r 'x ) (i.e. that would violate the inequalities in (4)).  This generates the following definition of thei i i i

subset E:

E = {i: G  = 0, i  I}  I.i

Any observation i  E unambiguously deviates from profit maximizing behavior for any production

possibility set containing all observations.  Alternatively, any firm i  E is necessarily consistent with



S [(y, x): y i I iyi, x i I ixi, i I i 1,

y 0, x 0, i 0 ],

L [(y, x): pi y ri x pi yi ri xi, i E,

y 0, x 0 ].

9

(5)

(6)

profit maximization given the observations on all n firms.

On this basis, we are interested in the following class of admissible sets A:

A = {(y, -x): p 'y  - r 'x   p 'y - r 'x, i  E, (y, -x)  T}.i i i i i i

In other words, an admissible possibility set is any closed, convex and negative monotonic production

possibility set relative to which the performance of each firm in the set E remains consistent with profit

maximization.

Following Banker and Maindiratta (1988), we propose to use the admissible set A as a

reference technology T for the evaluation of productivity.  The question then is how to construct

production possibility sets within A.  In general, the choice of a production possibility set in A is not

unique; there will be many such sets that are consistent with a finite number of observations on

production behavior (Varian (1984), p. 591).  However, it is possible to bound all these possibilities

within the class A of admissible sets.  This can be done by constructing two families of production

possibility sets, S and L, that provide a lower and upper bound on the reference technology T.  Banker

and Maindiratta ((1988), p. 1321) propose the set S

and the set L

Each set S or L is convex, closed, negative monotonic and admissible, and corresponds to a

general variable-return-to-scale technology.  Banker and Maindiratta ((1988), p. 1321) have shown that,
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for any admissible production possibility set T  A, 

S  T  L.

In other words, S in (5) is the tightest lower bound while L in (6) is the tightest upper bound for

any set T  A.  This establishes a basis for investigating the nonparametric bounds of the production

possibility set that can be generated by a finite number of observations on production behavior.

Note that the inner bound S in (5) requires only quantity information on y and x.  Hence, it

corresponds to a primal approach to production analysis and focuses on the nonparametric estimation of

the production frontier (see Afriat (1972), Färe, Grosskopf and Lovell (1985)).  This approach has also

been called Data Envelopment Analysis (DEA) in the management science literature (e.g., Banker et al.

(1984)).  Note, in contrast, the outer bound L in (6) requires information on both quantities (y, -x) and

prices (p, r).  Hence, it corresponds to a dual nonparametric approach to production analysis, as

developed by Afriat (1972), Hanoch and Rothschild (1972), Varian (1984), Chavas and Cox (1988), or

Cox and Chavas (1990).6

Given (5) and (6) as a representation of the bounds on the reference technology T within the

class of admissible sets A, the evaluations of the distance functions (1) and (2) are straightforward. 

Obtaining the input distance function D (y, x) in (1) associated with the lower bound S involves solvingS

the linear programming problem:



1/DS(yj, xj) min , [ : yj i I iyi, xj i I ixi,

i I i 1, i 0 ],

1/DL(yj, xj) min [ : pi yj ri xj pi yi ri xi, i E ],

1/FS(yj, xj) max , [ : yj i I iyi, xj i I ixi,

i I i 1, i 0 ],

1/FL(yj, xj) max [ : pi yj ri xj pi yi ri xi, i E ],

11

(7a)

(7b)

(8a)

(8b)

for all j  I.  The input distance function D (y, x) in (1) associated with the upper bound L can beL

obtained from the solution of the linear programming problem:

for all j  I.

Similarly, the output distance function F (y, x) in (2) associated with the lower bound S is givenS

by the solution of the linear programming problem:

for all j  I.  And the output distance function F (y, x) in (2) associated with the upper bound L isL

obtained in a similar manner from solving:

for all j  I.

The results given in (7) and (8) can be used to calculate the Malmquist productivity indexes IM

and OM discussed in section II.  In the case where D (y , x ) = F (y , x ) = 1, these productivityT T
T T T T

indexes reduce to the ones proposed by Caves et al. (1982b), using T as the reference technology.  They

provide nonparametric bounds on the input-based radial productivity measures IP = 1/D (y, x), as wellT

as the output-based radial productivity measures OP = F (y, x).   This primal-dual nonparametricT
7
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approach to productivity measurement is illustrated next with an application to U.S. agriculture.

IV) Application to U.S. Agriculture.

Aggregate time series data for the U.S. agricultural sector for the years 1950-1982 are taken

from Capalbo and Vo (1987).  Each year is treated as an observation on a different representative farm. 

The data analyzed include quantity indexes (1977 = 1.00) and associated implicit price indexes for 6

agricultural outputs (small grains, coarse grains, field crops, fruits, vegetables, and animal products)

and 9 inputs (family labor, hired labor, land, structures, other capital, materials, energy, fertilizers,

pesticides, and miscellaneous).    Previous work by Chavas and Cox ((1988), p. 307) found evidence8

that these data are not consistent with the existence of an output aggregator using Varian's

nonparametric weak separability test (Varian (1984), p. 588).  This suggests the presence of possible

aggregation bias in previous productivity analysis based on the use of aggregate output (e.g., such as

found in Cox and Chavas (1990)) and motivates a need to generalize previous work to a multi-product

context.  Similar multi-product arguments with respect to U.S. agriculture (in a parametric context) are

found in Antle (1984) and in Shumway (1983).

The analysis of U.S. agriculture productivity presented here is based on estimating the distance

functions in (7) and (8).  This was done by solving the linear programming problems (7)-(8) using

GAMS/MINOS.   Our investigation focuses on an intertemporal approach where the reference9

technology T involves observations for all time periods, i.e. where I in (7) and (8) include all years

from 1950 to 1982.  This implies that the same base technology is used in the estimation of productivity

indexes for all years.  The resulting indexes can thus be interpreted as cumulative measurements of

productivity over time.   Also, following Caves et al. (1982b), we will implicitly assume that each10

observation is technically efficient.   As a result, any departure from the frontier reference technology11

will be interpreted as evidence of technical change.  
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The input-based radial productivity measures IP = 1/D (y,x) are calculated for both the primalT

lower bound (S) and the dual upper bound (L).  Similarly, the output-based radial productivity

measures OP = F (y,x) are computed for each bound.  The results give a productivity index consistentlyT

equal to 1 for the year 1982: IP  = OP  = 1.  This indicates that the highest productivity in U.S.82 82

agriculture was obtained in the last year of the data.  Such a finding is consistent with non-regressive

technical change (where the production possibility set expands over time).  Thus, the reference

technology T is basically the technology available in 1982.  It follows that the indexes IP  ot OP  shouldt t

be interpreted as "true productivity indexes" compared to the 1982 technology.  In this context, an

increase in IP or OP over time means technical progress toward the 1982 technology.   Table 1 and12

Figure 1 present the productivity indexes rescaled to 1 in the year 1950, i.e. IP /IP  and OP /OP , t =t 50 t 50

50, ..., 82.  For comparison purposes we also include the total factor productivity index proposed by

Christensen and Jorgenson (CJ) (computed using these same data).  Recall that this CJ productivity

index is appropriate for either: a homogeneous translog transformation function exhibiting Hick's

neutral technical change and input/output separability (Diewert (1976)); or a homogeneous translog

transformation functions where the second order terms for the current period are identical to the base

period, reference technology (Caves, et al. (1982a)).

The most striking result of Table 1 and Figure 1 is that all the primal nonparametric

productivity indexes are equal to one.  That is, the primal measures provide no evidence of technical

change in U.S. agriculture over the 1950-82 period analyzed.  Quite in contrast, the dual nonparametric

productivity measures suggest considerable technical change.  They indicate that agricultural

productivity has increased by about 70 percent over the period analyzed.  They also show a fairly

steady increase in productivity from one period to the next, which is consistent with non-regressive

technical change.  The few years where productivity exhibits a small decline (1957, 1959, 1970, 1978

and 1980) likely reflect weather shocks and other measurement errors in the data.  The CJ productivity
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index for U.S. agriculture is situated in-between the primal lower-bound index and the dual upper-

bound index.   However, it is found to be much closer to the dual upper bound and follows a similar13

pattern.

Note that the dual nonparametric input-based and output-based productivity indexes are not

identical: the output-based index tends to be a slightly higher than the input-based index.  This indicates

that the input and output distance functions are not reciprocal to each other, reflecting a departure from

constant return to scale.   More specifically, it provides evidence of a technology exhibiting decreasing14

return to scale.15

The difference in the productivity indexes from the primal and dual approaches reflects the

existence of a fairly large gap between the primal lower bound and the dual upper bound representation

of the underlying technology.  In other words, there is a fairly large region of the production set that is

consistent with the observations on prices and quantities.  This indicates that, while many parametric

functional forms (e.g., production, cost and/or profit functions) may provide a good fit to the data, there

may be little basis to choose among them.16

This gap between the primal and dual bounds reflects the nature of the data as well as the

method used for the analysis.  As noted above, the primal nonparametric approach generating the lower

bound does not require price information.  This is advantageous when price information is not

available.  However, when prices are observed and change over time (as is the case with the time-series

data analyzed here), then failure to incorporate this information may imply a significant loss.   The17

dual nonparametric methods directly incorporate this price information while the primal methods do

not.  For example, while the primal approach only restricts the marginal product of inputs to be non-

negative, the dual approach further restricts such marginal products to be consistent with observed

relative prices under profit maximization.

In the current context, it appears that the price information can play a crucial role in the
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assessment of technology.  The dual approach generating the upper bound representation of technology

may be more informative than the primal approach, especially in situations where there are significant

price variations across observations (as typically found in time series data), .  The productivity results

presented in Table 1 and Figure 1 illustrate this point well.  Alternatively, the primal approach may be

viewed as less restrictive than the dual approach in the sense that it does not require imposing any

behavioral assumption (e.g. profit maximization ) on production data.  Thus, our productivity results18

suggest the existence of important trade-offs between the behavioral assumptions that economists may

be willing to make and the informativeness of the associated results.

 Our analysis so far has been based on a multiproduct-multifactor technology.  Previous dual

nonparametric measures of total factor productivity in U.S. agriculture (Cox and Chavas (1990)) have

used an aggregate output specification.  However, the U.S. data have been shown to be inconsistent

with a functional structure exhibiting weak separability in outputs (Chavas and Cox (1988)).  To assess

the impact of this assumption, we calculated Theil-Törnquist price and quantity indexes for aggregate

output and reestimated the productivity indexes based on this aggregate.  Table 1 and Figure 2 compare

the dual productivity measures for the aggregate output/disaggregate inputs (AODI) against the

disaggregate outputs/disaggregate inputs (DODI) results.   Comparison of the input (output) based19

productivity measures for AODI versus DODI indicates that they follow similar patterns and are fairly

close in level.  The less restrictive DODI specification yields slightly higher levels of productivity for

both the input and output radial measures.  This suggests that the aggregation bias of wrongly assuming

the existence of an aggregate output is not large in this case.  Whether this result is generalizable is an

open question easily amenable to further testing with nonparametric methodology.  Finally, note that

both sets of dual productivity indexes in Figure 2 are higher than the CJ productivity index.  This may

reflect the fact that these productivity measures are based on an upper bound representation of the

underlying technology.
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V) Summary and Conclusions.

This paper illustrates and contrasts primal and dual nonparametric methods for computing

input-based and output-based distance functions under the assumption of profit maximization.  These

primal and dual methods generate, respectively, lower and upper bound representations of the

technology that is consistent with a finite number of observations on production data (Banker and

Maindiratta (1988)).  These nonparametric representations, which can fully and flexibly characterize a

reference technology, are then used to generate nonparametric bounds on input and output based

productivity measures.  The dual methods presented generalize the previous nonparametric productivity

work (Chavas and Cox (1990); Cox and Chavas (1990)) by allowing for multi-product productivity

measurements.

Application of this primal-dual methodology to time series data on U.S. agriculture for 1950-82

indicates the existence of large differences in the nonparametric bounds on the underlying technology. 

This translates into very different productivity indexes from the primal approach compared to the dual

approach.  The primal measures (lower bounds) are found to imply no technical change in U.S.

agriculture, while the dual measures (upper bounds) indicate important technical progress.  This

difference is attributed in a large part to the use of price information and the assumption of profit

maximization in the dual approach.  These results suggest the usefulness of the dual approach to

productivity analysis over time, especially  when relative price variations are important.

Given the divergence in the output versus input based productivity measures, it appears these

data do not support the existence of a constant return to scale production technology.  This provides

nonparametric evidence that the total factor productivity index proposed by Christensen and Jorgenson

(1970) will not be exact for these data.  The CJ index is found to lay between the primal lower-bound

and the dual upper-bound productivity index for U.S. agriculture, but is found to be closer to the dual

index than to the primal nonparametric productivity indexes.
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Potential aggregation bias in nonparametric measurement is explored by contrasting dual

productivity indexes for an aggregate versus disaggregate outputs specification.  In the context of U.S.

agriculture, this potential aggregation bias appears to be small.  However, caution in generalizing this

result should be exercised.  

The primal-dual nonparametric methods are easy to implement empirically, requiring the

solution of standard linear programming problems.  These methods easily handle multiple outputs (6 in

the current example) and multiple inputs (9 in the current example).  The primal-dual nonparametric

representations fully characterize the implicit production technology while imposing a minimum of a

priori structure.  Hence, these methods are very flexible and convenient tools for applied work on

productivity analysis.

Hopefully, this paper will contribute to a better unified understanding of primal and dual

nonparametric methodologies.  At this point, the relative merits of a primal versus a dual approach

appear to depend to a large extent on the nature of the data.  Another unresolved problem is how to

choose between an input-based and an output-based productivity index when technology departs from

constant return to scale.  Further research is needed to develop better insights on these issues.
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Table 1.  Alternative Primal and Dual Nonparametric Total Factor Productivity (TFP) Measures for 1950-82 U.S. Agriculture.
                                                                                           
                                          DODI:                          AODI:
                                  6 DISAGGREGATE OUTPUTS            AGGREGATE OUTPUT
                                  9 DISAGGREGATE INPUTS            DISAGGREGATE INPUTS
                CAPALBO   ======================================   ===================
                  & VO       PRIMAL TFP           DUAL TFP              DUAL TFP
                  CJ      ==================  ==================   ==================
                  TFP       INPUT     OUTPUT    INPUT     OUTPUT     INPUT     OUTPUT
         YEAR    INDEX     IP/IP   OP/OP   IP /IP   OP/OP    IP/IP   OP/OPt 50 t 50 t 50 t 50 t 50 t 50

         ----  --------     ------    ------    ------    ------     ------    ------
          50     1.000      1.000     1.000     1.000     1.000      1.000     1.000
          51     1.028      1.000     1.000     1.031     1.038      1.029     1.034
          52     1.073      1.000     1.000     1.057     1.069      1.059     1.071
          53     1.109      1.000     1.000     1.084     1.101      1.085     1.102
          54     1.108      1.000     1.000     1.086     1.103      1.085     1.101
          55     1.097      1.000     1.000     1.099     1.118      1.090     1.108
          56     1.181      1.000     1.000     1.174     1.207      1.164     1.194
          57     1.152      1.000     1.000     1.143     1.168      1.141     1.165
          58     1.173      1.000     1.000     1.188     1.223      1.180     1.212
          59     1.132      1.000     1.000     1.171     1.203      1.157     1.186
          60     1.164      1.000     1.000     1.200     1.238      1.188     1.222
          61     1.174      1.000     1.000     1.222     1.263      1.202     1.239
          62     1.197      1.000     1.000     1.242     1.288      1.221     1.260
          63     1.217      1.000     1.000     1.264     1.313      1.240     1.284
          64     1.245      1.000     1.000     1.289     1.343      1.264     1.311
          65     1.233      1.000     1.000     1.294     1.350      1.269     1.318
          66     1.246      1.000     1.000     1.307     1.364      1.284     1.336
          67     1.275      1.000     1.000     1.333     1.396      1.310     1.367
          68     1.278      1.000     1.000     1.348     1.414      1.324     1.384
          69     1.292      1.000     1.000     1.370     1.441      1.344     1.408
          70     1.259      1.000     1.000     1.344     1.409      1.319     1.378
          71     1.324      1.000     1.000     1.413     1.492      1.383     1.454
          72     1.339      1.000     1.000     1.428     1.511      1.398     1.473
          73     1.360      1.000     1.000     1.448     1.535      1.419     1.499
          74     1.409      1.000     1.000     1.453     1.541      1.416     1.495
          75     1.438      1.000     1.000     1.479     1.573      1.455     1.542
          76     1.437      1.000     1.000     1.485     1.580      1.457     1.545
          77     1.493      1.000     1.000     1.538     1.644      1.512     1.610
          78     1.452      1.000     1.000     1.526     1.629      1.497     1.593
          79     1.530      1.000     1.000     1.600     1.719      1.573     1.683
          80     1.527      1.000     1.000     1.586     1.702      1.561     1.669
          81     1.636      1.000     1.000     1.688     1.824      1.662     1.790
          82     1.652      1.000     1.000     1.717     1.859      1.691     1.825
                                                                                          

SOURCE: Computations by the authors from linear programming solutions to (7a) and (8a) (primal input and output distance
functions, respectively) and (7b) and (8b) (dual input and output distance functions, respectively).  All productivity indexes
are rescaled to 1 in the base year 1950.
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Figure 1

Figure 1.  Comparison of Primal and Dual Nonparametric Measures of Total Factor Productivity for
U.S. Agriculture:  6 Disaggregate Outputs and 9 Disaggregate Inputs (DODI).
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Figure 2.  Comparison of Dual Nonparametric Measures of Total Factor Productivity for U.S.
Agriculture, 1950-82:  Impacts of Aggregate (AODI) versus Disaggregate (DODI) Outputs.
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1.  A set T is said to be negative monotonic if t   T and t   t  implies that t   T.  Note that this1 2 1 2

implies free disposal.  

2.  The joint analysis of efficiency and productivity based on panel data has been investigated recently
by Färe et al. (1992, 1994). 

3.  Diewert (1976) defined "superlative indexes" as indexes that are exact for a flexible production,
cost, or revenue function (i.e. for a functional form that can provide a second order approximation to
the true (but unknown) underlying function).  He recommended the use of such indexes in economic
analysis.

4.  An additional condition assumed by Caves et al. (1982b) is that the firm is allocatively efficient, i.e.
that it either minimizes cost (for the input-based measure) or maximizes revenue (for the output-based
measure).  Note that this allocative efficiency assumption is crucial in the derivation of some of Caves
et al.'s results.

5.  This is motivated in a large part by the nature of the data used in section IV below.  For an extension
of the analysis based on panel data (allowing a distinction between productivity growth and technical
efficiency), see Färe et al. (1992, 1994).

6.  Afriat was the first to show that either a primal or a dual nonparametric approach generates a
representation of the underlying technology.  Specifically, assuming a single product technology, Afriat
((1972), p. 596) derived the primal and dual nonparametric production frontiers (associated with (5)
and (6)) to be respectively:

PRIMAL: f (x) = max{ y : x   x,  = 1,   0}S t t t t t t

DUAL: f (x) = min {y  + (r /p )'(x - x )}.L t t t t t

7.  As noted in section 2, D and F can also be interpreted in terms of efficiency indexes.  In this context,
alternative characterizations of these indexes have been proposed in the literature.  This has been done
by relaxing the "strong disposability" assumption implicit in (7a) and (8a), and/or by relying on non-
radial measurements (see Färe, Grosskopf and Lovell (1985)).

8.  For more details concerning these data, please refer to Capalbo and Vo (1987).

9.  These solutions were checked for the existence of multiple solutions.  As all non-basic variables in
the optimal solutions had non-zero dual values, no evidence of multiple solutions was found in the

Footnotes
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results presented here.

10.  A possible alternative would be using a sequential approach where the reference technology for
each year does not involve subsequent years (i.e. where at time t the set I in (7) and (8) includes only
the years from 1950 to t).  This would give sequential productivity indexes (e.g. from time (t-1) to t),
each using a different reference technology.  Although such sequential indexes can be "chained"
together to generate cumulative productivity indexes over time, the resulting indexes would in general
not be "true" indexes (as defined in section 2) since they do not have a fixed reference technology.

11.  Note that this may be a questionable assumption (e.g., see Färe et al. (1992, 1994)).  It is motivated
in large part by the difficulty of distinguishing between technical efficiency and technical change in the
absence of time series - cross section data.  Our discussion below should be interpreted in the light of
these limitations.

12.  However, note that the ratios IP /IP  or OP /OP  are not to be interpreted as productivity indexest t-1 t t-1

as defined in section II.  The reason is that the productivity indexes IP and OP use T as the reference
technology, which in general differs from the technology available at time t (or (t-1)).

13.  Although finding the CJ productivity index to be between the primal and dual bounds may not be
surprising, such comparisons should be made with caution.  Strictly speaking, the reference technology
implied by the CJ TFP index is not the same as that of the primal and dual nonparametric measures
(i.e., the admissible possibility set A which is consistent with the existence of profit maximization).  In
addition, constant return to scale and other such a priori functional structure (such as translog) are not
required by these nonparametric measures.

14.  Note that departure from constant return to scale will in general invalidate the CJ productivity
index as an exact index of productivity (Caves et al. (1982b)).  In this case, Caves et al. (1982b) have
shown how to adjust the CJ productivity index to account for the existence of economies (or
dieseconomies) of scale. 

15.  Indeed, profit maximizing behavior leads to unbounded choices under a technology exhibiting
global increasing return to scale.  This is ruled out by the data.

16.  Note that Banker and Maindiratta found tighter bounds than the ones reported here.  This indicates
that the tightness of these nonparametric bounds clearly depends on the data.  Thus, it should be kept in
mind that our results may not apply to different industries or different data sets. 

17.  This is similar to the contrast of estimating a parametric production function directly versus
estimating the production function from a dual cost or profit function with explicit incorporation of a
behavioral premise (such as cost minimization or profit maximization).  In the latter case, behavioral
optimization together with price information yield restrictions on the marginal productivity of inputs
and outputs.
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18.  If profit maximization does not hold, then the dual productivity indexes would not be appropriate
measures of the rate of technical change.  Note that such arguments would apply as well for the
Tornquist indexes.

19.  The primal AODI results are similar to the DODI results of Table 1 and Figure 1, hence are not
presented.


